
Implementation and Performance Analysis
of SNMP on a TLS/TCP Base*

X. Du, M. Shayman M. Rozenblit
Department of Electrical and Computer Eng. TeraBurst Networks Inc.
University of Maryland 1965 Broadway, Apt 14G
College Park, MD 20742 New York, NY 10023
USA USA
{dxj, shayman}@glue.umd.edu mrozenblit@teraburst.com

Abstract

There is recent interest in exploring SNMP/TCP in addition to the current use of
SNMP/UDP due to performance benefits for bulk transfer as well as to simplify
management applications. If SNMP is implemented over TCP, then TLS is a
natural choice for security. However, it must be demonstrated that the additional
overhead associated with TLS is not excessive. We show this by implementing
SNMP on a TLS/TCP base and measuring its performance experimentally. The
results indicate that the overhead is not excessive; consequently SNMP/TLS/TCP
appears to be a viable option for network management. Also our tests show that
SNMP

Keywords

SNMP, TLS, SNMP/TLS/TCP, overhead, integrity protection, privacy protection

1. Introduction

As a highly effective set of automated tools for managing today's diverse,
multivendor systems, Simple Network Management Protocol (SNMP), along with
the Remote Network Monitoring (RMON) technology, is recognized as the de-
facto standard in the field of network management for IP-based networks. It is a
popular protocol used in managing computers, peripherals, and data network
devices.

 SNMP was initially specified in the late 1980s and quickly became the
standard means for multivendor network management. However, SNMP was too
limited to meet all critical network management needs. Three enhancements have
solidified the role of SNMP as the indispensable network management tool. First
the RMON specification, which is built on SNMP, was released in 1991. RMON
was revised in 1995, and an enhancement to RMON, known as RMON2, was

* Research partially supported by the Laboratory for Telecommunications Science
under contract MDA90499C2521.

issued in 1997. RMON defines a MIB for managing remote LANs. Second, an
enhanced version of SNMP, known as SNMPv2c, was released in 1993 and revised
in 1995. SNMPv2c provides more functionality and greater efficiency than in the
original version of SNMP. Finally, SNMPv3 was issued in 1998. SNMPv3 defines
an overall framework for present and future versions of SNMP and adds security
features to SNMP.

All the three SNMP versions (SNMPv1, SNMPv2c and SNMPv3) are
normally implemented using the User Datagram Protocol (UDP) for transport
(layer 4). When large amounts of data need to be transferred, they must be
transported using small-sized SNMP over UDP messages which result in excessive
latency [1,5]. Transporting SNMP over TCP reduces the latency by removing the
limitation on message size and by allowing several segments of data to be in transit
at the same time (due to the TCP window mechanism). TCP has the additional
advantage of taking care of retransmission. This may simplify management
applications since retransmission need not be implemented at the application level.
Both the Linux-based Carnegie Mellon Univ. SNMP library and the UC Davis
(UCD) SNMP software have been modified to permit SNMP to run over TCP [5].

The focus of our work is the integration of Transport Layer Security (TLS)
into the transport mapping of SNMP over TCP. When SNMP is run over UDP,
using TLS for security is not an option; instead IPSec can be used at layer 3.
However, if SNMP is implemented over TCP for performance benefits as
described above, then TLS is a natural choice. However, it must be determined
that the additional overheads associated with TLS/TCP session set up and TLS
security are not excessive. This is the motivation for our work in which we
implement SNMP over a TLS/TCP base and carry out an experimental analysis of
its performance.
 Our experiments indicate that:
(1). When the number of messages in one session is large enough (such as 500),
the TLS/TCP set up overhead per message is not excessive--approximately 20%.
(2). The TLS security overhead for a session is also not large. This overhead
increases when the number of messages in the session increases . When the
message number is small, only about 5% of the session time is used in security. For
sessions with more than 1000 messages, the security overhead levels off at about
30%, not unacceptable. But the actual overhead per message decreases for longer
sessions. Furthermore, using a more powerful computer will reduce the overhead;
our experiments were done using a relatively slow workstation (SUN Sparc 10).
(3). SNMPv3/TLS/TCP without User-Based Security Model (USM) is much more
efficient than SNMPv3/UDP (with USM) and SNMPv3/TCP (with USM), for
similar security features.

