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The Pipelined RiSC-16
ENEE 446: Digital Computer Design, Fall 2000
Prof. Bruce Jacob
This paper describes a pipelined implementation of the 16-bit Ridiculously Simple Com
(RiSC-16), a teaching ISA that is based on the Little Computer (LC-896) developed by Peter
at the University of Michigan.

1. RiSC-16 Instruction Set
The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-addresses (i.e. a
0 corresponds to the first two bytes of main memory, address 1 corresponds to the seco
bytes of main memory, etc.). Like the MIPS instruction-set architecture, by hardware conve
register 0 will always contain the value 0. The machine enforces this: reads to register 0 a
return 0, irrespective of what has been written there. The RiSC-16 is very simple, but it is ge
enough to solve complex problems. There are three machine-code instruction formats and
of 8 instructions. The instruction-set is given in the following table.

The instruction-set is described in more detail (including machine-code formats) inThe RiSC-16
Instruction-Set Architecture.

Assembly-Code Format Meaning

add regA, regB, regC R[regA] <-  R[regB] +  R[regC]

addi regA, regB, immed R[regA] <-  R[regB] +  immed

nand regA, regB, regC R[regA] <- ~(R[regB] &  R[regC])

lui regA, immed R[regA] <-  immed & 0xffc0

sw regA, regB, immed R[regA] -> Mem[ R[regB] + immed ]

lw regA, regB, immed R[regA] <- Mem[ R[regB] + immed ]

beq regA, regB, immed

if ( R[regA] == R[regB] ) {
PC <- PC + 1 + immed
(if label, PC <- label)

}

jalr regA, regB PC <- R[regB], R[regA] <- PC + 1

PSEUDO-INSTRUCTIONS:

nop do nothing

halt stop machine & print state

lli regA, immed R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed R[regA] <- immed

.fill immed initialized data with value immed

.space immed zero-filled data array of size immed
1
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2. Pipelined Implementation
A non-pipelined implementation of the RiSC-16 is described in the documentRiSC-16: Sequen-
tial Implementation. The document shows the control flow and data flow for each instruction
well as the final hardware implementation that changes its dataflow based on the instr
opcode. In that example, the entire instruction must be executed before the next clock, at
point the results of the instruction are latched in the register file or data memory. This result
relatively long clock period.

The computer market is not fond of slow clocks, however. Increased clock speeds are poss
the amount of logic between successive latches is decreased. If execution is sliced up into s
sub-tasks, the clock can run as fast as the longest sub-task. Theoretically, a pipeline of N
should run with a clock that is N times faster than a sequential implementation. For many rea
this theoretical limit is never reached, due to latch overhead, sub-tasks of unequal lengt
Nonetheless, extremely fast clock rates are possible. Slicing up the instruction execution th
is calledpipelining, and it is exploited to great degree in nearly every aspect of modern comp
design, from the processor core to the DRAM subsystem, to the overlapping of transactio
memory and I/O buses, etc.

The RiSC-16 pipeline is shown in Fig. 1 on the next page. It is similar to the 5-stage DLX/M
pipeline that is described in bothHennessy & PattersonandPatterson & Hennessy, and it fixes a
few minor oversights, such as lack of forwarding to store data, lack of forwarding to compa
logic in decode implementing the 1-instruction delay slot, etc. This pipeline adds in forwar
for store data and eliminates branch delay slots. As in the DLX/MIPS, branches are predict
taken, though implementations of more sophisticated branch prediction are certainly possib

In the figure, shaded boxes represent clocked registers; thick lines represent 16-bit buse
lines represent smaller data paths; and dotted lines represent control paths. The figure illu
how pipelining is achieved: the sub-tasks into which instruction execution has been divide
instruction fetch, instruction decode, instruction execute, memory access, and register-file
back. Each of these sub-tasks, which is executed by dedicated hardware called apipeline stage,
produces intermediate results that must be stored before an instruction may move on to th
stage. By breaking up execution into smaller sub-tasks, it is possible to overlap the differen
tasks of several different instructions simultaneously. If the intermediate results of the va
sub-tasks are not stored, they would be lost, as during the next cycle another instruction wo
using the same hardware for its own sub-task. For instance, after an instruction is fetche
necessary to store the fetched instruction somewhere, because the output of the instruction
ory will be different on the following cycle—the fetch stage will be fetching a completely diff
ent instruction.

