
Abstract
We present a memory-system architecture in which NAND 
flash is used as a byte-addressable main memory, and DRAM 
as a cache front-end for the flash. NAND flash has long been 
considered far too slow to be used in this way, yet we show 
that, with a large cache in front of it, NAND can come within 
a factor of two of DRAM’s performance. The memory-system 
architecture provides several features desirable in today’s 
large-scale systems, including built-in checkpointing via jour-
naled virtual memory, extremely large solid-state capacity (at 
least a terabyte of main memory per CPU socket),  cost-per-bit 
approaching that of NAND flash, and performance approach-
ing that of pure DRAM. It is also non-volatile. 

Introduction
Today’s main memory systems for datacenters, enterprise 
computing systems,  and supercomputers fail to provide high 
per-socket capacity [Ganesh et al.  2007; Cooper-Balis et al. 
2012], except at extremely high price points (for example, 
factors of 10–100x the cost/bit of consumer main-memory 
systems) [Stokes 2008]. The reason is that our choice of tech-
nology for today’s main memory systems—i.e., DRAM, 
which we have used as a main-memory technology since the 
1970s [Jacob et al. 2007]—can no longer keep up with our 
needs for density and price per bit.  Main memory systems 
have always been built from the cheapest, densest, lowest-
power memory technology available, and DRAM is no longer 
the cheapest, the densest, nor the lowest-power storage tech-
nology out there.  It is now time for DRAM to go the way that 
SRAM went, many years ago: move out of the way and allow 
a cheaper, slower, denser storage technology to be used as 
main memory … and instead become a cache.

This inflection point has happened before, in the context of 
SRAM yielding to DRAM. There was once a time that SRAM 
was the storage technology of choice for all main memories 
[Tomasulo 1967; Thornton 1970; Kidder 1981]. However, 
once DRAM hit volume production in the 1970s and 80s, it 
supplanted SRAM as a main memory technology because it 
was cheaper,  and it was denser. It also happened to be lower 
power, but that was not the primary consideration of the day. 
At the time, it was recognized that DRAM was much slower 
than SRAM, but it was only at the supercomputer level (for 
instance the Cray X-MP in the 1980s and its follow-on,  the 
Cray Y-MP, in the 1990s) that could one afford to build ever-
larger main memories out of SRAM—the reasoning for mov-
ing to DRAM was that an appropriately designed memory 
hierarchy, built of DRAM as main memory and SRAM as a 
cache, would approach the performance of SRAM, at the 

price-per-bit of DRAM [Mashey 1999]. Today it is quite clear 
that,  were one to build an entire multi-gigabyte main memory 
out of SRAM instead of DRAM, one could improve the per-
formance of almost any computer system by up to an order of 
magnitude—but this option is not even considered, because to 
build that system would be prohibitively expensive. 

It is now time to revisit the same design choice in the con-
text of modern technologies and modern systems. For reasons 
both technical and economic, we can no longer afford to build 
ever-larger main memory systems out of DRAM. Flash mem-
ory, on the other hand, is significantly cheaper and denser than 
DRAM and therefore should take its place. While it is true 
that flash is significantly slower than DRAM, one can afford 
to build much larger main memories out of flash than out of 
DRAM, and we will show that an appropriately designed 
memory hierarchy, built of flash as main memory and DRAM 
as a cache, will approach the performance of DRAM, at the 
price-per-bit of flash. 

This paper introduces Non-Volatile Main Memory (NVMM), 
pictured above. NVMM is a new main-memory architecture 
for large-scale computing systems, one that is specifically 
designed to address the weaknesses described previously. In 
particular, it provides the following features:
non-volatility: The bulk of the storage is comprised of 

NAND flash, and in this organization DRAM is used only 
as a cache, not as main memory. Furthermore, the flash is 
journaled, which means that operations such as 
checkpoint/restore are already built into the system.

1+ terabytes of storage per socket: SSDs and DRAM 
DIMMs have roughly the same form factor (several square 
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inches of PCB surface area), and terabyte SSDs are now 
commonplace.

performance approaching that of DRAM: DRAM is used 
as a cache to the flash system. 

price-per-bit approaching that of NAND: Flash is cur-
rently well under $0.50 per gigabyte; DDR3 SDRAM is 
currently just over $10 per gigabyte [Newegg 2014].