2. Background on TLS

The TLS protocol provides communication security over the Internet. The protocol
allows client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery. TLS is based on Secure

Socket Layer version 3 (SSLv3). TLS has been standardized by the Internet
Engineering Task Force (IETF).
 The primary goal of the TLS Protocol is to provide privacy and data integrity
between two communicating applications. The protocol is composed of two layers:
(1) The TLS Record Protocol. (2) The TLS Handshake Protocol, TLS Change
Cipher Specification Protocol and TLS Alert Protocol.

At the lowest level, layered on top of some reliable transport protocol (e.g.,
TCP), is the TLS Record Protocol. The TLS Record Protocol provides connection
security that has two basic properties:
l The connection is private. Symmetric cryptography is used for data

encryption (e.g., DES, 3DES, RC4). The keys for this symmetric encryption
are generated uniquely for each connection and are based on a secret
negotiated by another protocol (such as the TLS Handshake Protocol). The
Record Protocol can also be used without encryption.

l The connection is securely reliable. Message transport includes a keyed
cryptographic message authentication check (MAC). Secure hash functions
(e.g., SHA, MD5) are used for MAC computations. The Record Protocol can
operate without a MAC, but is generally only used in this mode while another
protocol is using the Record Protocol as a transport for negotiating security
parameters.

The TLS Handshake Protocol, allows the server and client to authenticate each
other and to negotiate an encryption algorithm and cryptographic keys before the
application protocol transmits or receives its first byte of data. The TLS
Handshake Protocol provides connection security that has three basic properties:
l The peer's identity can be authenticated using asymmetric, or public key,

cryptography (e.g., RSA, DSS). This authentication can be made optional, but
is generally required for at least one of the peers.

l The negotiation of a shared secret is secure: the negotiated secret is
unavailable to eavesdroppers, and for any authenticated connection the secret
cannot be obtained, even by an attacker who can place himself in the middle
of the connection.

l The negotiation is reliable: no attacker can modify the negotiation
communication without being detected by the parties to the communication.

One advantage of TLS is that it is application protocol independent. Higher level
protocols can layer on top of the TLS Protocol transparently. TLS runs over
TCP/IP.

3. Implementation of SNMP/TLS/TCP
We implemented SNMP/TLS/TCP based on UC Davis UCD-SNMP source code
[8]. OPENSSL was used as the TLS (SSLv3.0) source codes [9]. Because the
SNMP software of UCD-SNMP can run over TCP, we only need to implement
TLS into the SNMP/TCP structure. First we determined the TLS protocol interface
in SNMP/TCP structure. Then we implemented the TLS protocol into SNMP/TCP.

The TLS protocols consist of four parts: TLS Handshake Protocol, TLS
Change Cipher Spec Protocol, TLS Alert Protocol and TLS Record Protocol.

TLS Handshake Protocol and TLS Record Protocol are implemented over
TCP socket. First, a TCP connection is set up. Second, a TLS connection is set up
over the TCP connection. Then the client and server begin communication using
TLS/TCP. The TLS Change Cipher Spec Protocol causes the pending cipher state
to be copied into the current cipher state, which updates the cipher suite to be used
on the next connection. This protocol is not necessary in every new connection.
The TLS Alert Protocol is used to convey TLS-related alerts to the peer entity.
When a TLS-related error occurs, the corresponding alert will be send to the peer.
We give the implementing structure of SNMP/TLS/TCP in Figure 1.

Figure 1: SNMP/TLS/TCP program structure

The TLS handshake protocol and TLS Record Protocol are given in detail as
following in Figure 2.

