Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

UMD Announces Appointment of Schultheis to Lead New Regulatory Science Initiative

UMD Steel Bridge Team Meets Members of Congress at AISI Steel Day in DC

Hubbard Chosen for HistoryMakers Oral History Collection

Delivering Drugs to Inner Ear, Eyes, and Brain Made Easier with "Magnetic Syringe"

Vote to Support Team Mulciber in Wood Stove Design Challenge

BioE and Mtech Partner with Children's National Health System to Form Pediatric Device Consortium

NSF-Backed DC I-Corps Kicks Off First Cohort with 20 Federal Laboratory, University and Regional Inventors, Entrepreneur Teams

UMD Hosts 2nd Cybersecurity and Cybersafety Workshop for Girls

UMD Ranked Top Public School for Tech Entrepreneurship in 2013 StartEngine College Index

ECE Students Take Top Prize at Michigan Hackathon for Intelligent Trashcan

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

Tiny Hairs on Bats' Wings Act as Speedometers

A big brown bat in flight. Photo credit: Amaya Perez, Auditory Auditory Neuroethology Laboratory (BatLab), University of Maryland.

A big brown bat in flight. Photo credit: Amaya Perez, Auditory Auditory Neuroethology Laboratory (BatLab), University of Maryland.

Anyone watching bats skillfully maneuvering through the air to catch their dinner is impressed by how they quickly change direction and speed. Now researchers in the A. James Clark School of Engineering at the University of Maryland believe they have uncovered one of the secrets of bats’ aerodynamic prowess: rows of microscopic, domed hairs on their wings that might act like speedometers and stall indicators.

In a new study published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), Susanne Sterbing-D’Angelo and her colleagues have found empirical evidence for what researchers have long suspected: the tiny domed hairs function as arrays of sensors that transmit airspeed information to bats’ brains, helping them control their flight and avoid stalling.

These hairs function similar to Pitot tubes, the flight speed and stall sensors installed on aircraft wings. A Pitot tube has two holes—one in the front, and one on the side—that measure airflow pressures as the plane flies. The difference between the pressures at these two measurement points is called “dynamic pressure,” which is used to calculate airspeed.

In the bat, the researchers believe tactile sensing “Merkel” receptors at the base of the hairs—which are about as long as a human hair is thick—might be specialized to sense airflow patterns and therefore help stabilize flight when airflow is disrupted.

The Clark School team studied two bat species: the big brown bat and the short-tailed fruit bat. In a flight test experiment, bats were trained to find a path through an artificial forest. After the bats had learned to negotiate the route, they were filmed twice: before and after wing hair had been removed with a depilatory cream. After hair removal, the bats experienced reduced aerial maneuverability: they flew faster and made wider turns. The researchers believe the bats’ flying speed increased when they were hairless because the lack of sensor information made them think they were flying too slowly and could stall.

In a separate experiment, the researchers measured electrophysiological response to air puffs from an airflow generator in bats with the domed hair and in those in which hair had been removed. In the bats with hair, the air puffs triggered responses from clusters of neurons in the somatosensory cortex of the bats’ brains, which responds to tactile receptors. The bats whose wing membranes had been chemically depilated showed no such responses.

The neurons responded with directional sensitivity to stimulation of the wing hairs with low-speed airflow. Wing hairs mostly preferred reversed airflow, which occurs under flight conditions when the airflow separates and vortices form. The findings suggest that the domed hairs might represent an evolutionary adaptation for aerodynamic control.

The research is being incorporated into work on bat wing-inspired sensors with Professor Belinda Batten’s dynamics and control research group at Oregon State University. Eventually these sensors could be used to develop a new generation of air speed and stall detectors for aircraft.

Sterbing-D’Angelo is an Assistant Research Scientist with the Institute for Systems Research (ISR), within the A. James Clark School of Engineering at the University of Maryland. The team includes Maryland researchers Mohit Chadha, Chen Chiu, Ben Falk, Wei Xian, Janna Barcelo, and Cynthia F. Moss, along with John M. Zook from the Department of Biological Sciences at Ohio University. At Maryland, the research involved ISR, the Program in Neuroscience and Cognitive Science and the Department of Psychology.

More Information:

”Bat wing sensors support flight control”
Susanne Sterbing-D’Angelo’s profile
Cynthia Moss’s profile
Auditory Neuroethology Laboratory (BatLab)
Institute for Systems Research
Program in Neuroscience and Cognitive Science
A. James Clark School of Engineering
College of Behavioral and Social Sciences
Department of Psychology

Related Articles:
Horiuchi, Moss Receive $1.5M NSF Grant

June 21, 2011


Prev   Next