
CollusionResistantMultimediaFingerprinting: AUnifiedFramework

Min Wu ∗, Wade Trappe ∗∗, Z. Jane Wang ∗, and K.J. Ray Liu ∗ 1

∗ ECE Department, University of Maryland, College Park, MD, U.S.A.
∗∗ WINLAB / ECE Department, Rutgers University, Piscataway, NJ, U.S.A.

ABSTRACT

Digital fingerprints are unique labels inserted in different copies of the same content before distribution. Each
digital fingerprint is assigned to an intended recipient, and can be used to trace the culprits who use their content
for unintended purposes. Attacks mounted by multiple users, known as collusion attacks, provide a cost-effective
method for attenuating the identifying fingerprint from each colluder, thus collusion poses a real challenge to
protect the digital media data and enforce usage policies. This paper examines a few major design methodologies
for collusion-resistant fingerprinting of multimedia, and presents a unified framework that helps highlight the
common issues and the uniqueness of different fingerprinting techniques.
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1. INTRODUCTION

Ensuring that digital content is used for its intended purpose is of eminent importance to digital rights manage-
ment. In order to protect the sensitive nature of multimedia data that is shared by a group of users, as well as
protect the commercial value of content after it has been delivered to subscribers, solutions must be developed to
provide the ability to track and identify entities involved in unauthorized redistribution of multimedia content.
Digital fingerprinting is a class of technologies whereby unique labels, known as digital fingerprints, are inserted
in different copies of the same content before distribution. As illustrated in Figure 1, each digital fingerprint is
assigned to an intended recipient, and thus can be used to trace the culprits who use their content for unintended
purposes. In order to provide protection to the content, it is necessary that the fingerprints are closely associated
with the content as well as difficult to remove from the content.

For multimedia content, fingerprints can be embedded using conventional watermarking techniques that
are typically concerned with robustness against a variety of attacks mounted by an individual. Ensuring the
appropriate use of multimedia content, however, is no longer a traditional security issue with a single adversary.
The global nature of the Internet has brought media closer to both authorized users and adversaries. It is now easy
for a group of users with differently marked versions of the same content to work together and collectively mount
attacks against the fingerprints. These attacks, known as collusion attacks, provide a cost-effective method for
attenuating each of the colluders’ identifying fingerprints. An improperly designed embedding and identification
scheme may make it possible for a small coalition of colluders to successfully produce a new version of the content
with no detectable traces. Thus, collusion poses a real challenge to protect the digital media data and enforce
usage policies, and therefore there is a great need to design fingerprints that can resist collusion by allowing for
identifying the colluders.

In this paper, we review a few major design methodologies for collusion-resistant fingerprinting of multime-
dia, and present a unified framework that helps highlight the common issues and the uniqueness of different
fingerprinting techniques. In doing so, we will discuss the situations under which each fingerprinting strategy is
most appropriate, and elucidate its advantages over alternatives. The paper is organized as the follows: we first
provide background on robust data embedding, upon which multimedia fingerprinting system is built. We also
introduce the basic concepts of fingerprinting and collusion, and provide a discussion on the various goals asso-
ciated with fingerprint design and colluder tracing. Detailed discussions are then provided on two major classes
of fingerprinting strategies, namely, orthogonal fingerprinting and correlated fingerprinting, where the latter in-
volves the design of suitable codes that are employed with code modulation to create the fingerprints. Finally
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Figure 1. Using Embedded Fingerprinting for Tracing Users.

we offer a unified view that covers orthogonal fingerprints, coded fingerprints, and other correlated fingerprints,
and conclude the paper by highlighting some areas for further investigation.

2. THE BACKGROUND

Fingerprinting multimedia requires the use of robust data embedding methods that are capable of withstanding
attacks that adversaries might employ in order to remove the fingerprint. Collusion-resistant fingerprinting has
the additional requirement that the fingerprints survive collusion attacks and can identify colluders. Although
there are many techniques that have been proposed for embedding information in multimedia signals [1], in
the sequel we will use the spread spectrum additive embedding technique for illustrating the embedding of
fingerprint signals into multimedia. The spread spectrum embedding technique borrows ideas from spread
spectrum modulation and has proven robustness against a number of signal processing operations (such as
lossy compression and filtering) and attacks [2,3]. With appropriately chosen features and additional alignment
procedures, the embedded spread spectrum watermark can survive moderate geometric distortions, such as
rotation, scale, shift, and cropping [4,5]. Further, information theoretic studies suggest that it is nearly capacity
optimal when the original host signal is available in detection [6,7]. The combination of robustness and capacity
makes the spread spectrum embedding a promising technique for protecting multimedia. In addition, as we shall
see in this paper, its capability of putting multiple marks in overlapped regions also limits the effective strategies
mountable by colluders in fingerprinting applications.