Even today, one can build an easily affordable main memory 
system with a terabyte or more of NAND storage per CPU 
socket (which would be extremely expensive were one to use 
DRAM), and our cycle-accurate, full-system experiments 
show that this can be done at a performance point that lies 
within a factor of two of DRAM.

Background and Related Work
The most relevant comparisons are to existing computer sys-
tems such as enterprise computing systems that use SSD ar-
chitectures as their back-end I/O subsystem, and other studies 
involving non-volatile main memories.

Solid-State Disk Architectures and Operation
A block diagram of a system using typical flash-based solid 
state drive is shown in the figure below.

The system consists of three main components: host interface, 
an SSD controller, and a set of NAND flash devices.  The host 
interface is typically SATA or PCIe—for instance, the high 
performance SSDs produced by Fusion IO [Fusion IO 2012], 
OCZ [OCZ Technology 2012], and Intel [Intel 2012] all util-
ize between 4 and 16 PCIe lanes. Due to the design of cur-
rently available flash controllers, some of these drives still 
utilize sets of SATA SSD controllers internally in a parallel 
RAID 0-style configuration to achieve higher bandwidth; the 
NVM Express standard will enable pure PCIe SSD controllers 
in future products. The SSD controller performs tasks such as 
memory mapping, garbage collection, wear leveling, error 
correction,  and access scheduling.  It also typically has a small 
amount of SRAM or DRAM to cache metadata and to buffer 
writes [Marvell 2012].

To achieve high throughput,  SSDs leverage multiple NAND 
flash devices organized into parallel channels with multiple 
devices per channel. Internally,  the NAND devices are organ-
ized into planes, blocks, and pages. Planes are functionally 
independent units that allow for concurrent operations on the 
device. Each plane has a set of registers that allow for inter-
leaved accesses and provide access to a number of blocks,  the 
physical granularity at which erase operations occur. Each 

storage media of the time and this was not the bottleneck in
the applications that utilized it. However, as flash has taken
on a new role with the introduction of SSDs, its transfer times
matter more.

One major problem with flash devices was that each manu-
facturer had their own interface standard. This problem made
designing SSD hardware difficult and expensive as it had to
be tailored to a specific manufacturer’s standard. To foster
easier integration of flash devices and drive SSD adoption, the
NAND flash industry developed the ONFi 1.0 standard [3].

Another problem with flash devices is that the array of flash
cells within the chip are actually capable of producing data at
a rate of 330 MB/s without any modifications [13]. Realizing
that the asynchronous interface was the primary bottleneck in
flash performance, manufacturers have developed synchronous
standards such as the 200 MB/s ONFi 2.1. These new stan-
dards enable much faster transfers of data by running at faster
frequencies than was possible with an asynchronous approach.
The latest ONFi 3.0 standard is capable of bandwidths up
to 400 MB/s. Therefore, the full bandwidth potential of the
flash array will soon be utilized to provide faster data transfers
and improve overall performance when accessing flash. As
a result of this additional bandwidth, the host interface and
software need to evolve in order to fully expose the improved
performance of the flash devices.

3. Hybrid Main Memory Overview

3.1. Current State of the Art - SSD Design

A block diagram of a typical flash-based solid state drive is
shown in Figure 1. The system consists of three main compo-
nents: host interface, an SSD controller, and a set of NAND
flash devices. The host interface is typically SATA, although
recently PCIe interfaces have become available for enterprise
applications. The SSD controller is the core of the system and
creates the abstractions necessary for utilizing NAND flash
devices in such a way that creates a useful storage system. It
performs tasks such as memory mapping, garbage collection,
wear leveling, error correction, and access scheduling. The
SSD controller also typically has a small amount of memory
either in the form of SRAM or DRAM to cache metadata and
buffer writes [6].

The NAND flash devices are where the data is stored on the
drive. SSDs leverage multiple devices to achieve high through-
put. These are typically organized into parallel channels with
one or more devices per channel. Internally, the NAND de-
vices are organized into planes, blocks, and pages. Planes are
functionally independent units that allow for concurrent opera-
tions on the device. Each plane has a set of registers that allow
for interleaved accesses. Blocks form the physical granularity
at which erase operations occur. Finally, each block consists
of multiple pages, which are the physical granularity at which
read and write operations occur.

