Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

UMD Announces Appointment of Schultheis to Lead New Regulatory Science Initiative

UMD Steel Bridge Team Meets Members of Congress at AISI Steel Day in DC

Hubbard Chosen for HistoryMakers Oral History Collection

Delivering Drugs to Inner Ear, Eyes, and Brain Made Easier with "Magnetic Syringe"

Vote to Support Team Mulciber in Wood Stove Design Challenge

BioE and Mtech Partner with Children's National Health System to Form Pediatric Device Consortium

NSF-Backed DC I-Corps Kicks Off First Cohort with 20 Federal Laboratory, University and Regional Inventors, Entrepreneur Teams

UMD Hosts 2nd Cybersecurity and Cybersafety Workshop for Girls

UMD Ranked Top Public School for Tech Entrepreneurship in 2013 StartEngine College Index

ECE Students Take Top Prize at Michigan Hackathon for Intelligent Trashcan

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

Researchers Show New Path to Improved Titanium Alloy Performance

Ankem and Oberson

Ankem and Oberson

When most people think of titanium alloys, products like biomedical implants, golf clubs, and aircraft come to mind. The titanium alloys within those products are crystalline materials that impart high strength, low density, corrosion resistance and biocompatibility. A significant effort is underway to understand titanium alloys better and expand their industrial and commercial uses.

One problem that has bedeviled engineers is that titanium alloys will deform over time, even under relatively low stresses, at room temperature. This phenomenon is called "room-temperature creep," and it can reduce titanium alloy performance.

Think about a large airplane with titanium alloy landing gear. After thousands of hours supporting the weight of the aircraft, the landing gear may begin to deform, albeit at very low creep rates, increasing maintenance costs and reducing safety.

Until recently, such deformation has been poorly understood. Now, significant findings by graduate student Greg Oberson and Associate Professor Sreeramamurthy Ankem of the Clark School's Department of Materials Science and Engineering shed new light on the creep deformation of titanium alloys—and, in fact, on creep deformation in a wide range of materials with important roles in everything from geological systems to high-temperature superconductors.

Oberson and Ankem propose that the slow growth of "deformation twins" in titanium alloys is one of the mechanisms responsible for room-temperature creep deformation. (Ankem was the first to show that deformation twins can grow very slowly during creep deformation, and not at the speed of sound, as was generally believed.) They propose that twin growth in titanium alloys is hindered by the presence of oxygen impurity atoms in the interstitial sites (i.e., gaps) of the crystal: the titanium atoms cannot move to their twinned positions until the oxygen impurities have diffused to another location in the crystal. Their research suggests that by processing titanium alloys to alter their chemistry or microstructure, it will be possible to develop creep-resistant titanium components, improving the alloys' performance and increasing the range of potential applications.

Oberson and Ankem describe their work in their article, "Why twins do not grow at the speed of sound all the time," to be published in the prestigious journal, Physical Review Letters (Vol. 95, No. 16). This publication covers fundamental research in all areas of physics and has a diverse readership across many disciplines.

Twinning occurs in a wide range of crystalline materials including metals, ceramics, intermetallics, nanocrystalline materials, geological systems and even high-temperature superconductors. These materials are of interest in various fields of engineering including electrical, mechanical, civil and aerospace. The new findings by Oberson and Ankem will help researchers in these fields develop advanced materials for a variety of applications.

October 18, 2005


Prev   Next