The storage locations for the intermediate results are calledpipeline registers, and the figure illus-
trates their contents. It is common to label a pipeline register with the two stages that it div
For example, the pipeline register that divides the instruction fetch (IF) and instruction de
(ID) stages is called theIF/ID register; the register that divides the instruction execute (EX) a
memory-access (MEM) stages is called theEX/MEM register; and the register at the end of th
register-file writeback (WB) stage could be called theWB/END register.

Note that neither the WB/END register nor the data-forwarding path it supports is present
DLX/MIPS architecture described by Hennessy & Patterson. The DLX/MIPS assumes a
cycle register-file access, so that the writeback stage completes in the first half of the cycle a
register-file read component of the decode stage happens in the second half of the cycle
allows data to be forwarded from the writeback stage to the decode stage directly. Otherwis
2
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forwarding is impossible, unless the register file has a pass-through design that connects da
data-out whenever reading and writing the same register. If the register file does not do suc
warding, then the data written to the register file is only available on the following cycle. T
there must be a path to forward data to the instruction in the decode stage at the same time
instruction writing to the register file in the writeback stage. This is the function of the WB/E
register and the forwarding stage it represents.

Pipeline Registers

Program Counter The address of the instruction currently being fetched.

IF/ID Register:

INSTR The instruction to execute, with opcode, rA, rB, rC, and immediate field

PC Contains the address of the instruction whose state is contained in
pipeline register. This is used by BEQ and JALR instructions and in h
dling pipeline interrupts.

ID/EX Register:

OP Contains the instruction opcode.

rT, s1, s2 Contains the instruction’s 3-bit register specifiersrA, rB, and rC—s1 is
equal torB. For SW and BEQ instructions,s2 is taken from the instruc-
tion’s rA field, otherwise it is taken from the instruction’srC field. TherT
field contains the instruction’s 3-bit target-register identifier, or the bin
value 000 if the instruction has no target (i.e. SW and BEQ instructions

PC Contains the address of the instruction whose state is contained in
pipeline register. This is used by BEQ and JALR instructions and in h
dling pipeline interrupts.

OPERAND0 Contains the instruction’s immediate operand. If the instruction use
shifted or sign-extended immediate value (ADDI, LUI, LW, SW, BEQ
that value is available immediately and is stored here.

OPERAND1 Contains the instruction’s first register operand; this is the contents of
registerregister-file[rB].

OPERAND2 Contains the instruction’s second register operand. For ADD and NA
instructions, it is the contents ofregister-file[rC]. For BEQ and SW instruc-
tions, it is the contents ofregister-file[rA].

EX/MEM Register:

OP Contains the instruction opcode.

rT Contains the instruction’s 3-bit target-register identifier, or the binary va
000 if the instruction has no target (i.e. SW and BEQ instructions).

PC Contains the address of the instruction whose state is contained in
pipeline register. This is used by BEQ and JALR instructions and in h
dling pipeline interrupts.
4
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STORE DATA Contains the data to store to DATA MEMORY. Note that if the instructio
is not a SW, this information is not used.

ALU OUTPUT Contains the most recent output of the ALU.

MEM/WB Register:

rT Contains the instruction’s 3-bit target-register identifier, or the binary va
000 if the instruction has no target (i.e. SW and BEQ instructions).

RF WRITE Contains the data that will be written to the register file on the followi
cycle (provided therT  register has a non-zero value).

WB/END Register:

rT Contains the instruction’s 3-bit target-register identifier, or the binary va
000 if the instruction has no target (i.e. SW and BEQ instructions).

RF WRITE Contains the data that was written to the register file on the previous c
(provided therT  register has a non-zero value).

Control Modules
These are the descriptions of the various CONTROL modules.

CTL1 This module controls the write-enable line of the register file. If any data is to
written to the register file, it comes from the MEM/WB register. Thus, the con
logic simply looks at therT register: if that register is zero, write-enable (WE)
turned off. Otherwise, write-enable is turned on.

