Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

UMD Announces Appointment of Schultheis to Lead New Regulatory Science Initiative

UMD Steel Bridge Team Meets Members of Congress at AISI Steel Day in DC

Hubbard Chosen for HistoryMakers Oral History Collection

Delivering Drugs to Inner Ear, Eyes, and Brain Made Easier with "Magnetic Syringe"

Vote to Support Team Mulciber in Wood Stove Design Challenge

BioE and Mtech Partner with Children's National Health System to Form Pediatric Device Consortium

NSF-Backed DC I-Corps Kicks Off First Cohort with 20 Federal Laboratory, University and Regional Inventors, Entrepreneur Teams

UMD Hosts 2nd Cybersecurity and Cybersafety Workshop for Girls

UMD Ranked Top Public School for Tech Entrepreneurship in 2013 StartEngine College Index

ECE Students Take Top Prize at Michigan Hackathon for Intelligent Trashcan

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

$1.5M NSF Grant for Ant-like Microrobots

A team of Clark School faculty from the Institute for Systems Research, electrical and computer engineering and mechanical engineering has won a three-year, $1.5 million National Science Foundation grant for "Ant-Like Microrobots—Fast, Small, and Under Control." Assistant Professor Nuno Martins (ECE/ISR) is the principal investigator. Co-PIs are Associate Professor Pamela Abshire (ECE/ISR), Associate Professor Elisabeth Smela (ME) and Assistant Professor Sarah Bergbreiter (ME/ISR).

These microrobots could be used for applications as diverse as search and rescue during disaster relief efforts, manufacturing, warehouse management, ecological monitoring, intelligence and surveillance, infrastructure and equipment monitoring, metrology and medical applications such as cell manipulation and microfactories.

No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures and actuators that can be widely leveraged in other applications.

The team will discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile microrobots that self-organize into cooperative configurations. The scope of the project involves work in:

—Distributed algorithms for distributed coordination and formation control under severe power, communication, and mobility constraints,

—Minimal electronics hardware for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits,

—Methods of locomotion and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions,

—Integrating the algorithms, electronics, and actuators into a fleet of ant-size microrobots.

Related Articles:
The Future of Small
Barua Wins NSF Grant
NSF Grant for Hurricane Forecasting Work
Grant to Improve Data Reliability
NSF Grant for Srivastava, Narayan
NSF Grant for Ephremides
Abshire, Lopresti Honored at Commencement
NSF Grant to Help Monitor and Protect Endangered Species
Showcase of Undergraduate Summer Research
New Undergrad Research Opportunity in Miniature Robotics

September 25, 2009


Prev   Next