Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

"Gentle Delivery" Kits Could Help Bring Gene Therapies to Market

MDSE Sends Team to Sierra Leone to Support Community Projects

Professor Peter Sandborn Elected ASME Fellow

Clark School Students Study Solar Energy in China

CyberSTEM Camp Inspires Middle School Girls

Bentley Elected ACS Fellow

University of Maryland Creates Master's in Robotics Targeted at High-Tech Professionals

Two UMD Teams Among Seven Finalists Selected for NASA X-Hab Challenge

M-CERSI Hosts Conference on Human Reliability Analysis of Medical Devices, Aug. 26

Schmaus Awarded Sikorsky Aircraft Fellowship

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

New Advance for Alkaline Fuel Cells

Work by Clark School Department of Chemical and Biomolecular Engineering (ChBE) graduate student Yanting Luo and former ChBE assistant research scientist Juchen Guo could improve the performance and cost of low-temperature fuel cells. The work recently was featured on the cover of Macromolecular Chemistry and Physics.

Luo, advised by ChBE assistant professor and University of Maryland Energy Research Center member Chunsheng Wang, synthesized a new polymer designed for use as the solid alkaline polymer electrolyte (APE) in alkaline fuel cells (AFC). AFCs are an alternative to the proton-exchange membrane fuel cells (PEMFCs). Like PEMFCs, AFCs can operate at relatively low temperatures, making them suitable for use in transportation and electronics.

AFCs have existed in various forms since the 1930s. While more efficient and lower in cost than PEMFCs, as well as capable of generating heat and drinking water as by-products, they require pure compressed oxygen and hydrogen to work and to prevent degradation if exposed to carbon dioxide. As a result, their use has often been restricted to sealed environments, including spacecraft. Luo says the development of a solid APE to replace the liquid electrolyte has inspired a "revived interest" in producing AFCs for the consumer market. Creating a more durable solid electrolyte with a high power output for AFCs is a key step in their commercialization process.

Using a technique called "miniemulsion copolymerization," Luo and her colleagues created an APE that could be tuned (adjusted and controlled) for ideal mechanical properties and conductivity during the manufacturing process.

Read the full story on the Department of Chemical and Biomolecular Engineering web site.

Related Articles:
Want Fuel Cells? Think Outside the Hydrogen Tank
Wachsman Talks Fuel Cells on "Ceramic Tech Today" (VIDEO)
Steve Gabriel Lead Author of New Book
Clark School Students Win National Energy Competition
Clark School Students Shine in Recent Competitions
Solares Wins Department of Energy's Early Career Award
2012 Energy Research Fellows Announced
University of Maryland Wins 2011 Solar Decathlon
UM a Lead University in National Clean Energy Business Plan Competition
"Twenty-Year Window of Opportunity"

January 19, 2012


Prev   Next