Find us On Facebook Twitter
News
news and events Events Energy Lectures Sustainability 2011 Sustainability 2010 Sustainability 2009 White Symposium Whiting Turner Lectures Current News News Archives Search News Press Coverage Press Releases Research Newsroom RSS feed Events Calendar events events

News Story

Current Headlines

"Gentle Delivery" Kits Could Help Bring Gene Therapies to Market

MDSE Sends Team to Sierra Leone to Support Community Projects

Professor Peter Sandborn Elected ASME Fellow

Clark School Students Study Solar Energy in China

CyberSTEM Camp Inspires Middle School Girls

Bentley Elected ACS Fellow

University of Maryland Creates Master's in Robotics Targeted at High-Tech Professionals

Two UMD Teams Among Seven Finalists Selected for NASA X-Hab Challenge

M-CERSI Hosts Conference on Human Reliability Analysis of Medical Devices, Aug. 26

Schmaus Awarded Sikorsky Aircraft Fellowship

News Resources

Return to Newsroom

Search Clark School News

Research Newsroom

Press Releases

Archived News

Magazines and Publications

Press Coverage

Clark School RSS Feed

Events Resources

Clark School Events

Events Calendar

Bookmark and Share

New Nanocomposite Anodes Speed Battery Charging

The carbon-tin nanocomposite particles take the form of multiple 10nm wide tin spheres embedded in 200-500nm wide carbon spheres.

The carbon-tin nanocomposite particles take the form of multiple 10nm wide tin spheres embedded in 200-500nm wide carbon spheres.

A technique developed at the Clark School for creating a durable tin-carbon nanocomposite battery anode has been published in Nano Letters and highlighted in Chemical and Engineering News (C&EN), the weekly news magazine of the American Chemical Society (ACS). The new anode material, which is capable of storing two and a half times the energy graphite anodes can, is designed for use in fast-charging, high energy capacity batteries.

The development is the result of collaboration among the research groups of University of Maryland Energy Research Center members Chunsheng Wang (Department of Chemical and Biomolecular Engineering) and Michael Zachariah (Departments of Mechanical Engineering and Chemistry & Biochemistry).

In her C&EN feature, Katherine Bourzac describes the new manufacturing technique that makes it all possible: While tin anodes can hold and provide much more energy than graphite, they eventually break down from the strain they experience during repeated cycles of charging and discharging. An anode made of smaller, nanoscale tin particles reduces the strain, and the addition of carbon to the tin provides additional strength and support. Creating consistently sized particles of the carbon-tin composite, however, had been difficult due to the low melting point of tin. Wang, Zachariah and their teams found a way around the problem by exposing an aerosolized solution containing the tin and carbon sources to 900° C (1652° F) heat. The the combination of tiny, consistent droplets and extremely high heat cause the necessary reactions take place in less than a second and leave behind a non-clumping nanocomposite powder that quickly cools.

In subsequent experiments, a battery constructed with a tin-carbon anode remained stable, maintained its storage capacity, and exhibited a faster discharge/recharge cycle than currently available cell phone batteries.

For More Information:

"Tin-Carbon Nanocomposite Enables Fast-Charging Battery." Katherine Bourzac. C&EN, published online 10 January 2013.

"Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries." Yunhua Xu, Qing Liu, Yujie Zhu, Yihang Liu, Alex Langrock, Michael R. Zachariah, and Chunsheng Wang. Nano Lett., published online 2 January 2013. DOI: 10.1021/nl303823k. Abstract »

Visit Professor Wang's web site »
Visit Professor Zachariah's web site »
Visit Dr. Zhang's web site »

Related Articles:
All-In-One: $300K for Development of Interface-Free Battery
A Longer Life for Lithium Ion Batteries
"Team Thirsty Turtles" Wins Spot in National Chem-E-Car Competition
NSF Grant for Battery Research

January 10, 2013


Prev   Next