A straightforward way of applying spread spectrum watermarking to fingerprinting is to use mutually or-
thogonal watermarks as fingerprints to identify each user [8, 9] 2. The orthogonality or independence allows for
distinguishing the fingerprints to the maximum extent. The simplicity of encoding and embedding orthogonal
fingerprints makes them attractive to identification applications that involve a small group of users. A second
option for using spread spectrum watermarking to convey fingerprints is to employ code modulation. Code
modulation allows fingerprint designers to design more fingerprints for a given fingerprint dimensionality by
constructing the fingerprint signal for each user as a linear combination of orthogonal noise-like basis signals.

In the following sections we shall examine the effect of collusion on multimedia fingerprints constructed
using orthogonal modulation and code modulation. During a collusion attack, a group of colluders, who have
differently fingerprinted versions of the same content, examine their different copies in hopes of creating a new
signal that will no longer be tied to any of the colluders. There are several types of collusion attacks. One
method is simply to synchronize the fingerprinted copies and average them, which is an example of the linear
collusion attack. Another collusion attack, referred to as the copy-and-paste attack, involves users cutting out
portions of each of their media signals and pasting them together to form a new signal. Other attacks may
employ non-linear operations, such as taking the maximum or median of the values of corresponding components

2The orthogonality may be approximated by using random number generators to produce independent watermark signals for
different users. The orthogonal model also provides foundations to a few variations, such as the receiver-end fingerprinting [10].



of individual copies. We will present a detailed discussion on linear and nonlinear collusions in the context
of orthogonal fingerprint for which analytic study is more feasible, while the analysis can be extended for the
coded and other correlated fingerprints. It is worth mentioning that another class of collusion attack, which
is sometimes referred to as intra-content collusion, may be mounted against watermarks and fingerprints by
single user through replacing each segment of the content signal with another, seemingly similar segment from
different spatial or temporal regions of the content. Such intra-content collusion should be taken into account in
designing robust embedding, which is a building block of a fingerprinting system [11–13]. We will not elaborate
this issue in the current paper.

Regardless of how multiuser collusion is carried out, the overall objective of the digital rights enforcer is simple:
capture the adversaries and stop the proliferation of fraudulent content. However, different concerns arise under
various situations, and the fingerprinting system must be designed according to appropriate performance criteria.
Possible goals for designing the fingerprints are:

• Catch One: In this design scenario, the goal is to design the fingerprints to maximize the chance of
catching at least one colluder, while seeking to minimize the likelihood of falsely accusing an innocent user.
For this desired goal, the set of performance criteria consists of the probability of a false positive and the
probability of a false negative. From the detector’s point of view, a detection approach fails when either
the detector fails to identify any of the colluders (a false negative) or the detector falsely indicates that an
innocent user is a colluder (a false positive). This criteria is particularly relevant when providing evidence
in a court of law.

• Catch Many: The goal in this design scenario is to capture as many colluders as possible, though
possibly at a cost of accusing more innocent users. For this desired goal, the set of performance criteria
consists of the expected fraction of colluders that are successfully captured, and the expected fraction of
innocent users that are falsely placed under suspicion.

• Capture All: In this design scenario, the fingerprints are designed to maximize the probability of
capturing all colluders, while maintaining an acceptable amount of innocents being falsely accused. This
arises when the trustworthiness of the information recipients is of such great concern that all users involved
in the information leak need to be identified. This set of performance criteria consists of measuring the
probability of capturing all colluders, and an efficiency rate, which describes the expected amount of falsely
accused innocents per colluder.

Further, when designing collusion-resistant fingerprints, the designer of a fingerprinting system should con-
sider how fingerprint detection will take place, what is an appropriate strength for the fingerprint, and how
computationally efficient the colluder detection schemes must be. Additionally, the designer should consider
whether or not the original content is available during the detection phase of the fingerprinting application. We
will refer to non-blind detection as the process of detecting the embedded watermarks with the assistance of
the original content, and refer to blind detection as the process of detecting the embedded watermarks without
the knowledge of the original content. Non-blind fingerprint detection provides high confidence in detection,
though requires a method for recognizing the content from a database, which can often require considerable
storage resources. Blind detection, on the other hand, allows for distributed detection scenarios or the use of web
crawling programs since it does not require vast storage resources, or have large computational costs associated
with content registration.

