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ABSTRACT 

In this paper, we present a framework of fault management 
for a particular type of failure propagation that we refer to 
as “poison message failure propagation”:  Some or all of 
the network elements have a software or protocol ‘bug’ 
which is activated on receipt of a certain network 
control/management message (the poison message). This 
activated ‘bug’ will cause the node to fail with some 
probability. If the network control or management is such 
that this message is persistently passed among the network 
nodes, and if the node failure probability is sufficiently 
high, large-scale instability can result. In order to mitigate 
this problem, we propose a combination of passive 
diagnosis and active diagnosis. Passive diagnosis includes 
protocol analysis of messages received and sent by failed 
nodes, correlation of messages among multiple failed 
nodes and analysis of the pattern of failure propagation. 
This is combined with active diagnosis in which filters are 
dynamically configured to block suspect protocols or 
message types. OPNET simulations show the effectiveness 
of passive diagnosis. Message filtering is formulated as a 
sequential decision problem, and a heuristic policy is 
proposed for this problem. 

 
1. INTRODUCTION  

 
There have been a number of incidents where commercial 
data and telecommunication networks have collapsed due 
to their entering an unstable mode of operation. The events 
were caused by unintentional triggers activating 
underlying system defects (e.g., software ‘bugs’, design 
flaws, etc.) that create the propagation mechanism for 
instability. These system defects are generally not known 
to the network providers, and new defects are constantly 
introduced. More importantly, these points of vulnerability 
can be easily triggered through malicious attack.  

 

The goal of this research is to provide a fault management 
framework that can protect networks from unstable 
behavior when the trigger mechanism and underlying 
defect causing instability are unknown. There are several 
failure propagation mechanisms that can cause network 
instability [2]. This paper presents a framework to deal 
with one of those mechanisms -- what we call the ‘poison 
message’ failure propagation mechanism. This mechanism 
has resulted in large-scale failures in both 
telecommunication networks and IP networks. A 
telecommunications example is described below. We are 
also aware of an incident in which malformed OSPF 
packets functioned as poison messages and caused failure 
of the routers in an entire routing area for an Internet 
Service Provider.  
 

1.1 A TELECOMMUNICATION EXAMPLE 
 
On January 15, 1990 an AT&T network failure occurred 
[5]. It was caused by a ‘poison message’ propagation in 
the network management plane. The AT&T 4ESS switches 
are signaling points in the SS7 signaling network. The 
problem began after the 4ESS switch in New York (switch 
A) took itself out of service during normal recovery from a 
minor trunk interface problem, announcing this to adjacent 
4ESS switches by network management messages. The 
adjacent switch processors made notations in their 
programs to indicate that Switch A was temporarily out of 
service. Upon completion of fault recovery, Switch A 
announced its recovery to adjacent switches by sending 
call setup messages. Each adjacent switch then noted 
recovery of A by an appropriate update in its program. A 
software flaw leading to network failure caused the 
adjacent switches to be vulnerable to certain types of 
disruptions for a few seconds during the period when such 
updates were being made. The fatal disruption occurred 
when switch A sent two very closely spaced call setup 
messages (within an interval of 15 ms) to an adjacent 
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switch (switch B). This trigger event caused switch B to 
execute some bad code and finally took itself out of 
service. When switch B went out of service, it repeated 
switch A’s actions, disabling other 4ESS switches. A chain 
reaction was initiated causing a network instability that 
lasted for hours. During the first 30 minutes of the incident, 
about 98% of 114 4ESS switches were affected.  

 
1.2 THE POISON MESSAGE  

FAILURE PROPAGATION PROBLEM 
 
We now describe the generic mechanism of which the 
AT&T failure is a specific example: A trigger event causes 
a particular network control or management message (the 
poison message) to be sent to other network elements. 
Some or all of the network elements have a software or 
protocol ‘bug’ that is activated on receipt of the poison 
message. This activated ‘bug’ will cause the node to fail 
with some probability. If the network control or 
management is such that this message is persistently 
passed among the network nodes, and if the node failure 
probability is sufficiently large, large-scale instability can 
result. 