Begin New
TLS Session

Initialize
TLS Library

Create New
TLS

Context

Set TLS
Cipher

Set TLS
Certificate

File

Set TLS
Private Key

Set TLS
Verify

Create an
TLS

Structure

Socket

Bind

Connect

Socket

Bind

Listen

Accept

Do TLS
Handshake

Begin TLS
Connection

Begin TLS
 Session

Client Server

=============Begin TLS Handshake Protocol =============
 Client Server
TLS_client_hello ----> TLS_get_client_hello
TLS_get_server_hello <---- TLS_send_server_hello
TLS_get_server_certificate <---- TLS_send_server_certificate
TLS_get_key_exchange <---- TLS_send_server_key_exchange
TLS_get_certificate_request <---- TLS_send_certificate_request
TLS_get_server_done <---- TLS_send_server_done
TLS_send_client_certificate ----> TLS_get_client_certificate
TLS_send_client_key_exchange ----> TLS_get_client_key_exchange
TLS_send_client_verify ----> TLS_get_cert_verify
TLS_change_cipher_spec <--> TLS_change_cipher_spec
Finished <--> Finished
==============End TLS handshake protocol ==============
 |
===============Begin TLS Record Protocol ==============

TLS Read OR TLS Write
 (1) Fragment Data/Reassemble Data; (2) Compress/Decompress; (3) Calculate
client/server MAC; (4) Encrypt/Decrypt; (5) Append/Remove TLS Record Header.
================End TLS Record Protocol ===============
====================End TLS Session=========================

Figure 2: TLS Handshake Protocol and TLS Record Protocol

4. Performance Tests and Results

The major performance issues are the overhead of TCP vs UDP, the overhead of
TLS and the comparison of SNMPv3/TLS/TCP and SNMPv3/TCP with USM. We
ran several experiments to measure these overheads. In our tests, we ran the SNMP
Management Station in a SUN Sparc 10 workstation, and the SNMP Agent in a
SUN Sparc 5 workstation. The results are clearly platform dependent. For example,
the TLS Setup Time is about 300 ms in Sparc 5 while in a Sparc 10 it is about 160
ms.1

Measurement Environment :
Network: Ethernet 10 Mbit.
Hardware: One Sun Sparc 10 workstation , 128M RAM; One Sun Sparc 5

workstation , 128M RAM.
Software: Sun Solaris 2.6 OS;

 SNMP/TLS/TCP and SNMP/UDP software (SNMP can be SNMPv1,
SNMPv2c and SNMPv3).

1 All times are measured in milliseconds.

4.1 Overhead of TLS Security

We compared SNMPv1/TLS/TCP with no security, with integrity protection only,
and with both integrity and privacy protection. There are three main security
related operations that introduce overhead into TLS: MAC computation,
compression, and encryption. There are four corresponding situations to investigate:
(a). No security: no compression, no MAC, no encryption.
(b). Integrity protection only: no compression, has MAC, no encryption.
(c). Privacy protection only: has compression2, no MAC, has encryption.
(d). Integrity and privacy protection: has compression, has MAC, has encryption.

We use X.509v3 certificates, and the key exchange method is RSA. The
length of the key used to sign the certificate is 512 bits. The MAC algorithm we
used is MD5 while the encryption algorithm is DES.

We performed tests that used short sessions (single message exchange) as
well as tests that used long sessions. For the tests with short sessions, snmpget was
used to get system.sysName. There is only one message out of and into the
management station. For the tests with long sessions, snmpwalk (walk SYSTEM
object) was used to get all variables in the SYSTEM object. There are 34 messages
out of and into the management station. Since each of the four scenarios (a,b,c,d)
were performed separately for snmpget and snmpwalk, there were eight
experiments in all. Each experiment was run 10 times. The Row 3
(Snmpwalk/ msg) in Table 1 denotes the time of row 2 divided by the number of
messages (34). The Unix system function gettimeofday was used to obtain the
session times. The mean latencies are reported in Table 1.

