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This paper describes a pipelined implementation of the 16-bit Ridiculously Simple Computer
(RISC-16), a teaching ISA that is based on the Little Computer (LC-896) developed by Peter Chen
at the University of Michigan.

1. RISC-16 Instruction Set

The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-addresses (i.e. address
0 corresponds to the first two bytes of main memory, address 1 corresponds to the second two
bytes of main memory, etc.). Like the MIPS instruction-set architecture, by hardware convention,
register O will always contain the value 0. The machine enforces this: reads to register 0 always
return O, irrespective of what has been written there. The RiSC-16 is very simple, but it is general
enough to solve complex problems. There are three machine-code instruction formats and a total
of 8 instructions. The instruction-set is given in the following table.

Assembly-Code Format Meaning
add regA, regB, regC R[regA] <- R[regB] + R[regC]
addi regA, regB, immed R[regA] <- R[regB] + immed
nand regA, regB, regC R[regA] <- ~(R[regB] & R[regC])
lui regA, immed R[regA] <- immed & OxffcO
sw regA, regB, immed R[regA] -> Mem[ R[regB] + immed ]

Iw regA, regB, immed R[regA] <- Mem[ R[regB] + immed ]

if ( R[regA] == R[regB] ) {
PC <- PC + 1 +immed
(if label, PC <- label)

}

jalr  regA, regB PC <- R[regB], R[regA] <- PC + 1

beq regA, regB, immed

PSEUDO-INSTRUCTIONS:

nop

do nothing

halt

stop machine & print state

i regA, immed

R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed

R[regA] <- immed

il immed

initialized data with value immed

.space immed

zero-filled data array of size immed

The instruction-set is described in more detail (including machine-code formakbeiRiSC-16

Instruction-Set Architecture
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2. Pipelined Implementation

A non-pipelined implementation of the RiSC-16 is described in the docuRI&€-16: Sequen-

tial Implementation The document shows the control flow and data flow for each instruction, as
well as the final hardware implementation that changes its dataflow based on the instruction
opcode. In that example, the entire instruction must be executed before the next clock, at which
point the results of the instruction are latched in the register file or data memory. This results in a
relatively long clock period.

The computer market is not fond of slow clocks, however. Increased clock speeds are possible as
the amount of logic between successive latches is decreased. If execution is sliced up into smaller
sub-tasks, the clock can run as fast as the longest sub-task. Theoretically, a pipeline of N stages
should run with a clock that is N times faster than a sequential implementation. For many reasons,
this theoretical limit is never reached, due to latch overhead, sub-tasks of unequal length, etc.
Nonetheless, extremely fast clock rates are possible. Slicing up the instruction execution this way
is calledpipelining, and it is exploited to great degree in nearly every aspect of modern computer
design, from the processor core to the DRAM subsystem, to the overlapping of transactions on
memory and I/O buses, etc.

The RiSC-16 pipeline is shown in Fig. 1 on the next page. It is similar to the 5-stage DLX/MIPS
pipeline that is described in bottlennessy & PattersoandPatterson & Hennessynd it fixes a

few minor oversights, such as lack of forwarding to store data, lack of forwarding to comparison
logic in decode implementing the 1-instruction delay slot, etc. This pipeline adds in forwarding
for store data and eliminates branch delay slots. As in the DLX/MIPS, branches are predicted not
taken, though implementations of more sophisticated branch prediction are certainly possible.

In the figure, shaded boxes represent clocked registers; thick lines represent 16-bit buses; thin
lines represent smaller data paths; and dotted lines represent control paths. The figure illustrates
how pipelining is achieved: the sub-tasks into which instruction execution has been divided are
instruction fetch, instruction decode, instruction execute, memory access, and register-file write-
back. Each of these sub-tasks, which is executed by dedicated hardware gaipetire stage
produces intermediate results that must be stored before an instruction may move on to the next
stage. By breaking up execution into smaller sub-tasks, it is possible to overlap the different sub-
tasks of several different instructions simultaneously. If the intermediate results of the various
sub-tasks are not stored, they would be lost, as during the next cycle another instruction would be
using the same hardware for its own sub-task. For instance, after an instruction is fetched, it is
necessary to store the fetched instruction somewhere, because the output of the instruction mem-
ory will be different on the following cycle—the fetch stage will be fetching a completely differ-

ent instruction.