In terms of the computer system performance, the delay for
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Figure 1: System design for SSD (top) and hybrid memory
(bottom).

an operation to a solid state drive starts when the user appli-
cation issues a request for some data that triggers a page fault
and ends when the operating system returns control to the user
application after the request has completed. At the hardware
level, the SSD controller receives an access for a particular
address and then later the controller raises an interrupt request
(IRQ) on the CPU to tell the operating system the data is ready.
A typical access to an SSD is shown in Figure 2. The time
from point B to point C is the amount of time needed for the
disk to process the request. The time from point A to point D
is the total amount of time spent waiting for the request from
the perspective of the application that made the request.

Figure 2: Hardware and software process for servicing a disk
request.

There are many intermediate software and hardware layers
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System Design for SSD. Typical systems today (e.g. based on Intel’s i7) 
use DRAM as main memory and an SSD with a SATA or PCIe interface, 
both of which have controllers integrated onto the CPU.

block consists of multiple pages, which are the physical 
granularity at which read and write operations occur.

Early NAND flash chips used an asynchronous interface 
that ran at speeds in the tens of MB/s. These early interfaces 
were acceptable for many years, as the access latency of flash 
was still faster than other external storage media of the time, 
and the bandwidth was not the bottleneck in the applications 
that utilized flash [Dirik & Jacob 2009]. However, as flash has 
been used increasingly in high-performance systems, its trans-
fer times matter more. Noting that the array of flash cells 
within the chip are actually capable of producing data at a rate 
of 330 MB/s without any modifications [Cooke 2009], manu-
facturers have developed synchronous DDR standards for 
NAND flash’s external interface—for instance, the latest 
ONFI standard is capable of bandwidths up to 400 MB/s [Intel 
et al. 2013].

As shown in the figure above, there are many intermediate 
software and hardware layers involved in an SSD access. The 
software side on a Linux-based system includes the virtual 
memory system, the virtual file system, the specific file sys-
tem for the partition that holds the data (e.g. NTFS or ext3), 
the block device driver for the disk,  and the device driver for 
the host interface such as the Advanced Host Interface Con-
troller (AHCI) for Serial ATA (SATA) drives [Bovet & Cesati 
2005]. At the hardware level,  the interfaces involved include 
the host interface to the drive, the direct memory access 
(DMA) engine, and the SSD internals.  When the host inter-
face is SATA, it resides on the southbridge, which means that 
the request must first cross the Intel Direct Media Interface 
(DMI) or equivalent before crossing the SATA interface. 
However,  higher performance systems (and our model for this 
paper) assumes the pure PCIe 3.0 NVM Express interface, 
using 16 lanes, which brings the performance to an enterprise-
class solid state drive. The DMA engine accesses memory on 
behalf of the disk controller without requiring the CPU to 
perform any actions. A DMA read operation must happen be-
fore an SSD write, and a DMA write operation must happen 
after an SSD read.

In terms of memory-system performance, the metric that 
NVMM targets, an access delay to a solid state drive begins 

storage media of the time and this was not the bottleneck in
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on a new role with the introduction of SSDs, its transfer times
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creates the abstractions necessary for utilizing NAND flash
devices in such a way that creates a useful storage system. It
performs tasks such as memory mapping, garbage collection,
wear leveling, error correction, and access scheduling. The
SSD controller also typically has a small amount of memory
either in the form of SRAM or DRAM to cache metadata and
buffer writes [6].

The NAND flash devices are where the data is stored on the
drive. SSDs leverage multiple devices to achieve high through-
put. These are typically organized into parallel channels with
one or more devices per channel. Internally, the NAND de-
vices are organized into planes, blocks, and pages. Planes are
functionally independent units that allow for concurrent opera-
tions on the device. Each plane has a set of registers that allow
for interleaved accesses. Blocks form the physical granularity
at which erase operations occur. Finally, each block consists
of multiple pages, which are the physical granularity at which
read and write operations occur.