 
Our task is to design a fault management framework that 
can identify the message type, or at least the protocol, 
carrying the poison message, and block the propagation of 
the poison message until the network is stabilized. We 
propose using both passive diagnosis and active diagnosis 
to identify and block the corresponding protocol or 
message type. 
 

2. THE PROBLEM FEATURES 
 
This problem has several differences from traditional 
network fault management problems [3]. In our problem, 
the failure itself propagates, and propagation occurs 
through messages associated with particular control plane 
or management plane protocols. It is also different from 
worms or viruses in that worms and viruses propagate at 
the application layer. A protocol may have a characteristic 
pattern of propagation. For example, OSPF uses flooding 
so a poison message carried by OSPF is passed to all 
neighbors. In contrast, RSVP path messages follow 
shortest paths so a poison message carried by RSVP is 
passed to a sequence of routers along such a path. 
Consequently, we expect pattern recognition techniques to 
be useful in helping to infer the protocol responsible for 
carrying the poison message. We make the following two 
assumptions: 1). There is a central controller and a central 
observer in the network. I.e., we use centralized network 
management. 2). The recent communication history 
(messages exchanged) of each node in a communication 
network can be recorded.  

There are several ways to record the communication 
history. Here we assume we can put a link box at each link 
of the network. The link box can be used to record 
messages exchanged recently in the link. The link box can 
also be configured to block certain message types or all 
messages belonging to a protocol.  We refer to the 
blocking as message or protocol filtering. Filtering may be 
used to isolate the responsible protocol. E.g., when failures 
are observed, one could configure the link box to block all 
suspect protocols in the control/management plane. Then 
the protocols can be turned on one by one. This method 
should be able to identify the responsible protocol, but the 
cost may be very large in terms of degraded control of the 
network.  On the other hand, one could isolate the 
responsible protocol by blocking one protocol at a time 
and observing whether failure propagation was halted. The 
filter settings may or may not be chosen to be the same 
throughout the network. We suggest combining both 
passive diagnosis and active diagnosis to find out the 
poison message.  
 

3. PASSIVE DIAGNOSIS 
 
Passive diagnosis includes the following methods. 
a. Finite State Machine Method: This is a distributed 
method used at a single failed node. As we know, all 
communication protocols can be modeled as finite state 
machines [1]. At the beginning of the failure propagation, 
only a small number of nodes fail. Then as the poison 
message propagates through the network, the number of 
failed nodes increases. The neighbor of a failed node will 
retrieve messages belonging to the failed node. From the 
message sequence for each protocol, we can determine 
what state a protocol was in immediately prior to failure by 
checking the FSM model.  We can also find out whether 
those messages match (are consistent with) the FSM. If 
there are one or more mismatches between the messages 
and the FSM, that probably means there is something 
wrong in the protocol. 

 
b. Correlating Messages: Event correlation is an 
important technique in fault management. We store recent 
exchanged messages before a node fails.  Then we analyze 
the stored messages from multiple failed nodes. If multiple 
nodes are failed by the same poison message, there must 
be some common features in the stored messages. We need 
to take advantage of this. One can compare the stored 
messages (recently exchanged) from those failed nodes. If 
for a protocol, there are no common received messages 
among the failed nodes, then we can probably rule out this 
protocol. I.e., this protocol is not responsible for the poison 
message. On the other hard, if all failed nodes have the 
same final message in one protocol, we can use Bayes’ 
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Rule to calculate the probability of the final message being 
the poison one. The details are given in section 6. 

 
c. Using Node Failure Pattern: Different protocols have 
different failure propagation patterns. One way to exploit 
the node failure pattern is to use a neural network classifier. 
The neural network is trained via simulation. A simulation 
testbed can be set up for a communication network. The 
testbed has the same topology and protocol configuration 
as the real network. Then for each message type used in 
the network, the poison message failure is simulated. And 
the simulation is run for the probability of a node failure 
taking on different values. After the neural network is 
trained, it is applied using the node failure sequence as 
input, and a pattern match score is the output. Results of 
this method will be reported elsewhere. 