3. ORTHOGONAL/INDEPENDENT FINGERPRINTING

As we have discussed, using orthogonal signals to represent different messages, or orthogonal modulation [14],
is a popular technique for watermarking and naturally lends itself to fingerprinting applications. The spread
spectrum watermarking method, where the watermarks are statistically independent and often chosen to follow
a component-wise Gaussian distribution, is a typical embedding scheme that has been argued to be highly resis-
tant to many attacks [2, 3]. In this section, we first review linear and nonlinear collusion attacks on orthogonal
fingerprints, then introduce several commonly used detection statistics in the literature for identifying orthogo-
nal fingerprints under collusion and discuss techniques for improving the computational complexity of colluder
identification.



3.1. Linear and Nonlinear Collusion on Independent Fingerprints

Linear collusion: Linear collusion is one of the most feasible collusion attacks against multimedia finger-
printing. When users come together with a total of K differently fingerprinted copies of the same multimedia
content, these users can simply linearly combine the K signals to produce a colluded version. Since normally no
colluder is willing to take more of a risk than any other colluder, the fingerprinted signals are typically averaged
with an equal weight for each user [8, 9, 15–17], as illustrated in Figure 2. Averaging reduces the power of each
contributing fingerprint. As the number of colluders increases, the trace of each individual fingerprint becomes
weaker. In fact, the colluded signal can have better perceptual quality in that it can be more similar to the host
signal than the fingerprinted signals are.
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Figure 2. Model for collusion by averaging.

The collusion attack considered in [8]
consists of adding a small amount of noise to
the average of K fingerprinted documents,
where the original document is perturbed
by the marking process to produce finger-
printed documents with a bounded distor-
tion from the original document. It was
shown that O(

√
N/ log N) adversaries are

sufficient to defeat the underlying water-
marks, where N is the total length of the
fingerprint signal. Similar results were also
presented in [9]. In [16], a more general lin-
ear attack than in [8] was considered, where
the colluders employ multiple-input-single-output linear shift-invariant (LSI) filtering plus additive Gaussian
noise to thwart the orthogonal fingerprints. Under the assumption that all fingerprints are independent and have
identical statistical characteristics, it was shown that the optimal LSI attack involves each user weighting their
marked document equally prior to the addition of additive noise.

When the fingerprint is spread throughout the entire host signal by such techniques as spread spectrum
embedding and detected through some form of correlation, the cut-and-paste collusion attack has an effect that
is similar to averaging collusion. In particular, in both cases, the energy of each contributing fingerprint is reduced
by a factor corresponding to the amount of copies involved in the collusion. A similar reduction phenomenon
is observed from the correlation results [18]. As an example, if Alice contributes half of her samples to a cut-
and-paste collusion, the energy of Alice’s fingerprint in the colluded copy is only half of her overall fingerprint
energy. As a result, the correlation of the colluded signal with Alice’s fingerprint is roughly half the correlation
of a non-colluded copy of Alice’s fingerprinted signal with her fingerprint. Therefore, when considering spread
spectrum embedding, we may consider cut-and-paste collusion analogous to averaging collusion.

Nonlinear collusion: Linear collusion by averaging is a simple and effective way for a coalition of users to
attenuate embedded fingerprints. Averaging, however, is not the only form of collusion attack available to a
coalition of adversaries. In fact, for each component of the multimedia signal, the colluders can output any value
between the minimum and maximum values that they have observed, and have high confidence that the spurious
value they get is within the range of just-noticeable-difference since each fingerprinted copy is expected to have
high perceptual quality. Therefore, we next examine families of nonlinear collusion attacks.

An important class of nonlinear collusion attacks is based upon such operations as taking the maximum,
minimum, and median of corresponding components of the K colluders’ independent watermarked copies [15,19].
For simplicity in analysis, nonlinear attacks are typically assumed to be performed in the same domain of features
as the fingerprint embedding. The Just-Noticeable-Difference (JND) from human visual models [3] is used to
control the energy of the embedded fingerprints so as to guarantee their imperceptibility. As in [19], a set
of typical nonlinear attacks are considered: (1) Minimum/Maximum/Median Attack – under these three
attacks, the colluders create an attacked signal, in which each component is the minimum, maximum, and median,
respectively, of the corresponding components of the K watermarked signals associated with the colluders; (2)
MinMax Attack – each component of the attacked signal is the average of the maximum and minimum of the



corresponding components of the K watermarked signals; (3) Modified Negative Attack – each component
of the attacked signal is the difference between the median and the sum of the maximum and minimum of
the corresponding components of the K watermarked signals; (4) Randomized Negative Attack – each
component of the attacked signal takes the value of the maximum of the corresponding components of the K
watermarked signals with probability p, and takes the minimum with probability (1− p).

