Clark School Press Release Story
Giving Robotic Flight More Buzz
Bee Study Could Improve Micro Air Vehicle Agility in Wind Gusts
FOR IMMEDIATE RELEASE June 27, 2010
CONTACT:
Missy Corley
301-405-6501
mcorley@umd.edu
|
Composite sequence of images of a honey bee disturbed by a moderate gust (air flow from left to right). (Clark School of Engineering, University of Maryland.)
|
|
|
COLLEGE PARK, Md..Not every engineering dean wants a live bee colony outside of his office, but such is the case at the Clark School of Engineering at the University of Maryland, College Park.
Researchers in a lab down the hall from the dean's office have situated the colony there so they have easy access to the bees. They are studying how the bees fly in order to enable micro air vehicles (MAV) to deal with unexpected wind changes. The MAVs someday could be used for search and rescue, defense and other applications.
To study the bees in flight, the researchers built a small-scale wind tunnel that subjects the insects to varying wind disturbances. The researchers film the bees using high-speed videography and slow down the resulting video, so they can observe the minutest changes in the bees' wing movements while compensating for wind gusts.
"Insects fly in very dynamic and uncertain environments. By replicating these conditions in the lab, we can identify mechanisms that enable insects. robust flight performance," said Jason T. Vance, a biologist and post-doctoral researcher in the Autonomous Vehicle Laboratory (AVL) at the A. James Clark School of Engineering on the University of Maryland, College Park, campus.
Vance said his team couples the data collected with aerodynamic modeling principles to determine what aspects of the bees flight can be used in the MAVs.
Assistant Professor Sean Humbert (Department of Aerospace Engineering and Institute for Systems Research) runs the AVL. He is one of several researchers who last week won a Multidisciplinary University Research Initiatives award from the U.S. Department of Defense for research titled "Animal Inspired Robust Flight with Outer and Inner Loop Strategies." The research is being led by the University of Washington. The Clark School's portion of the grant is $1.48 million.
Vance and Humbert are collaborating with biologists, engineers, and other researchers in academia and the private sector to enable tiny flying robots to fly effectively in varying wind conditions. These robots eventually could be used to help gain situational awareness in dangerous and uncertain environments, such as those encountered on the battlefield or during natural disasters.
"It's a very integrative and multi-disciplinary approach for studying this principle," Vance said.
Engineers at the Glenn L. Martin Wind Tunnel on the College Park campus helped the AVL team fabricate the small-scale wind tunnel used to study the bees, which are on loan from the UM Department of Entomology.
More Information: Autonomous Vehicle Laboratory
MURI Award
About the A. James Clark School of Engineering
The Clark School of Engineering, situated on the rolling, 1,500-acre University of Maryland campus in College Park, Md., is one of the premier engineering schools in the U.S., with graduate and undergraduate education programs ranked in or near the Top 20. In 2012, the Clark School was ranked 14th in the world by the Institute of Higher Education and Center for World-Class Universities in its Academic Ranking of World Universities. Three faculty members affiliated with the Clark School were inducted into the National Academy of Engineering in 2010.
The school, which offers 13 graduate programs and 12 undergraduate programs, including degree and certification programs tailored for working professionals, is home to one of the most vibrant research programs in the country. The Clark School garnered research awards of $171 million last year. With emphasis in key areas such as energy, nanotechnology and materials, bioengineering, robotics, communications and networking, life cycle and reliability engineering, project management, intelligent transportation systems and aerospace, the Clark School is leading the way toward the next generations of engineering advances.
|