
PREVENTING NETWORK INSTABILITY CAUSED BY
PROPAGATION OF CONTROL PLANE POISON MESSAGES*

Xiaojiang Du

Mark A. Shayman
Department of Electrical and Computer Engineering

University of Maryland, College Park, MD

Ronald A. Skoog
Telcordia Technologies

Red Bank, NJ

* Research supported by DARPA under contract N66001-00-C-8037, by the Laboratory for Telecommunications Sciences and by ARDA.

ABSTRACT

In this paper, we present a framework of fault management
for a particular type of failure propagation that we refer to
as “poison message failure propagation”: Some or all of
the network elements have a software or protocol ‘bug’
which is activated on receipt of a certain network
control/management message (the poison message). This
activated ‘bug’ will cause the node to fail with some
probability. If the network control or management is such
that this message is persistently passed among the network
nodes, and if the node failure probability is sufficiently
high, large-scale instability can result. In order to mitigate
this problem, we propose a combination of passive
diagnosis and active diagnosis. Passive diagnosis includes
protocol analysis of messages received and sent by failed
nodes, correlation of messages among multiple failed
nodes and analysis of the pattern of failure propagation.
This is combined with active diagnosis in which filters are
dynamically configured to block suspect protocols or
message types. OPNET simulations show the effectiveness
of passive diagnosis. Message filtering is formulated as a
sequential decision problem, and a heuristic policy is
proposed for this problem.

1. INTRODUCTION

There have been a number of incidents where commercial
data and telecommunication networks have collapsed due
to their entering an unstable mode of operation. The events
were caused by unintentional triggers activating
underlying system defects (e.g., software ‘bugs’, design
flaws, etc.) that create the propagation mechanism for
instability. These system defects are generally not known
to the network providers, and new defects are constantly
introduced. More importantly, these points of vulnerability
can be easily triggered through malicious attack.

The goal of this research is to provide a fault management
framework that can protect networks from unstable
behavior when the trigger mechanism and underlying
defect causing instability are unknown. There are several
failure propagation mechanisms that can cause network
instability [2]. This paper presents a framework to deal
with one of those mechanisms -- what we call the ‘poison
message’ failure propagation mechanism. This mechanism
has resulted in large-scale failures in both
telecommunication networks and IP networks. A
telecommunications example is described below. We are
also aware of an incident in which malformed OSPF
packets functioned as poison messages and caused failure
of the routers in an entire routing area for an Internet
Service Provider.

1.1 A TELECOMMUNICATION EXAMPLE

On January 15, 1990 an AT&T network failure occurred
[5]. It was caused by a ‘poison message’ propagation in
the network management plane. The AT&T 4ESS switches
are signaling points in the SS7 signaling network. The
problem began after the 4ESS switch in New York (switch
A) took itself out of service during normal recovery from a
minor trunk interface problem, announcing this to adjacent
4ESS switches by network management messages. The
adjacent switch processors made notations in their
programs to indicate that Switch A was temporarily out of
service. Upon completion of fault recovery, Switch A
announced its recovery to adjacent switches by sending
call setup messages. Each adjacent switch then noted
recovery of A by an appropriate update in its program. A
software flaw leading to network failure caused the
adjacent switches to be vulnerable to certain types of
disruptions for a few seconds during the period when such
updates were being made. The fatal disruption occurred
when switch A sent two very closely spaced call setup
messages (within an interval of 15 ms) to an adjacent

 1

switch (switch B). This trigger event caused switch B to
execute some bad code and finally took itself out of
service. When switch B went out of service, it repeated
switch A’s actions, disabling other 4ESS switches. A chain
reaction was initiated causing a network instability that
lasted for hours. During the first 30 minutes of the incident,
about 98% of 114 4ESS switches were affected.

1.2 THE POISON MESSAGE

FAILURE PROPAGATION PROBLEM

We now describe the generic mechanism of which the
AT&T failure is a specific example: A trigger event causes
a particular network control or management message (the
poison message) to be sent to other network elements.
Some or all of the network elements have a software or
protocol ‘bug’ that is activated on receipt of the poison
message. This activated ‘bug’ will cause the node to fail
with some probability. If the network control or
management is such that this message is persistently
passed among the network nodes, and if the node failure
probability is sufficiently large, large-scale instability can
result.