Time a b b - a c c-a d d - b d - a
Snmpget 774 805 31 823 49 840 35 66
Snmpwalk 1,044 1,120 76 1,186 142 1,273 153 229
Snmpwalk/ msg 31 33 2.2 33 2.1 37 4.4 6.7

Table 1: Session times for short and long sessions

In the short session case (snmpget), compared to the total session time (d),
both the latency associated with integrity (b-a) and that associated with privacy
protection (d-b) are not large. Integrity protection takes about 4.01% of the session
time, and the privacy protection takes about 4.52%. The total security takes 8.53%
of the session time.

In the long session case (snmpwalk), Integrity protection takes about 7.28%
of the session time, while adding privacy protection takes additional 14.66%. The
total security overhead is about 21.94% of the session time. The larger percentage
of the total latency taken up by security in the case of the long session can be
explained as follows: The setup times for SNMP, TCP and TLS are incurred only

2 Actually, there is no compression algorithm currently used in TLS and SSL. So
none of our experiments include compression.

once per session. But the MAC and encryption overheads are incurred for each
message in the session and hence are substantially larger for the long session.

Notice that while the security overhead increases as a portion of the total
latency for longer sessions, the actual latency per message decreases for longer
sessions.

4.2 Overhead of TLS/TCP Session Setup

We also compared SNMPv1/TLS/TCP without security to SNMPv1/UDP. This is
to evaluate the extra costs of TLS and TCP setup time. We did it for two different
traffic regimes.

4.2.1 Short sessions (a few seconds) and long sessions (several minutes)

A major issue with SNMP/TLS/TCP is the substantial overhead for setting up a
session. When beginning a new TLS session, the TLS handshake protocol is used.
This protocol allows the server and client to authenticate each other and to
negotiate an encryption and MAC algorithm and cryptographic keys to be used to
protect data sent in a TLS record. The TLS handshake protocol produces a
significant overhead. In contrast, SNMP/UDP does not incur this penalty.

However, if a management session lasts for a long time, several minutes, or
several hours, during this time hundreds or thousands of SNMP messages can be
exchanged. Thus, for a long session the costs of setting up the session are
amortized over a large number of messages and therefore amount to only a small
amount of overhead per message.

We did an experiment that compared the total elapsed time for
SNMPv1/TLS/TCP with that for SNMPv1/UDP for sessions ranging from a few
seconds (and only a couple of messages) to sessions lasting a few minutes (and
exchanging thousands of messages). Session times were measured the same way as
in (4.1) above.

Since SNMPv1/UDP does not provide any security, a fair comparison of
overheads is obtained by using SNMPv1/TLS/TCP with peer entity authentication
at session setup time, but without integrity or privacy protection for the SNMP
messages. In Table 2, the "TLS mean time per message" is the TLS session time
divided by the number of messages in the session. A similar statement applies to
the "UDP mean time per message."

We also measured the corresponding times in secure SNMPv1/TLS/TCP case,
which means TLS with all the securities. That is to show the overall overheads of
TLS, including both TLS/TCP setup overhead and TLS security overhead. We use
"Secure TLS" to denote TLS with security.
 From the results we can see that the TLS set up time is almost a constant,
about 300 ms.

Message # in one
session3

5 20 50 100 500 1000 1500 2000

Secure TLS
session time

929 1,046 1,284 1,542 4,248 7,380 9,871 13,784

Secure TLS setup
time

309 315 308 321 294 305 325 296

Secure TLS mean
time per message

186 52 26 15 8.7 7.0 6.6 6,9

TLS session time 881 953 1,135 1,409 3,665 6,590 8,779 12,207

TLS setup time 310 307 311 294 313 295 302 292

TLS mean time
per message

176 48 23 14 7.3 6.6 5.9 6.1

UDP session time 535 636 780 1,000 2,987 5,456 7,231 10,093

UDP mean time
per message

107 32 16 10 6.0 5.5 4.8 5.0

Ratio: Secure TLS
time to UDP time

1.738 1.645 1.646 1.542 1.422 1.353 1.365 1.367

Ratio: TLS time to
UDP time

1.647 1.499 1.455 1.409 1.227 1.208 1.214 1.210

Table 2: Times in short sessions and long sessions
When the message number in one session is small, the TLS message time is

about 1.4 ~1.6 times the UDP message time. As the message number increases, the
ratio declines to approximately 1.2 for sessions containing at least 500 messages.
Comparing the Secure TLS time with UDP time, it shows that the TLS overheads
are not large, especially when the message number is big, the overheads are
acceptable.