 
When a poison message failure occurs, anything could 
happen in the failed node. We classify the failure into four 
cases: 
1) The failure causes one (or more) mismatches between 
messages and the corresponding FSM. This can be 
detected by FSM method.  
2) The failure does not cause any mismatch between 
messages and the corresponding FSM, but it leads the final 
state of the protocol to be in an “Error” state. This can also 
be detected by FSM method.  
3) The last message in a protocol is the poison message. 
I.e., there are no more messages exchanged in the poison 
protocol between the time the node received the poison 
message and when it failed. This case can be dealt with by 
correlating messages among multiple failed nodes. 
4) None of the above. – This case can be dealt with using 
the node failure pattern method.  
       
The output of passive diagnosis will be a probability 
distribution that indicates for each protocol (or message 
type) an estimated probability that it is responsible for the 
poison message. In our simulation experiments, we have 
focused on correlating messages across multiple failed 
nodes and using Bayes’ Rule to generate the probability 
distribution. The details are given in section 6.  
 

4. ACTIVE DIAGNOSIS 
 
From passive diagnosis we obtain a probability 
distribution vector over the possible poison protocols (or 
message types). Each component of this vector 
corresponds to a particular protocol (or message type) and 
gives the current estimate of the probability that it is the 
one carrying the poison message. Message filtering will be 
used for further failure identification. There are different 
costs associated with turning off different protocols or 

message types. We formulate it as a sequential decision 
problem.  
• At each stage, the state consists of a probability 

distribution vector for each protocol potentially 
carrying the poison message, and the recent history of 
the node failures. 

• Based on the current state, a decision (action) is made 
as to how to configure filters. 

• When new node failures are observed, the state is 
updated based on the current state, action and new 
observation. 

• Actions are chosen according to a policy that is 
computed off-line based on optimizing an objective 
function.  

. Because the probability of two protocols having poison 
messages at the same time is very small, we assume there 
is only one protocol carrying the poison message when 
such failure occurs. We proposed a heuristic policy for the 
sequential decision problem: To block the single protocol 
(or message type) with the smallest ratio E[C]/p at each 
decision time step, where the E[C] is the expected cost (in 
terms of network performance) associated with blocking 
the protocol, and p is the current probability that the 
protocol is poison [4]. Derivation of more sophisticated 
filtering policies is the subject of ongoing research. 
 
5. THE POISON MESSAGE FAILURE EXAMPLES 

 
The poison message failures could happen in many 
protocols and scenarios. We construct three scenarios 
where Label Distribution Protocol (LDP), OSPF and BGP 
are the responsible protocols carrying the poison messages. 
In the LDP case, for some reasons (e.g. software bug) a 
LDP label request message can cause a receiving node to 
fail with some probability. Consider in an MPLS network, 
several dynamic Label Switched Paths (LSPs) are set up. 
The term “dynamic path” means that the path from ingress 
router to egress router is not fixed, but is found 
dynamically by a routing protocol. If any link or router in 
the path fails, the ingress router will try to find another 
path to the egress router. 

 
An ingress router R0 wants to set up an LSP to the egress 
router Re. The Label Request message is sent to next router 
R1. With some probability P router R1 fails because of the 
poison message. If R1 does not fail, then it will send a 
Label Request message to next router R2. And with some 
probability R2 will fail, and so on. If any router along the 
LSP fails, R0 will try to find another path to Re, and that 
may cause some other nodes to fail. Later a failed router 
reboots and it may be failed again by the poison message. 
If there are enough dynamic LSPs in the network, and if P 
is large enough, sustained network instability can result. 
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In the OSPF scenario, the poison message is a Link State 
Advertisement (LSA) message with one field having an 
unusual value. When a router receives the poison LSA 
message, it fails with some probability. If it fails, its 
neighbors will find the failure and send LSA messages to 
other routers. That may cause some other routers to fail 
leading to a chain reaction of failures. After a failed router 
reboots, it may receive the poison LSA messages again, 
and its failure may be repeated. This also causes an 
unstable network. 