Our task is to design a fault management framework that
can identify the message type, or at least the protocol,
carrying the poison message, and block the propagation of
the poison message until the network is stabilized. We
propose using both passive diagnosis and active diagnosis
to identify and block the corresponding protocol or
message type.

2. THE PROBLEM FEATURES

This problem has several differences from traditional
network fault management problems [3]. In our problem,
the failure itself propagates, and propagation occurs
through messages associated with particular control plane
or management plane protocols. It is also different from
worms or viruses in that worms and viruses propagate at
the application layer. A protocol may have a characteristic
pattern of propagation. For example, OSPF uses flooding
so a poison message carried by OSPF is passed to all
neighbors. In contrast, RSVP path messages follow
shortest paths so a poison message carried by RSVP is
passed to a sequence of routers along such a path.
Consequently, we expect pattern recognition techniques to
be useful in helping to infer the protocol responsible for
carrying the poison message. We make the following two
assumptions: 1). There is a central controller and a central
observer in the network. I.e., we use centralized network
management. 2). The recent communication history
(messages exchanged) of each node in a communication
network can be recorded.

There are several ways to record the communication
history. Here we assume we can put a link box at each link
of the network. The link box can be used to record
messages exchanged recently in the link. The link box can
also be configured to block certain message types or all
messages belonging to a protocol. We refer to the
blocking as message or protocol filtering. Filtering may be
used to isolate the responsible protocol. E.g., when failures
are observed, one could configure the link box to block all
suspect protocols in the control/management plane. Then
the protocols can be turned on one by one. This method
should be able to identify the responsible protocol, but the
cost may be very large in terms of degraded control of the
network. On the other hand, one could isolate the
responsible protocol by blocking one protocol at a time
and observing whether failure propagation was halted. The
filter settings may or may not be chosen to be the same
throughout the network. We suggest combining both
passive diagnosis and active diagnosis to find out the
poison message.

3. PASSIVE DIAGNOSIS

Passive diagnosis includes the following methods.
a. Finite State Machine Method: This is a distributed
method used at a single failed node. As we know, all
communication protocols can be modeled as finite state
machines [1]. At the beginning of the failure propagation,
only a small number of nodes fail. Then as the poison
message propagates through the network, the number of
failed nodes increases. The neighbor of a failed node will
retrieve messages belonging to the failed node. From the
message sequence for each protocol, we can determine
what state a protocol was in immediately prior to failure by
checking the FSM model. We can also find out whether
those messages match (are consistent with) the FSM. If
there are one or more mismatches between the messages
and the FSM, that probably means there is something
wrong in the protocol.

b. Correlating Messages: Event correlation is an
important technique in fault management. We store recent
exchanged messages before a node fails. Then we analyze
the stored messages from multiple failed nodes. If multiple
nodes are failed by the same poison message, there must
be some common features in the stored messages. We need
to take advantage of this. One can compare the stored
messages (recently exchanged) from those failed nodes. If
for a protocol, there are no common received messages
among the failed nodes, then we can probably rule out this
protocol. I.e., this protocol is not responsible for the poison
message. On the other hard, if all failed nodes have the
same final message in one protocol, we can use Bayes’

 2

Rule to calculate the probability of the final message being
the poison one. The details are given in section 6.

c. Using Node Failure Pattern: Different protocols have
different failure propagation patterns. One way to exploit
the node failure pattern is to use a neural network classifier.
The neural network is trained via simulation. A simulation
testbed can be set up for a communication network. The
testbed has the same topology and protocol configuration
as the real network. Then for each message type used in
the network, the poison message failure is simulated. And
the simulation is run for the probability of a node failure
taking on different values. After the neural network is
trained, it is applied using the node failure sequence as
input, and a pattern match score is the output. Results of
this method will be reported elsewhere.

