Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 1

CS-590.26, Spring 2014

High Speed Memory Systems: Architecture and Performance Analysis

Alternative Solid State Memories: Flash, MRAM, FeRAM, PCRAM

Credit where credit is due:

Slides contain original artwork (© Jacob, Wang 2005)

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 2

What is DRAM?

- (Relatively) fast reads and (relatively) fast writes
- Unlimited number of writes
- Volatile loses data storage without power
- Dynamic loses data without periodic refresh
- Could be fabricated using similar materials and (relatively) similar silicon based process technologies as leading edge processors

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 3

Alternatives:

- (Relatively) slower reads and (on some) really slow writes
- (Some) limited number of writes
- Non-Volatile keeps data storage without power
- May require new materials and (relatively) different process technologies as leading edge processors

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 4

Flash: Basic Idea

- Electrical charges are forced to tunnel through oxides and get trapped in the floating gate.
- High voltage forces tunneling
- Trapped charges in floating gate then alters V_t
- Differences in V_t of transistor then sensed as 0/1
- Explicit program and erase cycles

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 5

Charge Pump

Idealized charge pumping circuit

- Build up larger voltage for programming floating gate

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 6

NAND Flash Array

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 7

UNIVERSITY OF MARYLAND

NOR Flash Array

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

> University of Crete

> > SLIDE 8

NAND versus NOR

NAND **Smaller Cell Size**

Better E/W Endurance (>100K vs >10K)

 $(\sim 40\%)$

Fast Read (~100ns) Slow Write (~10 us) **Used for Code**

Slow Read (~1 us) "Fast" Write (~1 us) **Used for Data**

*** values accurate as of 2003 ... updated table in a moment

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 9

UNIVERSITY OF MARYLAND

Multi (voltage) Level Cell

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 10

Reads and Writes

- Reads are relatively straightforward
- Writes are complex
- How long do we hold the reverse bias currents to "erase"?
- Did the cells erase properly?
- Did the write succeed?
 - If the write failed, recover, remap and re-write to another sector/block

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 11

ISSCC 2005: Toshiba 8 Gb NAND

die size: 146 mm²
70 nm CMOS
3M (2AI, 1 W)
cell size: 0.024um²
(5 F²)

2 bits per cell cycle time: 50ns

program time: 670us

programming

throughput: 6 MB/s

Banks vs. Planes

Banks vs. Planes

Figure 8: Array Organization: 32Gb and 64Gb Devices

DISK & FLASH

A brief interlude

Disk

Flash SSD

Flash memory arrays

Circuit board

ATA Interface

Disk Issues

- Keeping ahead of Flash in price-per-GB is difficult (and expensive)
- Dealing with timing in a polar-coordinate system is non-trivial
 - OS schedules disk requests to optimize both linear & rotational latencies;
 ideally, OS should not have to become involved at that level
- Tolerating long-latency operations creates fun problems
 - E.g., block-fill not atomic; must reserve buffer for duration; Belady's MIN designed for disks & thus does not consider incoming block in analysis
- Internal cache & prefetch mechanisms are slightly behind the times

Flash SSD Issues

- Flash does not allow in-place update of data (must block-erase first); implication is significant amount of garbage collection & storage management
- Asymmetric read [1x] & program times [10x] (plus erase time [100x])
- Proprietary firmware (heavily IP-oriented, not public, little published)
 - Lack of models: timing/performance & power, notably
 Flash Translation Layer is a black box (both good & bad)
 Ditto with garbage collection heuristics, wear leveling, ECC, etc.
 - Result: poorly researched (potentially?)
 E.g., heuristics? how to best organize concurrency? etc.