We can explain these results as follows: Assume there are M messages in one
session, and we use P1, P2 to represent processing time per message (send or
receive) using TLS and UDP respectively. We can write the TLS session time and
UDP session time roughly as:
TLS session time = SNMP setup time + TLS/TCP handshake time + M * P1 +

TLS/TCP close time + SNMP close time

UDP session time = SNMP setup time + M * P2 + SNMP close time

In both cases, the SNMP setup time and SNMP close time are the same. Thus,

TLS session time - UDP session time = TLS/TCP handshake time + TLS/TCP
close time + M *(P1 - P2)

Let S be TLS/TCP handshake time + TLS/TCP close time, i.e., the TLS setup time.
Then the time difference per message between TLS and UDP is given by

3 To get more than 1 messages in one session, we revised the UCD-SNMP software
so that it can repeat send and response messages in one session.

(TLS session time - UDP session time)/M =S/M + (P1 - P2) (1)

Because we use the same message (snmpget public system.sysName), P1-P2 can
be considered as a constant. Also as mentioned before, the TLS setup time S is a
constant. From (1) we can see that when M increases from 5 to 500, the time
difference between TLS and UDP decreases. S is about 300 ms. When M is 1000,
S/M is only 0.3 ms. Compared to the total message time 6.6 ms, S/M is only 4.55%
which can be neglected. For values of M exceeding 500, the ratio of the per
messages times for TLS and UDP becomes essentially constant.

4.2.2 Light traffic (1 message/5 minutes) and heavy traffic(1 message/1 second)

For the light traffic, we generated an SNMP transaction once every 5 minutes, and
the light traffic lasted about 60 minutes. We did this for both TLS/TCP and UDP.
In the case of TLS/TCP each transaction represented a separate TLS session. The
same experiment was repeated in heavy traffic corresponding to an SNMP
transaction once every second where a new session was set up for each message.
 Note that "light" and "heavy" refers only to the SNMP traffic, not to other
network traffic. The results in Table 3 show that the messages require less time in
heavy traffic as compared to light traffic. One explanation is that in heavy traffic
the SNMP operation runs more often so the related variables in memory can be
accessed more quickly. In Table 3 TLS/TCP and UDP refers to TLS/TCP
session time and UDP session time respectively.

Time TLS/TCP TLS Setup UDP
Light traffic (/5mins.) 648 296 123
Heavy traffic (/sec.) 424 273 91

Table 3: Light traffic and heavy traffic

4.3 More Detailed Timing Analysis

We used the UNIX system packet timing tool SNOOP to obtain more detailed
timing analyses for TLS/TCP and UDP as illustrated in Figure 5.
 Session setup times and the processing times for each packet in an SNMP Walk
were determined. The results are shown in Tables 4 and 5 .

Figure 5:Using three computers to measure the timing

Management station

Running SNOOP

Agent

Time TLS/TCP SetupSNMP Setup SNMP Walk TLS Close SNMP Close
TLS/TCP 312 521 173 2.4 3.6
UDP 547 112 0.7

Table 4: Time of different session phase

Message 1 2 3 4 5 6 7 8 9 10 11
TLS 43.8 3.6 3.5 3.4 3.5 3.4 3.5 3.7 3.7 3.5 3.5
UDP 5.4 3.0 3.3 3.1 3.0 3.0 3.1 3.2 3.2 3.1 3.1

Message 12 13 14 15 16 17 18 19 20 21 22
TLS 3.6 3.6 3.6 3.9 3.6 3.7 3.6 3.6 3.8 3.7 3.7
UDP 3.2 3.2 3.3 3.4 3.9 3.4 3.4 3.2 3.2 3.3 3.3

Message 23 24 25 26 27 28 29 30 31 32 33 34
TLS 3.7 3.7 3.9 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.6 3.7
UDP 3.2 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.3 3.2 3.2 3.4

Table 5: Time of each message

As described earlier, we can divide the time of one SNMP/TLS/TCP session into
several parts.