The effectiveness of different attacks were studied in [19] based on two performance criteria: the probability of
capturing at least one colluder (Pd) and the probability of falsely accusing at least one innocent user (Pfp). Since
the colluded fingerprint components under the minimum, maximum and randomized negative attacks do not have
zero mean, pre-processing was applied to remove the mean from the colluded copy. It was observed that the
overall performance under the median or MinMax attacks is comparable to that of the average attack. Therefore,
from the attacker’s point of view, there is no gain in employing the median or MinMax attack compared to the
average attack. On the other hand, the effectiveness of collusion improves under the minimum, maximum and
modified negative attacks. The randomized negative attack was shown to be the most effective attack, but it also
introduces larger, more perceivable distortion to the host signal than other attacks. Colluders may also apply
additional noise after the nonlinear combining, as studied in [19,20]. As the amount of distortion introduced by
the nonlinear combining increases, the amount of additional noise that can be added while maintaining perceptual
constraints decreases.

3.2. Colluder Identification via Independent Fingerprints

When collusion occurs, the content owner’s goal is to identify the fingerprints associated with users who partic-
ipated in generating the colluded content. As we mentioned earlier, blind detection is attractive in multimedia
fingerprinting systems employing distributed resources. However, detection performance is often lower in the
blind scenario than in the nonblind one since the host signal serves as a noise source in the blind detection 3. A
forensic application employing digital fingerprints should carefully consider the trade-off between detectability
and resource usage.

The problem of detecting colluders can be posed in a hypotheses testing framework where fingerprints are
signals to be detected. For detecting a single fingerprint, three detection statistics, referred to as TN−, Z−
and q−statistic, were proposed to measure the similarity between the colluded observation and the original
embedded fingerprint [15, 18, 22]. All these three tests are correlation-based, involving the correlation between
the multimedia test signal and the original fingerprints. Their difference lies in their normalization. A high value
in correlation implies high likelihood of the involvement from the corresponding user in the collusion activity for
generating the test signal.

3.2.1. Efficient Detection of Independent Fingerprints

One potential problem with orthogonal modulation is the computational complexity associated with estimating
which user’s watermark is present when the total number of users is large [2]. This is because the classical method
for detection employs a bank of matched filters that correlate the test signal against each of the fingerprints.
The number of correlations required is thus proportional to the number of users. For a large group of users, this
leads to significant detection complexity and bookkeeping resources.

In order to facilitate multimedia forensic systems employing distributed resources, where the detectors are
likely to have limited computational capabilities, it is essential to cut down the amount of correlations used. To
improve the computational efficiency in detection for an orthogonal fingerprinting system, a recursive detection
structure was explored in [18]. The underlying motivation comes from the classical problem of finding a heavy
coin among n coins, of which n − 1 are identical. One solution to this problem is to break the coins into two
complementary sets of the same size, and weigh these sets. Upon finding the heavier set of coins, the process
repeats until ultimately the heavy coin is identified. This idea was employed to identify a single colluder. Denote
by S = {w1, · · · ,wv} the set of orthogonal fingerprints, and define the sum of A by SUM(A) =

∑
j∈J wj , where

J is an index set for A. The algorithm starts by breaking S into two complementary subsets S0 and S1, and
correlates the test signal with SUM(S0) and SUM(S1), respectively. The colluder’s fingerprint should belong to
the subset yielding a larger correlation value. The algorithm then iterates by breaking that subset into smaller

3Note that there are other types of watermarking schemes that do not suffer from interference from unknown host signals [7,21].
Their appropriateness for fingerprinting and anti-collusion capabilities remain under investigation.



subsets, and correlating the test signal with the sum of the fingerprints from these smaller subsets. The idea can
be further extended to identify K colluders, where at each iteration the test signal is correlated against both
SUM(S0) and SUM(S1). If any of the correlation statistics is above a threshold then we further decompose the
corresponding set.

In the recursive detector, each internal node corresponds to two correlations. In the ideal scenario where
each correlation truthfully reveals whether a colluder is present or not, the amount of correlations needed for the
K-colluder case can be shown to be O(K log(n/K)), where n is the total amount of users to which content is
being distributed. The O(K log(n/K)) complexity is a significant computational improvement over conventional
matched filtering. While the ideal case of the recursive algorithm is closely related to tree-based searching
algorithms and group testing [23], it should be noted that identifying colluders involves randomness, which raises
issues not present in tree-based searching. In particular, the intermediate decisions made at each node of the
algorithm are not guaranteed to be truthful. This is partly due to the decrease in the equivalent detection
signal-to-noise ratio from correlating a test signal with the sum of a potentially large number of fingerprints.
Preliminary analysis has been presented in [18], where it was found that at low watermark-to-noise ratio (WNR),
which corresponds to blind detection scenarios, the bound on the amount of correlations needed in the recursive
detector is above the baseline amount of correlations needed for simply correlating with each of the fingerprint
waveforms. However, at higher WNR, which corresponds to non-blind detection scenarios, the bound guarantees
a reduced number of correlations.

