Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

UMD Announces Appointment of Schultheis to Lead New Regulatory Science Initiative

UMD Steel Bridge Team Meets Members of Congress at AISI Steel Day in DC

Hubbard Chosen for HistoryMakers Oral History Collection

Delivering Drugs to Inner Ear, Eyes, and Brain Made Easier with "Magnetic Syringe"

Vote to Support Team Mulciber in Wood Stove Design Challenge

BioE and Mtech Partner with Children's National Health System to Form Pediatric Device Consortium

NSF-Backed DC I-Corps Kicks Off First Cohort with 20 Federal Laboratory, University and Regional Inventors, Entrepreneur Teams

UMD Hosts 2nd Cybersecurity and Cybersafety Workshop for Girls

UMD Ranked Top Public School for Tech Entrepreneurship in 2013 StartEngine College Index

ECE Students Take Top Prize at Michigan Hackathon for Intelligent Trashcan

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

Bergbreiter wins 2008 DARPA Young Faculty Award

A model of an autonomous jumping robot, with a penny for scale. Photo by Sarah Bergbreiter.

A model of an autonomous jumping robot, with a penny for scale. Photo by Sarah Bergbreiter.

Assistant Professor Sarah Bergbreiter (ME/ISR) has received a 2008 Young Faculty Award from the Defense Advanced Research Projects Agency (DARPA). The award, now in its second year, is given annually to "39 rising stars in university microsystems research." The $150,000 award is designed to seek out ideas from non-tenured faculty to identify the next generation of researchers working in microsystems technology. The funded researchers focus on concepts that are innovative, speculative, and high-risk.

Bergbreiter's research is titled, "Silicon/Elastomer Components for Autonomous Jumping Microrobots."

The research will develop the mechanisms necessary to build a robust autonomous jumping microrobot. Jumping offers numerous benefits to millimeter-sized robots. As the robot size shrinks, obstacles around the robot grow comparatively larger and jumping provides a relatively simple mechanical means of dealing with those obstacles. Ultra low power parasitic locomotion, in which the microrobot uses other objects moving nearby to provide the locomotion power, becomes feasible when the microrobot can jump on and jump off.

For basic functionality, a jumping microrobot benefits from its relative simplicity. It requires only a motor, an energy storage element to store and quickly release mechanical energy for a jump, a controller, and a power supply. However, while the robot itself is fairly simple, the components have performance requirements above those offered by current technologies.

To achieve the performance and robustness necessary to make this vision feasible, microrobot mechanisms such as motors and springs will be fabricated in a silicon/elastomer process. Specifically, this process will add an elastomer like PDMS into a standard SOI MEMS process to improve motor force density and spring performance to the point at which the robot will be able to store and release enough energy to jump 10s of centimeters. The silicon/elastomer process will also add robustness so that the robot will be able to land and jump again.

April 1, 2008


Prev   Next