Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

Alumna Florence Tan of NASA to Deliver Commencement Speech May 20

36 Clark School Students Accepted into NIST Summer Research Program

Eta Kappa Nu Wins 2011-2012 Outstanding Chapter Award

UMD's Gamera Team Receives Support from Maryland Space Business Roundtable

Clark School Student Wins "Code for Community Challenge"

Goldsman and Peckerar Win Inaugural University System of Maryland Entrepreneurship Award

Clark School Freshmen Compete in Hovercraft Competition

Marcus Selected as Poole and Kent Senior Faculty Teaching Award Recipient

X-51A Waverider Achieves Hypersonic Breakthrough

Pack Receives "Champion of Change" Award from White House

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

NSF Grant for Nanofabrication for Energy Apps

Diagram for the DNA probe directed assembly of TMV1cys nanotemplates onto a readily addressable site. L and R represent left and right electrodes. Inserted picture shows an actual chip.

Herbert Rabin Distinguished Professor Reza Ghodssi (ECE/ISR/UMERC/NanoCenter) has received a new three-year grant from the National Science Foundation worth $401,712 for research on novel, biological nanofabrication processes for the development of small-scale energy storage devices utilizing the tobacco mosaic virus (TMV). Ghodssi is the principal investigator (PI) for the research project, titled "Nanofabrication Using Viral Biotemplates for MicroElectroMechanical Systems (MEMS) Applications." Professor James Culver from the Center of Biosystems Research at the University of Maryland Biotechnology Institute is Co-PI.

The objective of the research is to make use of the self-assembly and metal-binding properties of a biological nanostructure, the TMV, in the development of novel functional materials and fabrication processes for energy microsystems applications. The TMV is a high aspect ratio cylindrical plant virus that can be genetically engineered to include amino acids with enhanced metal-binding properties. These genetic modifications facilitate electroless plating of the molecules as well as self-assembly onto various substrates. The developed processes will be incorporated in the fabrication of new, nanostructured small-scale energy storage devices.

More information about the research can be found at the NSF website:

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0927693

Additional information:

JMM Paper: http://www.ece.umd.edu/~ghodssi/ghodssi-pdf/Gerasopoulos_JMM_October2008.pdf

Nano Letters: http://pubs.acs.org/doi/pdf/10.1021/nl051254r

Related Articles:
The Future of Small
Cumings Leads EFRC Nanowire Team
NSF Grant for Battery Research
UMERC/Nanocenter Team Named "Energy Frontier" Center
NanoCenter Improves Energy Storage Options
Steve Gabriel Lead Author of New Book
Clark School Students Win National Energy Competition
Clark School Students Shine in Recent Competitions
2012 Energy Research Fellows Announced
New Advance for Alkaline Fuel Cells

July 27, 2009


Prev   Next