TLS/TCP session time = SNMP setup time + TLS/TCP setup time + several data
exchange times + TLS/TCP close time + SNMP close time

Similarly we can divide the time of one SNMP/UDP session into several parts.

UDP session time = SNMP setup time + several data exchange times
 + SNMP close time

We can see in TLS/TCP case, there is additional TLS/TCP setup time and
TLS/TCP close time. The TLS/TCP setup time is nearly constant. Also the
individual message exchange times in TLS/TCP are larger than those in the UDP
case. The reason for this is that in the TLS/TCP case, the session needs to
implement the TLS record protocol when sending and receiving data. That is, the
session will do the following operations:
l Fragment Data/Reassemble Data
l Compress/Decompress
l Calculate client/server MAC
l Encrypt/Decrypt
l Append/Remove TLS Record Header.
 Also the results show that the first message in both case needs much more
time than the later messages. In TLS, the first message took 43.8 ms, about 12.5

times the later message times (3.5 ms). In UDP, the first message took 5.4 ms,
slightly larger than the later message times (3.1 ms).

4.4 Comparisons of SNMP/TLS/TCP (without USM) with
SNMPv3/TCP and SNMPv3/UDP

SNMPv3 has some security features. It has authentication and encryption. It is
interesting to compare SNMPv3(v1)/TLS/TCP (without USM 4) with
SNMPv3/TCP and SNMPv3/UDP when the similar security features are enabled.

SNMPv3 with USM recognizes three levels of security:
l without authentication and without privacy (noAuthNoPriv).
l with authentication but without privacy (authNoPriv).
l with authentication and with privacy (authPriv).

We compared SNMPv3/TLS/TCP with SNMPv3/TCP and SNMPv3/UDP in the
above three security levels. The same security algorithms are used in
SNMPv3/TLS/TCP and SNMPv3/TCP(or /UDP) to ensure that the comparisons
are meaningful. In the tests, MD5 is used as the authentication protocol and DES is
used as the encryption algorithm. We also compared SNMPv1/TLS/TCP with
SNMPv3/TCP and SNMPv3/UDP in a similar way.

The securityName has a model-independent format, and can be used outside
a particular Security Model. Since TLS is based on public key certificates, the
securityName in SNMPv3/TLS/TCP is chosen as the identity of the principal in
the public key certificate that is used by TLS during the handshaking phase.

As in 4.1, we also performed tests with both short sessions (single message
exchange) and long sessions here. For the tests with short sessions, snmpget was
used to get system.sysName. There is only one message out of and into the
management station. For the tests with long sessions, snmpwalk (walk SYSTEM
object) was used to get all variables in the system object. There are 34 messages
out of and into the management station. We ran both snmpget and snmpwalk in six
cases: SNMPv1/UDP, SNMPv1/TCP, SNMPv1/TLS/TCP, SNMPv3/TLS/TCP,
SNMPv3/UDP and SNMPv3/TCP. Also three different security scenarios (a,b,d)
were performed separately for the six cases. Table 6.(a) shows the results of
snmpget and Table 6.(b) shows the results of snmpwalk. Each experiment was run
10 times. The mean latencies are reported in Table 6. The ratios of SNMPv3/ UDP
(or TCP) session times to SNMPv3/TLS/TCP and SNMPv1/TLS/TCP session
times are given in the last four rows in Table 6.(a) and Table 6.(b). Also the
SNMPv1/UDP and SNMPv1/TCP session times are given as reference.
 Notes: In both Tables 6.(a) and 6.(b), the a ,b ,d in the 1st row have the same
meaning as in Table 1. SNMPv1 in case a corresponds to SNMPv3 with
NoAuthNoPriv security level. SNMPv1 in case b corresponds to SNMPv3 with
AuthNoPriv security level. And SNMPv1 in case d corresponds to SNMPv3 with
AuthPriv security level.