4. CODED FINGERPRINTING

In the previous section we introduced a conceptually simple strategy for fingerprinting through orthogonal/
independent signals. We have seen that the problem of high computational complexity in detection can be
alleviated through a tree-based detection structure. Another problem with orthogonal fingerprinting arises
when examining the energy reduction of the fingerprint signals during collusion. Under averaging collusion the
reduction is significant and on the same order as the number of colluders. Further, the maximum number of users
that can be supported by an orthogonal fingerprinting system is equal to the dimension of the fingerprint. In
many multimedia distribution applications, this limits the amount of customers that content can be distributed
to.

One approach to counteract the energy reduction due to collusion is to introduce correlation between the
fingerprints. Then, when colluders combine their fingerprints, positively-correlated components of the fingerprints
do not experience as significant an energy reduction. Further, by introducing correlation, one can introduce
dependence among the fingerprints, and thus have more fingerprints than the dimensionality of the fingerprints.

The challenge is to design these fingerprints so that they have good anti-collusion properties. One can
construct these fingerprints by using code modulation [14]. Then the task is to design the codes so that the
correlations are strategically introduced into the different fingerprints to allow for accurate identification of the
contributing fingerprints involved in a collusion attack.

4.1. The Marking Assumption and Collusion-Secure Fingerprint Codes

An early work on designing collusion-resistant binary fingerprint codes was presented by Boneh and Shaw in
1995 [24], which primarily considered the problem of fingerprinting generic data that satisfy an underlying
principle referred to as the Marking Assumption. In this work, a fingerprint consists of a collection of marks,
each of which is modeled as a position in a digital object and can take a finite number of states. A mark is
considered detectable when a coalition of users does not have the same mark in that position, as illustrated
in Figure 3. The Marking Assumption states that undetectable marks cannot be arbitrarily changed without
rendering the object useless; however, it is considered possible for the colluding set to change a detectable mark
to any state. Under this collusion framework, Boneh and Shaw used hierarchical design and randomization
techniques to construct c-secure codes that are able to capture one colluder out of a coalition of up to c colluders
with high probability.

The construction of c-secure code involves two main stages: (1) the construction of a base code, and (2) the
composition of the base code with a outer code to improve the efficiency when accommodating a large number
of users.



Figure 3. Illustration of the Mark-
ing Assumption

In the first stage, we start with a primitive binary code that consists of n
possible codewords of length n − 1. For the mth codeword, the first (m − 1)
bits are 0 and the rest are 1. An example of the trivial codes for n = 4 users
A, B, C, and D is shown in Figure 4 (Step-I). If we assign this code to n
users, we can see that everyone except user A has a “0” as the first bit, and
everyone except the user D has “1” as the last bit. Now, suppose a fingerprint
collusion occurs in which the first m − 1 users are not involved but the mth

user is involved. According to the Marking Assumption, by inspecting the
primitive code, the colluders will not be able to detect the first m − 1 bits,
hence the first m− 1 bits will remain “0” after collusion. On the other hand,
the colluders will detect the fact that the mth bit of their fingerprints don’t
agree. The colluders may then alter this bit to whatever they choose– either a
0 or a 1. If the detector observes that the first m − 1 bits are 0 and the mth

bit is a 1, then we can conclude that User-m was involved in the collusion. We
sequentially check whether this holds for m = 1, 2, ..., n, and if m0 is the first
value for m passing this test, we know with high confidence that User-m0 is
involved in collusion.

We note that there is no guarantee that the colluders will switch the bit to a “1”, which prompts the
need of some method to encourage a “1” showing up during collusion. This is accomplished by repetition and
permutation techniques. More specifically, for each bit of the primitive code, we form a block by replicating
that bit d times, arriving at a code of (n − 1) code blocks for a total length of (n − 1)d. We denote this code
as Γ0(n, d). Extending the above example, we have the Γ0(4, 3) code shown in Figure 4 (Step-II) where d = 3.
When fingerprinting digital data with a codeword, each bit is put in a location specified by a secret permutation
table that is known only to the fingerprint creator and detector. Repetition and permutation help hide which
position of the digital object encodes which fingerprint bits. In the example in Figure 4 (Step-II), the first six
bits before permutation for A have the same value, as do C and D. Later the bit permutation is performed as
shown in Figure 4 (Step-IV). When colluders having A, C, and D, respectively, come together to collude, they
observe six positions with different values among the three of them. But since each of them has the same value
at all six positions, they would not know which three out of the six bits correspond to the first three bits before
permutation, and which to the second three bits. As a result, they cannot alter the underlying Γ0(4, 3) code at
will. Based on the principle that every colluder should contribute an equal share to the colluded data, some of
the six bits would be set to “1” and others to “0”. A detector starts from the first block and examines each block
in a block-by-block manner, which is analogous to the bit-by-bit examination of the primitive code discussed
above. The number of “1”s per code block is used as an indicator of a user’s involvement in collusion.