When a poison message failure occurs, anything could
happen in the failed node. We classify the failure into four
cases:
1) The failure causes one (or more) mismatches between
messages and the corresponding FSM. This can be
detected by FSM method.
2) The failure does not cause any mismatch between
messages and the corresponding FSM, but it leads the final
state of the protocol to be in an “Error” state. This can also
be detected by FSM method.
3) The last message in a protocol is the poison message.
I.e., there are no more messages exchanged in the poison
protocol between the time the node received the poison
message and when it failed. This case can be dealt with by
correlating messages among multiple failed nodes.
4) None of the above. – This case can be dealt with using
the node failure pattern method.

The output of passive diagnosis will be a probability
distribution that indicates for each protocol (or message
type) an estimated probability that it is responsible for the
poison message. In our simulation experiments, we have
focused on correlating messages across multiple failed
nodes and using Bayes’ Rule to generate the probability
distribution. The details are given in section 6.

4. ACTIVE DIAGNOSIS

From passive diagnosis we obtain a probability
distribution vector over the possible poison protocols (or
message types). Each component of this vector
corresponds to a particular protocol (or message type) and
gives the current estimate of the probability that it is the
one carrying the poison message. Message filtering will be
used for further failure identification. There are different
costs associated with turning off different protocols or

message types. We formulate it as a sequential decision
problem.
• At each stage, the state consists of a probability

distribution vector for each protocol potentially
carrying the poison message, and the recent history of
the node failures.

• Based on the current state, a decision (action) is made
as to how to configure filters.

• When new node failures are observed, the state is
updated based on the current state, action and new
observation.

• Actions are chosen according to a policy that is
computed off-line based on optimizing an objective
function.

. Because the probability of two protocols having poison
messages at the same time is very small, we assume there
is only one protocol carrying the poison message when
such failure occurs. We proposed a heuristic policy for the
sequential decision problem: To block the single protocol
(or message type) with the smallest ratio E[C]/p at each
decision time step, where the E[C] is the expected cost (in
terms of network performance) associated with blocking
the protocol, and p is the current probability that the
protocol is poison [4]. Derivation of more sophisticated
filtering policies is the subject of ongoing research.

5. THE POISON MESSAGE FAILURE EXAMPLES

The poison message failures could happen in many
protocols and scenarios. We construct three scenarios
where Label Distribution Protocol (LDP), OSPF and BGP
are the responsible protocols carrying the poison messages.
In the LDP case, for some reasons (e.g. software bug) a
LDP label request message can cause a receiving node to
fail with some probability. Consider in an MPLS network,
several dynamic Label Switched Paths (LSPs) are set up.
The term “dynamic path” means that the path from ingress
router to egress router is not fixed, but is found
dynamically by a routing protocol. If any link or router in
the path fails, the ingress router will try to find another
path to the egress router.

An ingress router R0 wants to set up an LSP to the egress
router Re. The Label Request message is sent to next router
R1. With some probability P router R1 fails because of the
poison message. If R1 does not fail, then it will send a
Label Request message to next router R2. And with some
probability R2 will fail, and so on. If any router along the
LSP fails, R0 will try to find another path to Re, and that
may cause some other nodes to fail. Later a failed router
reboots and it may be failed again by the poison message.
If there are enough dynamic LSPs in the network, and if P
is large enough, sustained network instability can result.

 3

In the OSPF scenario, the poison message is a Link State
Advertisement (LSA) message with one field having an
unusual value. When a router receives the poison LSA
message, it fails with some probability. If it fails, its
neighbors will find the failure and send LSA messages to
other routers. That may cause some other routers to fail
leading to a chain reaction of failures. After a failed router
reboots, it may receive the poison LSA messages again,
and its failure may be repeated. This also causes an
unstable network.

The third example involves BGP. The poison message is a
normal BGP update message. In the BGP case, the failure
propagation is similar to the OSPF case. A router fails
because of a BGP poison message; later other BGP
speakers will discover the failure and send out update
messages. That could cause other BGP speakers to fail
leading to failure propagation among the BGP speakers
throughout the network.

6. SIMULATION RESULTS

In order to validate passive diagnosis, we have
implemented an OPNET testbed to simulate an MPLS
network in which poison messages can be carried by BGP,
LDP, or OSPF. Different probabilities of a poison message
failing a router have been tested. For each fixed probability,
three simulation runs were performed. The testbed has 14
routers of which 5 are Label Edge Routers and 9 are (non-
edge) Label Switching Routers. We use numbers 1,2,…,14
to denote each router in the simulation.