SanDisk SSD Ultra ATA 2.5" Block Diagram

Flash SSD Organization & Operation

- Numerous Flash arrays
- Arrays controlled externally (controller rel. simple, but can stripe or interleave requests)
- Ganging is device-specific
- FTL manages mapping (VM), ECC, scheduling, wear leveling, data movement
- Host interface emulates HDD

Flash SSD Organization & Operation

Flash SSD Timing

Some Performance Studies

I/O Access Optimization

- Access time increasing with level of banking on single channel
- Increase cache register size

0.2 us

327.68 us

I/O Access Optimization

Implement different bus-access policies for reads and writes

Reads: Hold I/O bus between data bursts

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 12

Generation 2Gb # Blocks 2048 Block Size 128KB

Parameter

Page Size

Pages/Blk

Planes/Dies

+ECC

Flash Evolution

2004

SLC

2KB

+64

64

1/1

2Gb 32Gb 3 2048 8192

128KB

2KB

+64

64

1/1

2007

SLC

8192 4096 512KB 1MB

2008

MLC

4KB

1MB

2010

SLC

32Gb

8KB 8KB

2010

MLC

128Gb

8192

2MB

+218 +448 +448

128 128 256

2/4 2/1 2/2

Read Time 25µs 25µs 50µs 35µs 75µs

Write Time 300µs 300µs 900µs 350µs 1600µs

Erase Time 2000µs 2000µs 3000µs 1500µs 5000µs

Longevity 100K 10K 10K 60K 30K

Max BW 33MT/s 40MT/s 50MT/s 200MT/s 200MT/s

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 13

Flash Summary

- Comparable read latency (to DRAM) and slow writes
- Non Volatile
- limited write cycles
- Very mature industry
- Very high density, but long term scalability? Oxide reliability, multi-level cell.
- Video applications now supported

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 14

MRAM

MRAM Memory Cell Structure

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 15

Magnetoresistance

- Change in electrical resistance with applied magnetic field

 The resistance against the flow of electrons depend on polarization of electrons and availability of spin-up or spin-down states

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 16

MRAM Cell Structure

Differences in resistance = "0" or "1"

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 17

MRAM Reference Circuit

Reference Cell

Reference Cell uses Parallel/Serial combination of MTJ's in two memory states to generate "mid resistance" reference between those two states

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 18

UNIVERSITY OF MARYLAND

MRAM Segment

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 19

Motorola 1 MBit MRAM Chip

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 20

Process Compatibility

Can be built between metal layers above active silicon

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 21

MRAM Summary

- Non Volatile
- No need to refresh
- (potentially) High density
- Non destructive read
- High write current.
- Read speed = write speed; < 50ns
- Unlimited R/W endurance
- Soft error immunity
- Material compatibility with CMOS logic and DRAM?
- Currently, large cells, but *may* scale down to DRAM/Flash levels of 6 F².

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 22

FeRAM Cell

- Tetra/Pentavalent Atom
- Di/Monovalent Metal Atoms
- Oxygen Atoms

PZT (PbO, ZrO₂, TiO₂) Lead-Zirconate-Titanate unit cell

Applied Electric Field Moves Center Atom

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 23

FeRAM Cell Operation

- Ferroelectric material can be polarized into two stable states. States can be maintained without power

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 24

FeRAM Circuit Structure

1T1C: DRAM-like 2T2C: Built-in reference

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 25

FeRAM Summary

- Non-volatile (no refresh)
- Destructive read
- Low voltage and low power
- Fast read and fast write (compared to NVM)
- limited R/W endurance (< 10⁹ reads)

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 26

Phase Change Memory

Heat, then . . .

Fast cool down = amorphous. High resist. Slow cool down = crystalline. Low resist.

Differences in resistance = "0" or "1"

Same material used in re-writeable CD/DVD optical disks (GeSbTe)

Spring 2014

CS-590.26 Lecture E

Bruce Jacob David Wang

University of Crete

SLIDE 27

PCRAM Summary

- Rad Hard (SEU has limited/no effect)
- Non destructive read
- Direct write (no need for DRAM Sense Amp style Read-Modify-Write)
- Low voltage and low power
- Fast read and medium speed write (fast compared to NVM)
- Unlimited read cycles
- Limited write cycles (< 10¹²); Large write current can overheat element, element can be stuck at low resistance state
- Can scale to 22nm tech (source: Intel)