In the second stage, we use the code obtained in the first stage as a building block and combine with a second
codebook. We construct a second codebook of N codewords over an alphabet of size n, and each codeword
has length L. The N codewords are chosen independently and uniformly over the nL possibilities. We call
this code C(L,N). For example, one random code C(5, 7) over an alphabet n = 4 is shown in Figure 4 (Step-
III). Next, we substitute each of the n alphabets in the code C(L, N) by Γ0(n, d), and arrive at a binary code
containing N possible codewords of length L(n − 1)d. This substitution allows us to first apply the collusion
identification algorithm mentioned earlier on each of the L components using the first codebook Γ0(n, d), then
find the best match in the second codebook to determine a likely colluder. Finally, each of the blocks of the
codeword are permuted before being inserted into the data. For example, using the above code C(5, 7), we would
be able to support 7 users, and the codeword for the first user is shown in Figure 4 (Step-IV). By choosing
the code parameters appropriately, we can catch one colluder with high probability and keep the probability
of falsely accusing innocents low. The construction that Boneh and Shaw arrived at gives a codelength of
O(log4 N log2(1/ε)) for catching up to log N users out of a total of N users with error probability ε < 1/N .

The construction strategies of Boneh-Shaw code offers insight into fingerprinting both bitstreams and other
data for which the each bit or unit of a fingerprint is marked in a non-overlapped manner. Improvement was
introduced in [25] to merge the low-level code with the direct sequence spread spectrum embedding for multi-
media and to extend the Marking Assumption to allow for random jamming. The two-level code construction
also inspired the work in [26], which uses the orthogonal fingerprinting in the low level and structured error
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correction code in the upper level to improve the detection efficiency over the traditional single-level orthogonal
fingerprinting.

While the c-secure fingerprint codes were intended for objects that satisfy the Marking Assumption, we
should note that multimedia data have very different characteristics from generic data, and a few fundamental
aspects of the Marking Assumption may not always hold when fingerprinting multimedia data. For example,
different “marks” or fingerprint bits can be embedded in overlapped regions of an image through spread spectrum
techniques, and such “spreading” can make it impossible for attackers to manipulate each individual mark at
will. As a result, such collusion models as linear collusion by averaging become more feasible for multimedia
fingerprints, and this has a critical impact on the design of fingerprint codes. It is also desirable to capture
as many colluders as possible, instead of only capturing one. Recent research in [17] explored these directions
and jointly considered the encoding, embedding, and detection of fingerprints for multimedia. A new class of
structured codes, known as anti-collusion codes (ACC), has been proposed that uses combinatorial theory that
are intended to be used with spread spectrum code modulation. Several colluder identification algorithms for
these fingerprint codes were designed and the performance tradeoffs were examined [18]. Next, we will take a
closer look at this fingerprinting strategy.

4.2. Combinatorial Design Based Anti-Collusion Fingerprinting

We take both encoding and embedding issues into considerations when designing fingerprints that can survive
collusion and have the ability to identify colluders. Since it is desirable to design the fingerprints using as
few underlying basis signals as possible, we approach the design of collusion-resistant fingerprints using code
modulation [14]. The fingerprint signal for the jth user, wj , is constructed using a linear combination of a total
of v orthogonal basis signals {ui}:

wj =
v∑

i=1

bijui. (1)

Here the coefficients {bij}, representing fingerprint codes, are constructed by first designing codevectors with
values {0, 1}, and then mapping them to {±1}.

Anti-collusion codes can be used with code modulation to construct a family of fingerprints with the ability
to identify colluders [17]. An anti-collusion code is a family of codevectors for which the bits shared between
codevectors uniquely identifies groups of colluding users. ACC codes have the property that the composition of
any subset of K or fewer codevectors is unique. This property allows for the identification of up to K colluders.



User-1 User-4 User-8 

Figure 5. 16-bit codevectors from a (16,4,1)-ACC code for user 1, 4, and 8, and the fingerprinted 512× 512 Lenna images
for these three users, respectively. The code can capture up to 3 colluders. Shown here is an example of two-user collusion
by averaging (user 1 and 4) and an example of three-user collusion by averaging. The two codes indicated by arrows in
the table uniquely identify the participating colluders.

A K-resilient AND anti-collusion code (AND-ACC) is such a code where the composition is an element-wise
AND operation.