6.1 BGP SIMULATIONS

The BGP simulation is used to validate message
correlation method and node failure pattern method. As we
mentioned in Section 3, one possibility of the poison
message failure is that the final message in a protocol is
the poison message. If the node fails shortly after receiving
the poison message, this is likely to be the case. However,
just because multiple failed nodes have the same last
message in a particular protocol does not guarantee that
this is the culprit protocol and message type. For certain
protocols, a large proportion of the messages exchanged
may be of a particular type. Consequently, when a node
fails it is likely that this message type will be the final one
observed in that protocol prior to node failure even if it is
not the cause of the node failure. We address this issue by
using Bayes’ Rule to get the posterior probability of the
poison message given that several nodes have the same
type of final message.

First we need the prior distribution of the final messages.
To compute the prior distribution, we run simulations

where nodes fail randomly and determine the relative
frequency of the final message in each protocol. This
relative frequency gives the probability of that being the
final message in the protocol. There are 4 kinds of BGP
messages in the OPNET simulator. The BGP message
types and prior distributions are: BGP open message,
0.34%; BGP update message, 78.3%; BGP keep alive
message, 21.2%; and BGP notification message, 0.16%.
There are 11 kinds of LDP messages in the OPNET
simulator. The often used message types and prior
distributions are: hello message, 17.4%; initialization
message, 17.4%; keep alive message, 34.8%; label
mapping message, 13.0%; label request message, 13.0%;
label release message 4.35%. There are 5 kinds of OSPF
messages in the OPNET simulator. The OSPF message
types and prior distributions are: OSPF hello message,
45.9%; OSPF database description message, 5.86%; OSPF
request message, 3.53%; OSPF update message, 33.1%
and OSPF acknowledge message, 9.70%.

In the BGP scenarios, the poison message is a normal BGP
message. For each simulation, the poison message is either
an update message, keep alive message or open message.
We change the probability of a BGP message failing a
node in different simulation runs. The following
probability (P) values have been tested: 0.03, 0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90,
1.00. For a node that fails, there is a small random delay
between its receipt of the poison message and failure.
Results from a typical simulation run with BGP keep alive
message being the poison message are given in Table 1.
Because there is a small random delay between the time
nodes receive the poison message and when they fail, not
all the failed nodes have the same final message in BGP.
We use number (1,2,..) to denote message types in all
tables. The mapping is: BGP: open=1, update=2, keep=3;
OSPF: hello=1, request=2, update=4, ack=5; LDP: init=2,
keepalive=3, mapping=4, request=5, hello=6, release=7.

Failed nodes 12 7 4 11 5
Failed time (sec.) 137.0 137.01 137.02 137.03 200.1
BGP last message 3 3 3 2 3
LDP last message No No No No 6
OSPF last message 1 1 4 1 1

Failed nodes 9 6 13 14 3
Failed time (sec.) 200.2 200.3 242.1 242.1 242.2
BGP last message 3 3 3 3 3
LDP last message No No No No No
OSPF last message 1 4 1 1 1

Table 1. BGP Simulation Data (P = 0.4)

From Table 1 we can see that some of the failed nodes do
not have LDP messages. So we can rule out LDP for sure--
i.e., LDP is not the protocol carrying the poison message.

 4

Now we need to consider BGP and OSPF. p(keep) is used
to denote the prior probability of {keep alive message is
the final message in a failed node}. Assume the
distribution of final messages at different nodes is
independent and identical. Then we can use the
multinomial distribution to get the probability of N nodes
having certain final message distribution. Considering
node failure time in Table 1, we can regard the first batch
of failed nodes as the four nodes: 12,7,4,11. Applying the
multinomial distribution to those four nodes in BGP, we
have: P(keep, keep, keep, update)
 = 4!/(3!1!)* p(keep) p(update) = 0.0298 (1) 3

aP≡
We use data from other simulations in which the BGP
keep alive message is the poison message to compute the
following conditional probabilities:
P(keep alive message is the final message | BGP keep alive

message is poison) = 0.9375.
P(update message is the final message | BGP keep alive

message is poison) = 0.0625.