 
The third example involves BGP. The poison message is a 
normal BGP update message. In the BGP case, the failure 
propagation is similar to the OSPF case. A router fails 
because of a BGP poison message; later other BGP 
speakers will discover the failure and send out update 
messages. That could cause other BGP speakers to fail 
leading to failure propagation among the BGP speakers 
throughout the network.  
 

6. SIMULATION RESULTS 
 
In order to validate passive diagnosis, we have 
implemented an OPNET testbed to simulate an MPLS 
network in which poison messages can be carried by BGP, 
LDP, or OSPF. Different probabilities of a poison message 
failing a router have been tested. For each fixed probability, 
three simulation runs were performed. The testbed has 14 
routers of which 5 are Label Edge Routers and 9 are (non-
edge) Label Switching Routers. We use numbers 1,2,…,14 
to denote each router in the simulation. 
 

6.1 BGP SIMULATIONS 
 
The BGP simulation is used to validate message 
correlation method and node failure pattern method. As we 
mentioned in Section 3, one possibility of the poison 
message failure is that the final message in a protocol is 
the poison message. If the node fails shortly after receiving 
the poison message, this is likely to be the case. However, 
just because multiple failed nodes have the same last 
message in a particular protocol does not guarantee that 
this is the culprit protocol and message type. For certain 
protocols, a large proportion of the messages exchanged 
may be of a particular type. Consequently, when a node 
fails it is likely that this message type will be the final one 
observed in that protocol prior to node failure even if it is 
not the cause of the node failure. We address this issue by 
using Bayes’ Rule to get the posterior probability of the 
poison message given that several nodes have the same 
type of final message.  

 
First we need the prior distribution of the final messages. 
To compute the prior distribution, we run simulations 

where nodes fail randomly and determine the relative 
frequency of the final message in each protocol. This 
relative frequency gives the probability of that being the 
final message in the protocol. There are 4 kinds of BGP 
messages in the OPNET simulator. The BGP message 
types and prior distributions are: BGP open message, 
0.34%; BGP update message, 78.3%; BGP keep alive 
message, 21.2%; and BGP notification message, 0.16%. 
There are 11 kinds of LDP messages in the OPNET 
simulator. The often used message types and prior 
distributions are: hello message, 17.4%; initialization 
message, 17.4%; keep alive message, 34.8%; label 
mapping message, 13.0%; label request message, 13.0%; 
label release message 4.35%. There are 5 kinds of OSPF 
messages in the OPNET simulator. The OSPF message 
types and prior distributions are: OSPF hello message, 
45.9%; OSPF database description message, 5.86%; OSPF 
request message, 3.53%; OSPF update message, 33.1% 
and OSPF acknowledge message, 9.70%.  

 
In the BGP scenarios, the poison message is a normal BGP 
message. For each simulation, the poison message is either 
an update message, keep alive message or open message. 
We change the probability of a BGP message failing a 
node in different simulation runs. The following 
probability (P) values have been tested: 0.03, 0.05, 0.10, 
0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 
1.00.  For a node that fails, there is a small random delay 
between its receipt of the poison message and failure. 
Results from a typical simulation run with BGP keep alive 
message being the poison message are given in Table 1. 
Because there is a small random delay between the time 
nodes receive the poison message and when they fail, not 
all the failed nodes have the same final message in BGP. 
We use number (1,2,..) to denote message types in all 
tables. The mapping is: BGP: open=1, update=2, keep=3; 
OSPF: hello=1, request=2, update=4, ack=5; LDP: init=2, 
keepalive=3, mapping=4, request=5, hello=6, release=7. 
 

Failed nodes 12 7 4 11 5 
Failed time (sec.) 137.0 137.01 137.02 137.03 200.1 
BGP last message 3 3 3 2 3 
LDP last message No No No No 6 
OSPF last message 1 1 4 1 1 

 
Failed nodes 9 6 13 14 3 
Failed time (sec.) 200.2 200.3 242.1 242.1 242.2 
BGP last message 3 3 3 3 3 
LDP last message No No No No No 
OSPF last message 1 4 1 1 1 

 
Table 1. BGP Simulation Data (P = 0.4) 