4 In section 4.4, all SNMPv3/TLS/TCP and SNMPv1/TLS/TCP are without USM,
while SNMPv3/TCP and SNMPv3/UDP have USM.

SNMP-v1 security feature a b b - a d d - b d - a
Or corresponding
SNMP-v3 security level

NoAuth
NoPriv

Auth
NoPriv

Auth
Priv

Snmpget-v1/UDP 472
Snmpget-v1/TCP 523
Snmpget-v1/TLS/TCP 774 805 31 840 35 66
Snmpget-v3/TLS/TCP (no USM) 976 989 13 1,124 135 148
Snmpget-v3/UDP (USM) 665 1,632 967 2,735 1,103 2,070
Snmpget-v3/TCP (USM) 881 1,990 1,109 3,634 1,644 2,753
Ratio :v3-UDP / v1-TLS -TCP 85.9% 203% 326%
Ratio :v3-UDP / v3-TLS -TCP 68.1% 165% 243%
Ratio :v3-TCP / v1-TLS -TCP 114% 247% 433%
Ratio :v3-TCP / v3-TLS -TCP 90.3% 201% 323%

(a). snmpget

SNMP-v1 security feature a b b - a d d - b d - a
Or corresponding
SNMP-v3 security level

NoAuth
NoPriv

Auth
NoPriv

Auth
Priv

Snmpwalk-v1/UDP 678
Snmpwalk-v1/TCP 762
Snmpwalk-v1 TLS/TCP 1,044 1,120 76 1,273 153 229
Snmpwalk-v3/TLS/TCP (no USM) 1,063 1,135 72 1,323 188 260
Snmpwalk-v3/UDP (USM) 648 1,848 1,200 2,976 1,128 2,328
Snmpwalk-v3/TCP (USM) 947 2,025 1,078 3,305 1,280 2,358
Ratio :v3-UDP / v1-TLS -TCP 62.1% 165% 234%
Ratio :v3-UDP / v3-TLS -TCP 60.9% 163% 225%
Ratio :v3-TCP / v1-TLS -TCP 90.7% 181% 260%
Ratio :v3-TCP / v3-TLS -TCP 89.1% 178% 249%

(b). snmpwalk

Table 6: SNMPv3 (v1)/TLS/TCP vs SNMPv3/TCP and SNMPv3/UDP

Since SNMPv1 has no security, there is only one result in SNMPv1/UDP and
SNMPv1/TCP. When security level is NoAuthNoPriv, the v3-UDP session times
are always smaller than v3 (v1)-TLS-TCP session times. This can be explained by
the TLS and TCP setup times in the later cases. And there is no large difference
between the session times of v3-TCP and v3 (v1)-TLS-TCP (ranging from 89.1%
to 114%).

But when security is added, the Snmpget-v3/TCP session time is much larger
than (from 163% up to 433% of) Snmpget-v1/TLS/TCP session time.

 Our experiments show that SNMPv3 (v1)/TLS/TCP without USM are more
efficient than SNMPv3 (with USM)/UDP and SNMPv3 (with USM)/TCP, when
using similar security features.

5. Conclusion

We have constructed an implementation of SNMP on a TLS/TCP base and
conducted experiments to determine whether the additional overhead so introduced
is acceptable. Our results indicate that both the session set up overhead and per
message security overhead are not excessive. Consequently, SNMP/TLS/TCP
appears to be a valid choice for secure network management that takes advantage
of the efficiency of TCP.

The comparisons of SNMPv3/TLS/TCP with SNMPv3/TCP (UDP) indicate
that both SNMPv3/TLS/TCP and SNMPv1/TLS/TCP are more efficient than
SNMPv3 (with USM)/UDP and SNMPv3 (with USM)/TCP, for similar security
levels. However, at present it is not clear to what extent this apparent advantage is
structural and to what extent it may reflect different degrees of code optimization.
Further experience, with different software implementations is needed to verify the
generality of the observed results.