Next we want to get the probability
P(keep, keep, keep, update | BGP keep alive message is

poison message) bP≡
Here we make a simplifying assumption: Given BGP keep
alive message is poison, the distribution of final messages
at different nodes is independent. (The reasonableness of
this assumption requires further investigation.) Then by the
multinomial distribution, we have:

bP = 4!/(3!1!)*P(keep alive |BGP keep alive message is

poison) *P(update |BGP keep alive message is
poison)=0.206 (2)

3

Next consider the prior probability for each message type
to be the poison message. Since we have no prior
knowledge which message is the poison one, we use a
uniform distribution over all message types for all
protocols. I.e., the prior probability:
P(BGP keep alive message is poison)
= P(OSPF hello message is poison) = …= (3) ∂

Then by Bayes’ Rule,
P(BGP keep alive message is poison | keep, keep, keep,
update) * P(keep, keep, keep, update)
= P(keep, keep, keep, update | BGP keep alive message is
poison)*P(BGP keep alive is poison)
Combining (1), (2), (3), we have

≡1P P (BGP keep alive message is poison | keep, keep,
keep, update) = = 6.903 (4) ab PP /∗∂ ∗∂

Similarly, we can get the posterior probability for
other message types. The results are as follows: BGP
update message: = 0.031∗∂ . OSPF hello message: 2P

3P = 3.295∗∂ , OSPF update message: =0.3664P ∗∂ .
Since we assume there is only one kind of poison

message, 1=∑
i

iP . If we only suspect the above four

message types, then 14321 =+++ PPP

1

P . We have the
following posterior probabilities: P = 0.65, P = 0.003,

= 0.31, = 0.037.
2

3P 4P

Of course we can include more message types in the
calculation. Actually other probabilities are even smaller
than , and P , do not change much. The results show
that if BGP keep alive message is the poison message, data
from only 4 failed nodes can generate a good probability
distribution. But in some cases one needs to collect more
information (i.e., wait for more failed nodes) to get a good
probability distribution, as is the case discussed next when
BGP open message is poison. We also ran simulations
where the poison message is BGP open message or update
message. After similar calculation, we have the following
results.

2P 1 4P

Poison Message BGP open BGP update BGP update
of failed nodes 4 5 10
BGP open 0.987 0.000 0.000
BGP keep alive 101.1 10−× 0.002 0.008
BGP update 0.012 0.497 0.577
OSPF hello 0.001 0.478 0.392
OSPF update 88.3 10−× 0.023 0.030

Table 2. Posterior Probability in BGP Simulation

In Table 2, row 2 is the number of failed nodes used in
calculation, and data in row 3 through row 7 are the
posterior probabilities of different message types. We can
see that BGP open message has a very high posterior
probability (0.987) when open message is the poison one.
This is because the prior probability of having open
message as final message is very small (0.34%). The
posterior probability also depends on how many failed
nodes are included in the calculation. Column 3 indicates
that when BGP update message is the poison message and
only 5 failed nodes are considered, the probability of
OSPF hello message being poison is very close to that of
BGP update message so it not clear which message is the
poison one. We can wait and more nodes will fail, so more
information can be collected and used to calculate the
posterior probability. Column 4 shows that when data from
ten failed nodes is used, the probability of BGP update
message is much larger than that of other message types.
The OSPF simulations provide similar results and are
omitted here.

 5

6.2 LDP SIMULATIONS

Ten dynamic LSPs are set up in the network. The LSP
Recovery Parameters are set to reroute if there is a link or
node failure along the LSP. OSPF is used to implement
routing and rerouting of LSPs. The LDP simulation is used
to validate the FSM method. We modify the OPNET LDP
model so that when a Label Request message is received,
with some probability there is a FSM change by which the
router goes from state “response” to “release”, instead of
going to state “establish” (which is the normal case). Then
after a (relatively large) random time, the router fails. Part
of the result from a typical LDP simulation is shown in
Table 3.