 
From Table 1 we can see that some of the failed nodes do 
not have LDP messages. So we can rule out LDP for sure--
i.e., LDP is not the protocol carrying the poison message. 
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Now we need to consider BGP and OSPF. p(keep) is used 
to denote the prior probability of {keep alive message is 
the final message in a failed node}. Assume the 
distribution of final messages at different nodes is 
independent and identical. Then we can use the 
multinomial distribution to get the probability of N nodes 
having certain final message distribution. Considering 
node failure time in Table 1, we can regard the first batch 
of failed nodes as the four nodes: 12,7,4,11. Applying the 
multinomial distribution to those four nodes in BGP, we 
have:     P(keep, keep, keep, update)  
   = 4!/(3!1!)*  p(keep) p(update) = 0.0298          (1) 3

aP≡
We use data from other simulations in which the BGP 
keep alive message is the poison message to compute the 
following conditional probabilities: 
P(keep alive message is the final message | BGP keep alive 

message is poison) = 0.9375. 
P(update message is the final message | BGP keep alive 

message is poison) = 0.0625.   
 
Next we want to get the probability  
P(keep, keep, keep, update | BGP keep alive message is 

poison message)                    bP≡
Here we make a simplifying assumption: Given BGP keep 
alive message is poison, the distribution of final messages 
at different nodes is independent. (The reasonableness of 
this assumption requires further investigation.) Then by the 
multinomial distribution, we have: 

bP = 4!/(3!1!)*P(keep alive |BGP keep alive message is 

poison) *P(update |BGP keep alive message is 
poison)=0.206                 (2) 

3

Next consider the prior probability for each message type 
to be the poison message. Since we have no prior 
knowledge which message is the poison one, we use a 
uniform distribution over all message types for all 
protocols. I.e., the prior probability:  
P(BGP keep alive message is poison)  
= P(OSPF hello message is poison) = …=        (3) ∂
 
Then by Bayes’ Rule, 
P(BGP keep alive message is poison | keep, keep, keep, 
update) * P(keep, keep, keep, update) 
= P(keep, keep, keep, update | BGP keep alive message is 
poison)*P(BGP keep alive is poison)  
Combining (1), (2), (3), we have 

≡1P  P (BGP keep alive message is poison | keep, keep, 
keep, update) = = 6.903      (4) ab PP /∗∂ ∗∂

Similarly, we can get the posterior probability for 
other message types. The results are as follows: BGP 
update message:  = 0.031∗∂ . OSPF hello message:  2P

3P  = 3.295∗∂ , OSPF update message: =0.3664P ∗∂ . 
Since we assume there is only one kind of poison 

message, 1=∑
i

iP . If we only suspect the above four 

message types, then 14321 =+++ PPP

1

P . We have the 
following posterior probabilities: P = 0.65, P = 0.003, 

= 0.31,  = 0.037. 
2

3P 4P
 
Of course we can include more message types in the 
calculation. Actually other probabilities are even smaller 
than , and P , do not change much. The results show 
that if BGP keep alive message is the poison message, data 
from only 4 failed nodes can generate a good probability 
distribution. But in some cases one needs to collect more 
information (i.e., wait for more failed nodes) to get a good 
probability distribution, as is the case discussed next when 
BGP open message is poison. We also ran simulations 
where the poison message is BGP open message or update 
message. After similar calculation, we have the following 
results.  

2P 1 4P

 
Poison Message BGP open BGP update BGP update 
# of failed nodes 4 5 10 
BGP open 0.987 0.000 0.000 
BGP keep alive 101.1 10−×  0.002 0.008 
BGP update 0.012 0.497 0.577 
OSPF hello 0.001 0.478 0.392 
OSPF update 88.3 10−×  0.023 0.030 

 
Table 2. Posterior Probability in BGP Simulation 

 
In Table 2, row 2 is the number of failed nodes used in 
calculation, and data in row 3 through row 7 are the 
posterior probabilities of different message types. We can 
see that BGP open message has a very high posterior 
probability (0.987) when open message is the poison one. 
This is because the prior probability of having open 
message as final message is very small (0.34%). The 
posterior probability also depends on how many failed 
nodes are included in the calculation. Column 3 indicates 
that when BGP update message is the poison message and 
only 5 failed nodes are considered, the probability of 
OSPF hello message being poison is very close to that of 
BGP update message so it not clear which message is the 
poison one. We can wait and more nodes will fail, so more 
information can be collected and used to calculate the 
posterior probability. Column 4 shows that when data from 
ten failed nodes is used, the probability of BGP update 
message is much larger than that of other message types. 
The OSPF simulations provide similar results and are 
omitted here. 