The storage locations for the intermediate results are cpifeline registersand the figure illus-
trates their contents. It is common to label a pipeline register with the two stages that it divides.
For example, the pipeline register that divides the instruction fetch (IF) and instruction decode
(ID) stages is called thE=/ID register; the register that divides the instruction execute (EX) and
memory-access (MEM) stages is called E%¢/MEM register and the register at the end of the
register-file writeback (WB) stage could be calledW®/END register

Note that neither the WB/END register nor the data-forwarding path it supports is present in the
DLX/MIPS architecture described by Hennessy & Patterson. The DLX/MIPS assumes a half-
cycle register-file access, so that the writeback stage completes in the first half of the cycle and the
register-file read component of the decode stage happens in the second half of the cycle. This
allows data to be forwarded from the writeback stage to the decode stage directly. Otherwise such
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Fig. 1: RiSC-16 5-stage pipeline
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forwarding is impossible, unless the register file has a pass-through design that connects data-in to
data-out whenever reading and writing the same register. If the register file does not do such for-
warding, then the data written to the register file is only available on the following cycle. Thus,
there must be a path to forward data to the instruction in the decode stage at the same time as the
instruction writing to the register file in the writeback stage. This is the function of the WB/END
register and the forwarding stage it represents.

Pipeline Registers

Program Counter The address of the instruction currently being fetched.
IF/ID Register:
INSTR The instruction to execute, with opcode, rA, rB, rC, and immediate fields.

PC Contains the address of the instruction whose state is contained in this
pipeline register. This is used by BEQ and JALR instructions and in han-
dling pipeline interrupts.

ID/EX Register:
OP Contains the instruction opcode.

rT, s1, s2 Contains the instruction’s 3-bit register specifiefs rB, andrC—slis
equal torB. For SW and BEQ instructions?2 is taken from the instruc-
tion’s rA field, otherwise it is taken from the instruction® field. TherT
field contains the instruction’s 3-bit target-register identifier, or the binary
value 000 if the instruction has no target (i.e. SW and BEQ instructions).

PC Contains the address of the instruction whose state is contained in this
pipeline register. This is used by BEQ and JALR instructions and in han-
dling pipeline interrupts.

OPERANDO  Contains the instruction’s immediate operand. If the instruction uses a
shifted or sign-extended immediate value (ADDI, LUI, LW, SW, BEQ),
that value is available immediately and is stored here.

OPERAND1  Contains the instruction’s first register operand; this is the contents of the
registemegister-filgrB].

OPERAND2  Contains the instruction’s second register operand. For ADD and NAND
instructions, it is the contents adgister-filgrC]. For BEQ and SW instruc-
tions, it is the contents oégister-filgrA].

EX/MEM Register:
OP Contains the instruction opcode.

T Contains the instruction’s 3-bit target-register identifier, or the binary value
000 if the instruction has no target (i.e. SW and BEQ instructions).

PC Contains the address of the instruction whose state is contained in this
pipeline register. This is used by BEQ and JALR instructions and in han-
dling pipeline interrupts.
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STORE DATA Contains the data to store to DATA MEMORY. Note that if the instruction
is not a SW, this information is not used.

ALU OUTPUT Contains the most recent output of the ALU.
MEM/WB Register:

T Contains the instruction’s 3-bit target-register identifier, or the binary value
000 if the instruction has no target (i.e. SW and BEQ instructions).

RF WRITE Contains the data that will be written to the register file on the following
cycle (provided theT register has a non-zero value).

WB/END Register:

T Contains the instruction’s 3-bit target-register identifier, or the binary value
000 if the instruction has no target (i.e. SW and BEQ instructions).

RF WRITE Contains the data that was written to the register file on the previous cycle
(provided thaT register has a non-zero value).

Control Modules
These are the descriptions of the various CONTROL modules.

CTL, This module controls the write-enable line of the register file. If any data is to be
written to the register file, it comes from the MEM/WB register. Thus, the control
logic simply looks at theT register: if that register is zero, write-enable (WE) is
turned off. Otherwise, write-enable is turned on.