Failed nodes 1 2 3 5 1
Failed time (sec.) 185.4 187.6 188.3 189.2 305.4
BGP last message 2 1 2 2 2
LDP last message 5 7 7 3 4
LDP FSM mismatch yes yes yes yes yes
OSPF last message 1 1 1 1 5

Table 3. LDP Simulation Data

Since software is implemented according to the
corresponding protocol specification, most of the time the
messages should match the protocol’s FSM. If a FSM
change is found in some protocols, it strongly suggests that
there is some kind of failure in that protocol. If most of the
failed nodes have FSM mismatches in one protocol, then
we can assign a large probability to that protocol.
Consequently, in the LDP simulation above, we can
conclude with a high degree of confidence that LDP is the
protocol responsible for carrying the poison message. If
there is no FSM change in LDP, then we can still use
Bayes’ Rule (as in 6.1) to get a posterior probability
distribution over the possible poison message types. The
results are given below.

BGP
open

BGP
update

OSPF
hello

OSPF
update

LDP
request

LDP
mapping

LDP
release

0.034 0.038 0.170 0.008 0.094 0.023 0.632

Table 4. Probability Distribution in LDP Simulation

In the LDP simulation, there is a relatively large random
delay between a node receiving a poison message and
failing. This explains why many LDP final messages are
not the poison message (label request message), and why
the largest probability is not the poison message but
instead is LDP label release message. In this case, we did
not locate the exact message type; however, we still get a
large probability for LDP -- the responsible protocol.
Actually, in some situations, by passive diagnosis we can
only locate the responsible protocol instead of the exact
message type. This may still be satisfactory since if we

find the responsible protocol, we can block the protocol
and hence stop failure propagation. Then we will have
enough time to use additional diagnostic techniques to find
out the exact poison message.

7. SUMMARY

We have discussed a particular failure propagation
mechanism--poison message failure propagation--and
provided a framework to identify the responsible protocol
or message type. We have proposed passive diagnosis,
which includes the FSM method applied at individual
failed nodes, correlating protocol events across multiple
failed nodes and using node failure pattern. Bayes Rule is
then used to generate a probability distribution over the
possible message types or protocols. If passive diagnosis
cannot solve the problem by itself, it can be augmented by
protocol or message type filtering, which is formulated as
a sequential decision problem. We implemented an
OPNET testbed where BGP, LDP and OSPF can carry
poison messages. Our simulations demonstrate the
effectiveness of passive diagnosis. I.e., passive diagnosis
can either find the poison message or provide a good
probability distribution that can be used to determine the
initial filter configurations for active diagnosis. This is an
interesting and challenging problem. Our next tasks
include: (1) Implementation of a neural network classifier
for node failure pattern recognition, and (2)
Implementation of a heuristic policy and rollout algorithm
for the sequential decision problem.

REFERENCE
[1] A. Bouloutas, et al, “Fault identification using a finite
state machine model with unreliable partially observed
data sequences,” IEEE Tran. Communications, Vol.: 41
Issue: 7, pp1074–1083, July 1993.
[2] R. Skoog et al., “Network management and control
mechanisms to prevent maliciously induced network
instability,” Network Operations and Management
Symposium, Florence, Italy, April 2002, to appear.
[3] H. Li and J. S. Baras, “A framework for supporting
intelligent fault and performance management for
communication networks”, Technical Report, CSHCN TR
2001-13, University of Maryland, 2001.
[4] M.A. Shayman and E. Fernandez-Gaucherand, “Fault
management in communication networks: Test scheduling
with a risk-sensitive criterion and precedence constraints,”
Proceedings of the IEEE Conference on Decision and
Control, Sidney, Australia, December 2000.
[5] D. J. Houck, K. S. Meier-Hellstern, and R. A. Skoog,
“Failure and congestion propagation through signaling
controls”. In Proc. 14th Intl. Teletraffic Congress,
Amsterdam: Elsevier, 367–376, 1994.

 6

	2. THE PROBLEM FEATURES
	4. ACTIVE DIAGNOSIS

	5. THE POISON MESSAGE FAILURE EXAMPLES
	REFERENCE