 
 

 5



6.2 LDP SIMULATIONS 
 

Ten dynamic LSPs are set up in the network. The LSP 
Recovery Parameters are set to reroute if there is a link or 
node failure along the LSP. OSPF is used to implement 
routing and rerouting of LSPs. The LDP simulation is used 
to validate the FSM method. We modify the OPNET LDP 
model so that when a Label Request message is received, 
with some probability there is a FSM change by which the 
router goes from state “response” to “release”, instead of 
going to state “establish” (which is the normal case). Then 
after a (relatively large) random time, the router fails.  Part 
of the result from a typical LDP simulation is shown in 
Table 3. 
 
Failed nodes 1 2 3 5 1 
Failed time (sec.)  185.4 187.6 188.3 189.2 305.4 
BGP last message 2 1 2 2 2 
LDP last message 5 7 7 3 4 
LDP FSM mismatch yes yes yes yes yes 
OSPF last message 1 1 1 1 5 

 
Table 3. LDP Simulation Data 

 
Since software is implemented according to the 
corresponding protocol specification, most of the time the 
messages should match the protocol’s FSM. If a FSM 
change is found in some protocols, it strongly suggests that 
there is some kind of failure in that protocol. If most of the 
failed nodes have FSM mismatches in one protocol, then 
we can assign a large probability to that protocol. 
Consequently, in the LDP simulation above, we can 
conclude with a high degree of confidence that LDP is the 
protocol responsible for carrying the poison message. If 
there is no FSM change in LDP, then we can still use 
Bayes’ Rule (as in 6.1) to get a posterior probability 
distribution over the possible poison message types. The 
results are given below. 

    
BGP 
open 

BGP 
update 

OSPF 
hello 

OSPF 
update 

LDP 
request 

LDP 
mapping 

LDP 
release 

0.034 0.038 0.170 0.008 0.094 0.023 0.632 
 
Table 4. Probability Distribution in LDP Simulation 
 

In the LDP simulation, there is a relatively large random 
delay between a node receiving a poison message and 
failing. This explains why many LDP final messages are 
not the poison message (label request message), and why 
the largest probability is not the poison message but 
instead is LDP label release message. In this case, we did 
not locate the exact message type; however, we still get a 
large probability for LDP -- the responsible protocol.  
Actually, in some situations, by passive diagnosis we can 
only locate the responsible protocol instead of the exact 
message type. This may still be satisfactory since if we 

find the responsible protocol, we can block the protocol 
and hence stop failure propagation. Then we will have 
enough time to use additional diagnostic techniques to find 
out the exact poison message.  

 
7. SUMMARY 

 
We have discussed a particular failure propagation 
mechanism--poison message failure propagation--and 
provided a framework to identify the responsible protocol 
or message type. We have proposed passive diagnosis, 
which includes the FSM method applied at individual 
failed nodes, correlating protocol events across multiple 
failed nodes and using node failure pattern. Bayes Rule is 
then used to generate a probability distribution over the 
possible message types or protocols. If passive diagnosis 
cannot solve the problem by itself, it can be augmented by 
protocol or message type filtering, which is formulated as 
a sequential decision problem. We implemented an 
OPNET testbed where BGP, LDP and OSPF can carry 
poison messages. Our simulations demonstrate the 
effectiveness of passive diagnosis. I.e., passive diagnosis 
can either find the poison message or provide a good 
probability distribution that can be used to determine the 
initial filter configurations for active diagnosis. This is an 
interesting and challenging problem. Our next tasks 
include: (1) Implementation of a neural network classifier 
for node failure pattern recognition, and (2) 
Implementation of a heuristic policy and rollout algorithm 
for the sequential decision problem.  
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