CTL, This module controls both the write-enable line of the data memory and the opera-
tion of MUX,,, which feeds the RF WRITE DATA register and therefore deter-
mines what will be written to the register file on the following cycle. Thus, the only
input to the control module is the opcode of the instruction. The write-enable line of
the data memory is only set if the opcode is SW; otherwise, writing is disabled.
MUX y,tonly chooses the output of the data memory if the opcode is LW, otherwise,
the mux chooses the value of the ALU OUTPUT register in EX/MEM.

CTLj This module controls the operation of the ALU, the operation of Mi)>and the
STOMP logic. The module’s inputs are the instruction opcode and the EQ! line
returning from the ALU, which indicates if the two input operands are equal. The
FUNC,,, control line is determined solely from the instruction opcode. The value of
MUX ¢ is set by the opcode and the EQ! signal: if the instruction is a BEQ and the
operands are equal (or if it is determined that the branch was mis-speculated, if more
sophisticated branch prediction is implemented), MjJ¥hooses the value of the
PC+1+OPERANDO adder in the execute stage. When this happens, the contents of
the IF/ID and ID/EX registers are overwritten with NOP instructions (this is a
STOMP event). If the instruction is a JALR, MUXchooses the output of the ALU
SRC1 mux and also enables a STOMP event. For all other instructions and instances,
MUX,c chooses the output of the PC+1 register in IF/ID and no STOMP event
ocCcCurs.

CTLy4 This module controls the operation of My, the multiplexer that chooses the
value to be sent to the ALU’s SRC2 input. The control input is the instruction’s
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opcode. For all instructions that use immediate values, the value in OPERANDO is
chosen. JALR also uses the output of the PC+1 adder, as it takes the value PC+1 and
places it into the register file. For all other instructions (ADD, NAND), the mux
chooses OPERAND?2 (or, more accurately, the output of the ALU2 mux).

This module handles data forwarding; it controls the operation of MXand

MUX 5u2 the two muxes responsible for forwarding data from pipeline registers fur-
ther down the pipe. The control module’s input is the register identitesds?2 of

the instruction currently in the execute stage andrihedentifiers of the previous
three instructions. The control module compares each of the current instruction’s
input register operands against the output of the previous three instructions. If it is
determined that any of the previous three instructions write to any of the registers
that the current instruction uses as operands, and if the register specifier in question
IS non-zero, the data is forwarded from the appropriate pipeline register, giving pri-
ority to instructions in higher stages (instructions nearer in time to the current
instruction).

This module controls the operation of Mg, the mux responsible for the contents
of the OPERANDO field of the ID/EX register, and MUY, the mux responsible for
choosing between the rA and rC instruction fields for specifying the second register
operand. It also simplifies the logic for CELThe control module’s input is the
opcode of the instruction currently in the decode stage. Xhooses between
the sign-extended immediate value (to be used for ADDI, LW, SW, BEQ, and JALR
instructions) and the left-shifted immediate value (to be used for LUI instructions).
MUX 4, chooses rC for ADD and NAND instructions; it chooses rA for all others.
The control module simplifies the logic for CEby placing either rA or rC into the
ID/EX register'ss2field, so that, for BEQ and SW instructiors2in ID/EX contains

the appropriate bitss@ essentially latches the output of the MiXmultiplexer).
This arrangement simplifies CElby eliminating the need to look at both rA and rC
and choose, based on OP.

This module handles the load-use interlock, sets the register targetID/EX. Its

inputs are the opcode and register operand specifiers of the instruction currently in
the decode stage (held in the IF/ID register) and the opcode and target regjister

the instruction in the execute stage. If the instruction currently in the execute stage
(held in the ID/EX register) is a LW and targets any register that the instruction in
decode uses as a source register, a STALL event is created. The control module’s
outputs are théP, T, ands2 fields of the ID/EX register, and thBg,, signal,

which directs the PC and IF/ID pipeline registers to not latch new values on the next
cycle but to retain their values instead. On a pipeline stall, the instructions in the
fetch and decode stages are held up, and the rest of the instructions in the pipeline
are allowed to move ahead; to fill the created hole, a NOP instruction is placed in the
ID/EX register. This amounts to putting an ADD opcode with target register r0O into
the OP andrT fields of ID/EX. The module produces a value for tferegister in

ID/EX as follows: if the instruction in IF/ID is a type that targets the register file
(ADD, ADDI, NAND, LUI, LW, JALR), the value of rA is passed on to thi& regis-

ter. For SW and BEQ instructions, the binary value 000 is passed, indicating that the
instruction does not store a value in the register file (this works because r0 is a read-
only target).
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Control Signals

There are a number of control signals that change the direction and flow of data in the pipeline.
These are the signals that the various CONTROL modules export:

FUNC,,
MUXaju1

MUXaIuZ

MUXimm

MUXop0

MUXqut

MUX

pcC

MUXg

I:)stall

I:)stomp

This signal instructs the ALU to perform a given function.