CTL2 This module controls both the write-enable line of the data memory and the op
tion of MUXout, which feeds the RF WRITE DATA register and therefore dete
mines what will be written to the register file on the following cycle. Thus, the o
input to the control module is the opcode of the instruction. The write-enable lin
the data memory is only set if the opcode is SW; otherwise, writing is disab
MUXout only chooses the output of the data memory if the opcode is LW; otherw
the mux chooses the value of the ALU OUTPUT register in EX/MEM.

CTL3 This module controls the operation of the ALU, the operation of MUXpc, and the
STOMP logic. The module’s inputs are the instruction opcode and the EQ!
returning from the ALU, which indicates if the two input operands are equal. T
FUNCalu control line is determined solely from the instruction opcode. The value
MUXpc is set by the opcode and the EQ! signal: if the instruction is a BEQ and
operands are equal (or if it is determined that the branch was mis-speculated, if
sophisticated branch prediction is implemented), MUXpc chooses the value of the
PC+1+OPERAND0 adder in the execute stage. When this happens, the conte
the IF/ID and ID/EX registers are overwritten with NOP instructions (this is
STOMP event). If the instruction is a JALR, MUXpc chooses the output of the ALU
SRC1 mux and also enables a STOMP event. For all other instructions and insta
MUXpc chooses the output of the PC+1 register in IF/ID and no STOMP ev
occurs.

CTL4 This module controls the operation of MUXimm, the multiplexer that chooses th
value to be sent to the ALU’s SRC2 input. The control input is the instructio
5
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opcode. For all instructions that use immediate values, the value in OPERAND
chosen. JALR also uses the output of the PC+1 adder, as it takes the value PC+
places it into the register file. For all other instructions (ADD, NAND), the m
chooses OPERAND2 (or, more accurately, the output of the ALU2 mux).

CTL5 This module handles data forwarding; it controls the operation of MUXalu1 and
MUXalu2, the two muxes responsible for forwarding data from pipeline registers
ther down the pipe. The control module’s input is the register identifierss1ands2of
the instruction currently in the execute stage and therT identifiers of the previous
three instructions. The control module compares each of the current instruct
input register operands against the output of the previous three instructions. If
determined that any of the previous three instructions write to any of the regis
that the current instruction uses as operands, and if the register specifier in qu
is non-zero, the data is forwarded from the appropriate pipeline register, giving
ority to instructions in higher stages (instructions nearer in time to the cur
instruction).

CTL6 This module controls the operation of MUXop0, the mux responsible for the content
of theOPERAND0 field of the ID/EX register, and MUXs2, the mux responsible for
choosing between the rA and rC instruction fields for specifying the second reg
operand. It also simplifies the logic for CTL5. The control module’s input is the
opcode of the instruction currently in the decode stage. MUXop0 chooses between
the sign-extended immediate value (to be used for ADDI, LW, SW, BEQ, and JA
instructions) and the left-shifted immediate value (to be used for LUI instructio
MUXs2 chooses rC for ADD and NAND instructions; it chooses rA for all othe
The control module simplifies the logic for CTL5 by placing either rA or rC into the
ID/EX register’ss2field, so that, for BEQ and SW instructions,s2in ID/EX contains
the appropriate bits (s2 essentially latches the output of the MUXs2 multiplexer).
This arrangement simplifies CTL5 by eliminating the need to look at both rA and rC
and choose, based on OP.

CTL7 This module handles the load-use interlock, sets the register targetrT in ID/EX. Its
inputs are the opcode and register operand specifiers of the instruction curren
the decode stage (held in the IF/ID register) and the opcode and target registerrA of
the instruction in the execute stage. If the instruction currently in the execute s
(held in the ID/EX register) is a LW and targets any register that the instructio
decode uses as a source register, a STALL event is created. The control mo
outputs are theOP, rT , ands2 fields of the ID/EX register, and thePstall signal,
which directs the PC and IF/ID pipeline registers to not latch new values on the
cycle but to retain their values instead. On a pipeline stall, the instructions in
fetch and decode stages are held up, and the rest of the instructions in the pi
are allowed to move ahead; to fill the created hole, a NOP instruction is placed i
ID/EX register. This amounts to putting an ADD opcode with target register r0 i
theOP andrT fields of ID/EX. The module produces a value for therT register in
ID/EX as follows: if the instruction in IF/ID is a type that targets the register fi
(ADD, ADDI, NAND, LUI, LW, JALR), the value of rA is passed on to therT regis-
ter. For SW and BEQ instructions, the binary value 000 is passed, indicating tha
instruction does not store a value in the register file (this works because r0 is a
only target).
6
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Control Signals
There are a number of control signals that change the direction and flow of data in the pip
These are the signals that the various CONTROL modules export:

FUNCalu This signal instructs the ALU to perform a given function.