Acknowledgment

We would like to thank John Blake (U.S. Department of Defense) and Gary
Hayward (Telcordia Technologies) for helpful discussions.

References

[1] J. Schoenwaelder, "SNMP over TCP Transport Mapping" , Internet Draft,
draft-irtf-nmrg-snmp-tcp-04.txt, Apr. 2000.

[2] William Stallings, "SNMP, SNMPv2, SNMPv3 and RMON1 and 2", 3rd ed.
Addison-Wesley Longman, 1999.

[3] T. Dierks and C. Allen , "The TLS Protocol Version 1.0", RFC 2246, Jan.
1999.

[4] C. Kaufman , R. Perlman and M. Speciner, "Network Security", Prentice Hall
PTR, 1995.

[5] R. Sprenkels and J-P. Martin-Flatin, "Bulk Transfers of MIB Data", The
Simple Times, 7 , Mar.1999.

[6] Michael Boe and Jeffrey Altman, "TLS-based Telnet Security", Internet Draft,
draft-ietf-tn3270e-telnet-tls-05.txt , Oct. 2000.

[7] Paul Hoffman, "SMTP Service Extension for Secure SMTP over TLS",
Internet Draft, draft-hoffman-rfc2487bis-04.txt , Oct. 2000.

[8] UCDavis UCD-SNMP source code, ucd-snmp 4.1.2,
 http://net-snmp.sourceforge.net, May 2000.
[9] OPENSSL source code : OpenSSL 0.9.6,
 http:// www.openssl.org , Sep. 2000.
[10] Eric Young , "SSLeay Documentation",

http://www.columbia.edu/~ariel/ssleay/ , Feb.1999.
[11] Ben Laurie , Apache-SSL source code and documentation,

http://www.apache-ssl.org/, Nov. 2000.

[12] J. Case, R. Mundy, D. Partain and B. Stewart ,
 "Introduction to Version 3 of the Internet-standard Network Management

Framework", RFC 2570, Apr. 1999.
[13] U. Blumenthal and B. Wijnen, "User-based Security Model (USM) for

version 3 of the Simple Network Management Protocol (SNMPv3) ", RFC
2274 , Apr.1999.

[14] B. Wijnen, R. Presuhn and K. McCloghrie, "View-based Access Control
Model (VACM) for the Simple Network Management Protocol (SNMP) ",
RFC 2575, Apr. 1999.

Xiaojiang Du received his B.S and M.S. degrees from Tsinghua University,
Beijing, China in automation in 1996 and 1998 respectively. He is currently
pursuing the Ph.D. degree at the University of Maryland, College Park.
 During the academic years 1999-2001 Mr. Du is a recipient of a fellowship
from the University of Maryland at College Park. His main research interests are in
the management of communication networks and network security.

Moshe Rozenblit is a Principal Systems Engineer at TeraBurst Networks in charge
of optical network management. Previously he was with the Bell System and its
descendents (Bell Laboratories, NYNEX Science and Technology, Bellcore,
Telcordia Technologies) for 25 years.
 He holds two US patents and has recently published a book - Security for
Telecommunications Network Management (IEEE Press). Moshe has BA and MA
in physics from the University of Brussels, Belgium, a PhD in physics from
Stevens Institute of Technology and an MS in computer science from Rutgers
University.

Mark Shayman received his Ph.D. in Applied Mathematics from Harvard
University in 1981. Since then, he has been a faculty member at Washington
University (St. Louis) and the University of Maryland at College Park, where he is
a full professor in the Department of Electrical and Computer Engineering.
 Professor Shayman has received the Donald P. Eckman Award from the
American Automatic Control Council and Presidential Young Investigator Award
from the National Science Foundation. He has served as Associate Editor of IEEE
Transactions on Automatic Control. His research interests are in the control and
management of communication networks, including performance, fault and
security management.