It has been shown that binary-valued AND-ACC exists and can be constructed using balanced incomplete
block designs (BIBD) [17]. The theory of block designs is a field of mathematics that has found application in the
construction of error correcting codes and the design of statistical experiments [27].The corresponding (k − 1)-
resilient AND-ACC codevectors are assigned as the bit complements of the columns of the incidence matrix of a
(v, k, 1) BIBD. In this case, the codevectors are v-dimensional, and we are able to represent n = (v2−v)/(k2−k)
users with these v basis vectors. Therefore for a given resilience (k − 1), only O(

√
n) basis vectors are needed

to accommodate n users. There are systematic methods for constructing infinite families of BIBDs [27], which
therefore provide a vast supply of ACC.

Let us now study a simple example of ACC codes. The columns of the following matrix C represent the
codevectors of an ACC built from a (7, 3, 1)-BIBD:

C =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1




⇔

w1 = −u1 − u2 + u3 − u4 + u5 + u6 + u7,
w2 = −u1 + u2 − u3 + u4 + u5 − u6 + u7,

.

.

.

.
w7 = +u1 + u2 + u3 − u4 − u5 − u6 + u7.

Upon examining the code matrix C, we see that the logical AND of any two or fewer codevectors is distinct
from the logical AND of any other two or fewer codevectors. When two watermarks are averaged, the locations
where the corresponding AND-ACC agree and have a value of 1 identify the colluding users. For example, the
w1 and w2 shown above represent the watermarks for the first two columns of the above code, where we use the
antipodal form and map “0” to “-1”. The average (w1 + w2)/2 has coefficient vector (−1, 0, 0, 0, 1, 0, 1). The
fact that a “1” occurs in the 5th and 7th location uniquely identifies user 1 and user 2 as the colluders. Another
example employing an ACC from a (16,4,1)-BIBD on the Lenna image is shown in Figure 5, where the code is
capable of capturing up to 3 colluders. Again, the set of positions of the sustained 1’s is unique with respect to
the colluder set, and is therefore used to identify colluders. For example, only user 1 and 4 can produce a set of
sustained 1’s at the 5th-10th and 14th-16th codebits; and only user 1, 4, and 8 can produce a set of sustained
1’s at the 5th, 6th, 8th, 10th, 14th, and 16th codebits.



It is desirable to shorten the codelength to squeeze more users into fewer bits since this would cut down
on the storage and bookkeeping resources used to maintain the orthogonal basis vectors. Further, it will also
distribute the fingerprint energy over fewer basis vectors and thereby decrease errors in the detection process. A
useful metric for evaluating the efficiency β of an AND-ACC for a given collusion resistance is β = n/v, which
describes the amount of users that can be accommodated per basis vector. AND-ACCs with a higher β are
better. For (v, k, λ)-BIBD AND-ACC codes, their efficiency is β = λ(v − 1)/(k2 − k) ≥ 1.

Another attempt at using the theory of combinatorics to design fingerprints was made by [28], where projective
geometry was used to construct their codes. In terms of the β value defined above, the fingerprinting scheme
employing BIBD ACC is more efficient from a coding perspective as it requires less basis signals to accommodate
the same amount of users. The higher efficiency of the BIBD ACC fingerprinting scheme has, to some extent,
benefited from incorporating knowledge about the embedding and detection processes during code design. By
incorporating a model of the detector, it is possible to provide as compact representation as possible for collusion
resistant fingerprint codes. The BIBD construction assumes that the detection of code bits in the presence of
collusion can be modeled as a logical AND operation. One avenue for further exploration would be to investigate
other models for the detector, such as using majority logic.

Other code construction schemes, such as those based on different combinatorial designs, can lead to ACC
codes with different characteristics and may potentially allow for content distributors to be able to market
valuable content to a larger customer base. It is also possible to obtain useful insights from further exploring
the building blocks in the Boneh-Shaw’s code construction [24] and apply appropriate modulation to fingerprint
multimedia. The existing construction described in [24] is limited to a collusion resistance of K ≤ log n, and
is designed to trace one colluder among K colluders. Their construction has codelength O(log4 n log2(1/ε)),
where ε < 1/n is the decision error probability. This codelength is considerably large for small error probabilities
and practical n values. An interesting avenue to explore would be how to reduce the codelength by combining
insightful philosophies from both Boneh-Shaw’s code and codes based on combinatorial-designs. These hybrid
codes could provide additional latitude in searching for a family of efficient and effective ACC codes.

Colluder Identification: There are many potential colluder identification schemes. Due to the discrete
nature of the ACC fingerprinting code, the maximum likelihood (ML) approach usually involves the enumeration
of all possible parameter values, which leads to prohibitively high computational requirements. Therefore,
computationally efficient alternatives to the ML algorithm are desirable.