MUXalu1 This 2-bit signal controls the mux connected to the SRC1 input to the ALU. T
mux chooses between the OPERAND1 component of the ID/EX register and
outputs of the previous three instructions, held in the EX/MEM, MEM/WB, a
WB/END pipeline registers.

MUXalu2 This 2-bit signal controls the mux connected to the SRC2 input to the ALU. T
mux chooses between the OPERAND2 component of the ID/EX register and
outputs of the previous three instructions, held in the EX/MEM, MEM/WB, a
WB/END pipeline registers.

MUXimm This 2-bit signal controls the mux connected to the SRC2 ALU input. The m
chooses between the register output, the immediate value, and the PC-based
The PC-based value is chosen for JALR instructions; the immediate value is ch
for ADDI, LUI, LW, and SW instructions, and the register operand is chosen for
others (ADD, NAND, BEQ).

MUXop0 This 1-bit signal controls the mux connected to the OPERAND0 component of
ID/EX register. The mux chooses between the sign-extended immediate value (
used for ADDI, LW, SW, and JALR instructions) and the left-shifted immedia
value (to be used for LUI instructions).

MUXout This 1-bit signal controls the mux connected to the RF WRITE DATA componen
the MEM/WB register, which holds the data to be written to the register file on
following cycle (provided the write-enable bit of the register file is set). The m
chooses between the output of the ALU and the output of the data memory (for
instructions).

MUXpc This 2-bit signal controls the mux connected the PC. The mux chooses betwee
output of the ALU’s SRC1 multiplexer (to be used for JALR instructions), t
PC+1+OPERAND0 adder in the execute stage (for instances of BEQ instruc
that are taken, or branch mispredicts if speculative execution is implemented)
the output of the dedicated adder that produces the sum PC+1 every cycle.

MUXs2 This 1-bit signal controls the mux connected to the register file’s SRC2 ope
specifier, a 3-bit signal that determines which of the registers will be read out
the 16-bit SRC2 data output port. The same signal is also latched in the ID/EX r
ter’ss2field. The mux chooses between the rA and rC fields of the instruction w
rC is chosen for ADD and NAND instructions.

Pstall The pipeline stallsignal. This 1-bit signal indicates that the PC and IF/ID pipeli
registers should not latch new data on the next clock edge but instead retain the
rent contents. The signal causes a pipeline stall event, during which the instruc
in the execute and later stages are allowed to move forward one stage, but th
most two instructions (in fetch and decode stages) are held back.

Pstomp Thepipeline stompsignal. This 1-bit signal indicates that the IF/ID and ID/EX pip
line registers should not latch on the next clock edge but instead latch NOP ins
7
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event, if speculative execution is implemented), in which a branch (BEQ or JA
instruction in the execute stage changes the direction of control flow.

WErf This 1-bit signal enables or disables the write port of the register file. If the sign
high, the register file can write a result. If it is low, writing is blocked. It is high f
ADD, ADDI, NAND, LUI, LW, and JALR instructions.

WEdmem This 1-bit signal enables or disables the write port of the data memory. If the si
is high, the data memory can write a result. If it is low, writing is blocked. It is hi
for SW instructions.

Not Included
The design does not cover a number of issues involved in real-world implementations, incl
data caches, instruction caches, data- and instruction-cache misses, support for precise int
or branch prediction more sophisticated thanpredict-not-taken(which is what the design imple-
ments). However, pipeline interrupts are described in the next section.