This 2-bit signal controls the mux connected to the SRC1 input to the ALU. The
mux chooses between the OPERAND1 component of the ID/EX register and the
outputs of the previous three instructions, held in the EX/MEM, MEM/WB, and
WB/END pipeline registers.

This 2-bit signal controls the mux connected to the SRC2 input to the ALU. The
mux chooses between the OPERAND2 component of the ID/EX register and the
outputs of the previous three instructions, held in the EX/MEM, MEM/WB, and
WB/END pipeline registers.

This 2-bit signal controls the mux connected to the SRC2 ALU input. The mux
chooses between the register output, the immediate value, and the PC-based value.
The PC-based value is chosen for JALR instructions; the immediate value is chosen
for ADDI, LUI, LW, and SW instructions, and the register operand is chosen for all
others (ADD, NAND, BEQ).

This 1-bit signal controls the mux connected to the OPERANDO component of the
ID/EX register. The mux chooses between the sign-extended immediate value (to be
used for ADDI, LW, SW, and JALR instructions) and the left-shifted immediate
value (to be used for LUI instructions).

This 1-bit signal controls the mux connected to the RF WRITE DATA component of
the MEM/WB register, which holds the data to be written to the register file on the
following cycle (provided the write-enable bit of the register file is set). The mux
chooses between the output of the ALU and the output of the data memory (for LW
instructions).

This 2-bit signal controls the mux connected the PC. The mux chooses between the
output of the ALU’'s SRC1 multiplexer (to be used for JALR instructions), the
PC+1+OPERANDO adder in the execute stage (for instances of BEQ instructions
that are taken, or branch mispredicts if speculative execution is implemented), and
the output of the dedicated adder that produces the sum PC+1 every cycle.

This 1-bit signal controls the mux connected to the register file's SRC2 operand
specifier, a 3-bit signal that determines which of the registers will be read out onto
the 16-bit SRC2 data output port. The same signal is also latched in the ID/EX regis-
ter'ss2field. The mux chooses between the rA and rC fields of the instruction word:
rC is chosen for ADD and NAND instructions.

The pipeline stallsignal. This 1-bit signal indicates that the PC and IF/ID pipeline
registers should not latch new data on the next clock edge but instead retain their cur-
rent contents. The signal causes a pipeline stall event, during which the instructions
in the execute and later stages are allowed to move forward one stage, but the top-
most two instructions (in fetch and decode stages) are held back.

Thepipeline stomsignal. This 1-bit signal indicates that the IF/ID and ID/EX pipe-
line registers should not latch on the next clock edge but instead latch NOP instruc-
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tions. The signal is used to implement a branch-taken event (or branch-mispredict
event, if speculative execution is implemented), in which a branch (BEQ or JALR)
instruction in the execute stage changes the direction of control flow.

WE ¢ This 1-bit signal enables or disables the write port of the register file. If the signal is
high, the register file can write a result. If it is low, writing is blocked. It is high for
ADD, ADDI, NAND, LUI, LW, and JALR instructions.

WEgmem This 1-bit signal enables or disables the write port of the data memory. If the signal
is high, the data memory can write a result. If it is low, writing is blocked. It is high
for SW instructions.

Not Included

The design does not cover a number of issues involved in real-world implementations, including
data caches, instruction caches, data- and instruction-cache misses, support for precise interrupts,
or branch prediction more sophisticated thmadict-not-taker{which is what the design imple-
ments). However, pipeline interrupts are described in the next section.

