Find us On Facebook Twitter
Events
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

Event Information

Qualcomm Microsystems Seminar: Peter Hesketh, "Detecting VOCs with MOFs"
Friday, September 20, 2013
4:00 p.m.
1146 A.V. Williams Building
For More Information:
Ian White
301 405 6602
ianwhite@umd.edu
http://www.isr.umd.edu/events/qualcomm-microsystems-series

Qualcomm Microsystems Seminar Series

Detection of Volatile Organic Compounds using Piezoresistive Microcantilever Sensors with Metal Organic Frameworks

| video to come |

Peter Hesketh
Professor, Micro and Nano Engineering
Georgia Institute of Technology

Abstract
Metal Organic Frameworks (MOFs) are a new class of nanoporous materials which have a high surface area, thermal/chemical stability and a tailorable pore size. HKUST-1 MOF was selected due to large internal surface area, excellent stability and known properties. Mechanical strain is generated upon adsorption of analytes into the MOF; it is proportional to concentration and is a function of adsorbed species. Piezoresistive microcantilever sensors are microfabricated devices that are highly sensitive to surface strain due to doped single crystal silicon regions. A thin film of HKUST-1 was grown at room temperature using layer-by-layer techniques. Changes in resistance generated by surface strain can be measured with a high degree of accuracy using a Wheatstone bridge and simple instrumentation. Dry nitrogen was used as a carrier gas to expose devices to varying concentrations of twelve different VOC’s. Results show that stress-induced piezoresistive microcantilever array sensors with MOF coatings can provide a highly sensitive and reversible sensing mechanism for water vapor and methanol. Characteristic response features allow discrimination based on shape, response time constants and magnitude of response for other VOC’s. The microcantilever sensors were shown to be durable, reliable and stable in long term testing despite being exposed to many different analytes. This work shows a promising new technology for a next generation sensors for gas monitoring. The key advantages of this type of sensor are the higher sensitivity with a nano-porous MOFs, reversible response, single chip sensing system and low power operation.

Biography
See Dr. Hesketh's webpage.

This Event is For: Graduate • Undergraduate • Faculty • Post-Docs • Alumni

Browse Events By Calendar
Tell Us About Your Event!

Submit Event

Most new events will appear on the calendar within one business day.

Browse Events By...

Audience

Alumni
Campus-Wide
Clark School
Corporate Partners
Current Students-All
Donors and Friends
Employers
Faculty
Graduate
K-12
Open to the Public
Press
Prospective Students
Post-Docs
Staff
Undergraduate

Browse Events By...

Category

Career Activities
Conference
Deadline
Information Session
Lecture
Panel
Recruitment
Seminar
Special Events
Social
Student Societies
Symposium
Workshop

Directions and Map

Directions to Campus
Campus Map*