To implement caches, it is necessary to create paths to memory and allow for the possibili
the requested data or instruction word is not available (i.e. cache misses). For instruction
misses, it is not necessary to stall the entire pipeline, but for data caches it is. This is beca
instruction currently in the execute stage might be expecting a forwarding path to bring the
recent data from the MEM/WB or WB/END pipeline registers—if these instructions are allo
to continue down the pipeline while the instruction in the memory stage stalls for a data-c
miss, the data to be forwarded will be lost to the instruction in the execute stage. It will be i
register file, but the instruction in the execute stage (held in the ID/EX register) has alr
accessed the register file in the previous stage.

More sophisticated branch prediction is possible, requiring a few simple things. First, the
register needs a few extra bits holding branch-prediction state, includingBranchPredictorIndex,
PredictedDirection, TakenDirection, as well as the 16-bitTakenBranchTarget. It is important to
retain this information as well as the PC through to the execute stage so that either a taken
or a non-taken branch could be corrected if it is determined that either the choice of directi
the target itself was a misprediction. Note that, if the target is not known at prediction tim
might be that the direction predicted istaken, but because the branch cannot actually be tak
without a predicted target, the prediction will be ignored. Also, note that the PC cannot be
during the execute phase as the branch-predictor index (as it is during fetch). Thus, to upd
predictor’s saturating counter, it is necessary to retain the branch-predictor table index or in
for this purpose.

Additional Logic
The Left-Shift-6 and Sign-Extend-7 logic components are identical to those described in the
umentRiSC-16: Sequential Implementation. Sign-Extend-7 extends the sign of the immedia
value (as opposed to simply adding zeroes at the top) and in so doing produces a two’s co
ment number. It is used for ADDI, LW, SW, and BEQ instructions. Its logic looks like this:

23 1Bit: 067 5 41011 9 81415 13 12

simm-7 (-64 to 63)

SRC2 OPERAND:
8
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Left-Shift-6 is used for the LUI instruction and its logic looks like this:

3. Support for Precise Interrupts
Though the implementation of precise interrupts is not specified directly, the hooks are
largely by the fact that the program counter is preserved down the entire pipeline. There
least two possibilities for implementation:

1. Interrupts can be handled in much the same manner as STOMP logic: the program cou
redirected, and a subset of the instructions in the pipe are wiped out. The only differenc
would be that the subset of instructions to stomp would be determined dynamically. For
instance, if the interrupt is for an invalid opcode (not applicable in this instruction-set, bu
good for an example), it can be determined in the decode stage—and instructions in the
cute, memory, and writeback stages would be allowed to finish. If the interrupt is for som
thing like divide-by-zero (also not applicable here), it would be determined in the execut
stage, and only instructions in the memory and writeback stages would be allowed to com
Instructions in the fetch and decode stages would be turned into NOPs. If the data-mem
access uses an invalid address, only the instruction in the writeback stage would be allow
commit. In addition, the implementation would need logic to resolve multiple simultaneo
interrupts, giving priority to those further down the pipe. This also implies that the PC of
instruction must be carried down the pipe until the latest stage in which it is possible to c
an interrupt (e.g. up to and including the memory-access stage).

2. Interrupts can be handled in much the same way as a system with a reorder buffer: at th
of instruction commit. This means recognizing that an exceptional situation has occurre
holding that information with the instruction state (i.e. in the pipeline registers), and actin
it during the writeback stage—only in the writeback stage. Thus, in addition to extra fields 
the pipeline register to hold interrupt type, the MEM/WB register also needs a copy of the
gram counter.

The primary differences between the two scenarios are simplicity and performance. The
scheme acts upon exceptional conditions as soon as they are detected, thereby saving a fe
per interrupt, but it must also handle situations where an older instruction causes an interrupafter
a newer instruction causes its own. In this case, the pipeline would be in the process of ha
the newer instruction’s exception when the older instruction’s exception is detected. The pip
must abort the interrupt-handler-in-progress and redirect control to handle the exception th
detected second but should be handled first (in program order). Thus, the first scheme req
bit more logic.

For more details on the transfer of control in exceptional situations, see the documentRiSC-16
System Architecture.

23 1Bit: 067 5 41011 9 81415 13 12

imm-10 (0 to 1023)

SRC1 OPERAND:

ZERO
9
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