Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

UMD Announces Appointment of Schultheis to Lead New Regulatory Science Initiative

UMD Steel Bridge Team Meets Members of Congress at AISI Steel Day in DC

Hubbard Chosen for HistoryMakers Oral History Collection

Delivering Drugs to Inner Ear, Eyes, and Brain Made Easier with "Magnetic Syringe"

Vote to Support Team Mulciber in Wood Stove Design Challenge

BioE and Mtech Partner with Children's National Health System to Form Pediatric Device Consortium

NSF-Backed DC I-Corps Kicks Off First Cohort with 20 Federal Laboratory, University and Regional Inventors, Entrepreneur Teams

UMD Hosts 2nd Cybersecurity and Cybersafety Workshop for Girls

UMD Ranked Top Public School for Tech Entrepreneurship in 2013 StartEngine College Index

ECE Students Take Top Prize at Michigan Hackathon for Intelligent Trashcan

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

New NIH Grant to Advance Brain Surgery Robot Development

Minimally Invasive Neurosurgical Intracranial Robot

Minimally Invasive Neurosurgical Intracranial Robot

A research team from the Clark School and the University of Maryland, Baltimore (UMB) has won a new $2 million grant from the National Institutes of Health (NIH) to continue developing a small robot that could one day be a huge aid to neurosurgeons in removing difficult-to-reach brain tumors.

Principal investigators include Jaydev P. Desai, associate professor of mechanical engineering at the Clark School, and Rao Gullapalli, M.D., associate professor of diagnostic radiology and nuclear medicine, and J. Marc Simard, M.D., professor of neurosurgery, both at the University of Maryland School of Medicine in Baltimore. They have developed their "Minimally Invasive Neurosurgical Intracranial Robot" (MINIR) prototype over a number of years and demonstrated its feasibility, supported in part by a previous NIH grant. Satyandra K. Gupta, professor of mechanical engineering at the Clark School, and Jiachen Zhuo, assistant professor of diagnostic radiology and nuclear medicine at UMB, are co-investigators.

The team has evaluated the device under continuous magnetic resonance imaging (MRI). According to the researchers, work done on the previous NIH grant helped to uncover next-level challenges that are the basis of this new NIH project.

The NIH grant will enable the team to develop MINIR-II, a fully MRI-compatible robot, and demonstrate its safety and effectiveness. To accomplish this, MINIR-II will need to be under the direct control of the physician, with targeting information obtained exclusively from real-time MRI that uses active targeting methods with sensors embedded within MINIR-II.

"This technology has the potential to revolutionize the treatment and management of patients with difficult-to-reach intracranial tumors and to have a direct impact on improving their quality of life," says Desai. "This work is a result of exceptional collaboration over the years, between our two extraordinary institutions."

Brain tumors are among the most feared complications of cancer, occurring in 20 to 40 percent of adult cancer patients. Despite numerous advances in treatment, the prognosis for these patients is poor, with a median survival of 4-8 months. Whether a primary (intrinsic) malignancy, or a secondary (metastatic) malignancy, involvement of the brain in a cancer patient is devastating, because it threatens the very personality and identity of the individual, and is invariably the most likely of all complications to directly and severely affect the quality of life.

Currently, the optimal treatment is to remove the tumor(s) through primary surgical resection, then follow with additional therapies such as radiation and chemotherapy.

Unfortunately, in many patients the location of the brain tumor makes it too difficult to remove through primary surgical resection. This is especially true for tumors deeply embedded in the brain that may be difficult to access using conventional neurosurgical techniques. The poor general health of the patient can further complicate the matter.

A fully MRI-compatible MINIR could one day enable neurosurgeons to reach such difficult tumors and greatly improve outcomes for these patients. Furthermore, image-guided robotic surgery avoids the complications associated with brain shifts associated with conventional tumor resections, as the target tumor may move during surgery but will always remain within sight through the exquisite contrast available from real-time MRI.

An early version of MINIR won the 2007 University of Maryland, College Park, Invention of the Year award in the Physical Science Category.

This NIH grant is one of the first awarded to a joint UMB and UMD research project under the collaboration between these two research powerhouses that is known as University of Maryland: MPowering the State.

The University of Maryland: MPowering the State brings together two universities of distinction to form a new collaborative partnership. Harnessing the resources of each, the University of Maryland, College Park, and the University of Maryland, Baltimore, will focus collective expertise on critical state-wide issues of public health, biomedical informatics and bioengineering. This collaboration will drive an even greater impact on the state, its economy, the job market, and the next generation of innovators. The joint initiatives will have a profound effect on productivity, the economy, and the very fabric of higher education.

 

Related Articles:
Robo Raven flies live on Fox 5 TV
NASA Selects Bergbreiter Robotics Project for Development
Robinson Wins Student Hardware Competition
Clark School Welcomes 10 Summer Robotics Research Students
Hundreds Flock to 2011 Maryland Robotics Day
Desai to Attend Frontiers in Engineering Symposium
Clark School Takes 3rd at NASA Competition
Diagnostic Robotic System Wins Seed Grant
Clark School Lab Donates Ornithopter to Smithsonian
Lister Wins Link Foundation Fellowship

October 16, 2012


Prev   Next