Three detection schemes have been recently proposed as suitable candidates that may be applied with AND-
ACC [18]. The first scheme is a hard-thresholding detector, which starts with comparing TN (i), the correlation-
based detection statistic for each bit, to a threshold τ to decide the observed code bit. If the threshold is
chosen appropriately, the extracted code approximates the AND operations of the codes from the colluders.
We then compare the decoded bits with the ACC codevectors and use the detected “1” bits to deduce which
users have been involved in collusion. The second approach is a soft-thresholding scheme, called the adaptive
sorting detector, where the descendingly ordered detection statistics TN (i)’s are iteratively used to narrow down
the set of suspected users until the likelihood function stops increasing. The third scheme that was introduced,
known as sequential detector, differs from the previous two algorithms in that it attempts to directly estimate the
set of colluders from the distributional behavior of the detection statistics instead of first performing decoding
before identifying colluders from the decoded fingerprint code. As indicated by the name, the sequential detector
identifies colluders one-by-one using a likelihood criteria. These three detectors have much lower computational
complexity than the ML approach. Simulation results of these detectors under a three-colluder scenario are
presented in Figure 6, where fingerprints based on a (16,4,1) BIBD are employed. It is observed that the use
of a higher threshold in the hard-thresholding scheme is able to capture more colluders, but also places more
innocent users falsely under suspicion. Compared to the hard-thresholding scheme with τ = 0.9E(TN ), the
soft-thresholding scheme and the sequential scheme capture a larger fraction of the colluders at all WNRs, while
for a large range of WNRs they place fewer innocents under suspicion. Overall, the sequential detector provides
the most promising balance between capturing colluders and placing innocents under suspicion. From the code
perspective, this performance improvement can be viewed as using not only sustained 1-bits but also sustained
0-bits to help identify colluders.
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Figure 6. Colluder identification performance of four different detectors on ACC based fingerprinting. The horizontal
axis indicates watermark-to-noise-ratio (WNR); the vertical axis indicates the fraction of colluders correctly captured (a)
and the fraction of innocent users that are put under suspicion (b). The sorting and sequential detection schemes (stars
and 5-point stars) outperform the two hard-thresholding ones.

5. CONCLUSIONS

In summary, we have discussed the recent advances in multimedia fingerprinting for colluder identification,
reviewed the tradeoffs and performance criteria, and examined a few embedded fingerprint strategies. Revisiting
the formulation of fingerprint coding and modulation in Equation (1), we can arrive at a unified framework
that covers orthogonal fingerprints, coded fingerprints, and other correlated fingerprints. Under this unified
formulation, a different sequence {b1j , b2j , ..., bvj} is assigned for each user j. Its matrix representation, B = {bij},
has different structure for different fingerprint strategies [29]. An identity matrix for B represents orthogonal
fingerprinting wj = uj , where each user is identified with an orthogonal basis signal. The orthogonality allows
one to distinguish different users’ fingerprints to the maximum extent. Its simple structure for encoding and
embedding makes it attractive in identification applications that involve a small group of users. To use v
orthogonal basis signals to represent more than v users, correlations between different users’ fingerprints must
be introduced. One way to construct a corresponding B matrix is to use binary codes. The c-secure code and
the BIBD ACC code discussed in Section 4 are two examples. In more general constructions, entries of B can
be real numbers [30]. The key issue is how to strategically introduce correlation among different fingerprints to
allow for accurate identification of individual fingerprint as well as multiple contributing fingerprints involved in
forming a colluded fingerprint signal.

We hope that the work reviewed in this paper and the general framework presented will encourage researchers
from different areas to further explore collusion-resistant fingerprinting for digital rights management of mul-
timedia. As we noted throughout the paper, there are many research directions that remain unexamined. As
an example, one key problem in the area of independent fingerprints involves developing distributed detection
agents. The challenge here lies in developing computationally efficient detection algorithms that are capable
of robustly identifying colluders at the low WNR associated with the blind detection scenarios in distributed
detection. Similarly, there are many suitable directions to explore for collusion-resistant fingerprints built using
code modulation. The construction of collusion-resistant fingerprints using non-binary codes, or that involves
different assumptions about the detection process are interesting avenues to be explored. Additionally, the dis-
cussion presented in this paper has focused primarily on fingerprints embedded using spread spectrum techniques.
Exploring the effect that collusion has upon other embedding technologies is an important area for further inves-
tigation. We envision that insights from multiple disciplines, such as signal processing, coding, combinatorics,
communications, and information theory, will help improve our understanding of the capability and limitations
of fingerprinting, improve our fingerprint designs, and ultimately lead to systems with better colluder-tracing
performance. Overall, appropriately designed fingerprints can be a useful and proactive forensic tool that brings
user accountability into multimedia information management by providing evidence and a means to trace the
culprits of unauthorized information dissemination.
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