To implement caches, it is necessary to create paths to memory and allow for the possibility that
the requested data or instruction word is not available (i.e. cache misses). For instruction cache
misses, it is not necessary to stall the entire pipeline, but for data caches it is. This is because an
instruction currently in the execute stage might be expecting a forwarding path to bring the most
recent data from the MEM/WB or WB/END pipeline registers—if these instructions are allowed

to continue down the pipeline while the instruction in the memory stage stalls for a data-cache
miss, the data to be forwarded will be lost to the instruction in the execute stage. It will be in the
register file, but the instruction in the execute stage (held in the ID/EX register) has already
accessed the register file in the previous stage.

More sophisticated branch prediction is possible, requiring a few simple things. First, the IF/ID
register needs a few extra bits holding branch-prediction state, incligtangchPredictorindex,
PredictedDirection, TakenDirectigras well as the 16-bitakenBranchTargett is important to

retain this information as well as the PC through to the execute stage so that either a taken branch
or a non-taken branch could be corrected if it is determined that either the choice of direction or
the target itself was a misprediction. Note that, if the target is not known at prediction time, it
might be that the direction predicted tsken but because the branch cannot actually be taken
without a predicted target, the prediction will be ignored. Also, note that the PC cannot be used
during the execute phase as the branch-predictor index (as it is during fetch). Thus, to update the
predictor’s saturating counter, it is necessary to retain the branch-predictor table index or indices
for this purpose.

Additional Logic

The Left-Shift-6 and Sign-Extend-7 logic components are identical to those described in the doc-
umentRiISC-16: Sequential ImplementatioBign-Extend-7 extends the sign of the immediate
value (as opposed to simply adding zeroes at the top) and in so doing produces a two’s comple-
ment number. It is used for ADDI, LW, SW, and BEQ instructions. Its logic looks like this:

Bitt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ simm-7 (-64 to 63) ‘

NERRENNEN

SRC2 OPERAND: ‘ ‘




ENEE 446: Digital Computer Design — The Pipelined RiSC-16

Left-Shift-6 is used for the LUI instruction and its logic looks like this:

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ imm-10 (0 to 1023) ‘
/// — |
S S e e

3. Support for Precise Interrupts

SRC1 OPERAND: ‘

Though the implementation of precise interrupts is not specified directly, the hooks are there,
largely by the fact that the program counter is preserved down the entire pipeline. There are at
least two possibilities for implementation:

1. Interrupts can be handled in much the same manner as STOMP logic: the program counter is
redirected, and a subset of the instructions in the pipe are wiped out. The only difference
would be that the subset of instructions to stomp would be determined dynamically. For
instance, if the interrupt is for an invalid opcode (not applicable in this instruction-set, but
good for an example), it can be determined in the decode stage—and instructions in the exe-
cute, memory, and writeback stages would be allowed to finish. If the interrupt is for some-
thing like divide-by-zero (also not applicable here), it would be determined in the execute
stage, and only instructions in the memory and writeback stages would be allowed to commit.
Instructions in the fetch and decode stages would be turned into NOPs. If the data-memory
access uses an invalid address, only the instruction in the writeback stage would be allowed to
commit. In addition, the implementation would need logic to resolve multiple simultaneous
interrupts, giving priority to those further down the pipe. This also implies that the PC of the
instruction must be carried down the pipe until the latest stage in which it is possible to cause
an interrupt (e.g. up to and including the memory-access stage).

2. Interrupts can be handled in much the same way as a system with a reorder buffer: at the time
of instruction commit. This means recognizing that an exceptional situation has occurred,
holding that information with the instruction state (i.e. in the pipeline registers), and acting on
it during the writeback stageenly in the writeback stage. Thus, in addition to extra fields in
the pipeline register to hold interrupt type, the MEM/WB register also needs a copy of the pro-
gram counter.

The primary differences between the two scenarios are simplicity and performance. The first
scheme acts upon exceptional conditions as soon as they are detected, thereby saving a few cycles
per interrupt, but it must also handle situations where an older instruction causes an iratiermnpt

a newer instruction causes its own. In this case, the pipeline would be in the process of handling
the newer instruction’s exception when the older instruction’s exception is detected. The pipeline
must abort the interrupt-handler-in-progress and redirect control to handle the exception that was
detected second but should be handled first (in program order). Thus, the first scheme requires a
bit more logic.

For more details on the transfer of control in exceptional situations, see the docRiS€ .6
System Architecture.
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