In terms of the computer system performance, the delay for

Figure 1: System design for SSD (top) and hybrid memory
(bottom).

an operation to a solid state drive starts when the user appli-
cation issues a request for some data that triggers a page fault
and ends when the operating system returns control to the user
application after the request has completed. At the hardware
level, the SSD controller receives an access for a particular
address and then later the controller raises an interrupt request
(IRQ) on the CPU to tell the operating system the data is ready.
A typical access to an SSD is shown in Figure 2. The time
from point B to point C is the amount of time needed for the
disk to process the request. The time from point A to point D
is the total amount of time spent waiting for the request from
the perspective of the application that made the request.
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Hardware and Software Involved in Servicing SSD Request. A single 
I/O request moves through multiple layers of both software and hardware.
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when the user application issues a request for data that triggers 
a page fault; it ends when the operating system returns control 
to the user application after the request has completed. At the 
hardware level, the SSD controller receives an access for a 
particular address and then later the controller raises an inter-
rupt request (IRQ) on the CPU to tell the operating system the 
data is ready. A typical access to an SSD, behavior that our 
experiments capture in its entirety, is shown in the figure be-
low (figure (a)). 

In Step 1, the application generates a request to the virtual 
memory system. Step 2 represents a page miss; here the vir-
tual memory system selects and evicts a virtual page from the 
main memory. The virtual memory system also passes the 
requested virtual page to the I/O system. During Step 3 the I/
O system generates a request for the SSD. This request is then 
sent to the PCIe root complex, which directs the request to the 
SSD in Step 4. To specify which virtual page to bring in from 
the SSD, the OS sends the SSD controller a logical block ad-
dress. The SSD uses that logical block address to determine 
the physical location of the virtual page associated with that 
address and issues a request to the device or devices that con-
tain that virtual page (in enterprise SSDs, page data is typi-
cally striped in a RAID manner across multiple flash devices 
to increase both performance and reliability). For the virtual 
page that is evicted from the main memory, the SSD allocates 
a new physical page slot and issues a write to the appropriate 
device. This occurs between Steps 4 and 5. After the SSD 
handles the request, it sends the data back to the CPU via the 
PCIe root complex,  Step 5. The PCIe root complex the passes 
the data to the main memory system where it is written, in 
Step 6. Once the write is complete, the PCIe root complex 
raises an interrupt alerting the OS scheduler that an applica-
tion’s request is complete. This is Step 7. Finally,  during 
Step 8, the application resumes, reissues its request to the vir-
tual memory system, and generates a page hit for the data.

In NVMM, the flash-based backing store is presented to the 
OS virtual memory manager as the entire physical memory 
address space—i.e., it appears to the OS that the computer’s 
main memory is the size of the flash backing store (terabytes 
instead of gigabytes). The actual DRAM physical address 
space is hidden from the OS and is managed by the memory 
controller as a cache. Together,  the flash-based backing store 
and DRAM cache form a hybrid memory that is NVMM. Ac-
cesses to NVMM have the same granularity as a typical main 
memory system today: i.e., 64 bytes per access. The cache 
lines in the DRAM cache have a much larger granularity to 
match the read/write access granularity NAND flash, typically 
4KB, 8KB, or 16KB. 
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Figure 2: Comparison of the steps involved in servicing a miss of the DRAM for both the SSD (a) and Hybrid (b) organizations.

Figure 3: Comparison of the address spaces involved in the SSD (a) and Hybrid (b) organizations.

request. During step 2, the hybrid memory controller queries
its tag database to determine if a particular cache line is present
in the DRAM cache. If the cache line is present in the DRAM
cache, then the access is serviced by the DRAM as a normal
main memory access (not shown in Figure 2-b.). When an
access misses the DRAM cache, the hybrid controller selects
a page in the DRAM to evict and schedules a write-back if
the page is dirty. In the current implementation of our hybrid
memory controller, a least recently used (LRU) algorithm is
used to determine which page to evict. The missed page is
then read in from the flash backing store and placed in the
DRAM. This is step 3. The hybrid memory controller can also
prefetch additional pages into the DRAM or write back cold
dirty pages preemptively, similar to how the virtual memory
memory works, to further improve read performance. Cur-
rently, our system implements sequential prefetching. More
complex prefetching schemes such as stream buffers, stride

prefetching, and application directed prefetching are also com-
patible with this design. Step 4 is the backing store handling
the request. This step involves translating the memory address
for the request from the Hybrid memory controller into the
physical address of that data in the backing store. After the
physical location of the requested data has been determined,
a read command is issued to the approriate device and the
resulting data is returned. Once the data has been received
from the backing store the hybrid controller passes the data
to the application, step 5. Finally, during step 6 the data is
written into DRAM from the Hybrid memory controller.

2.3. Access Scheduling

The I/O scheduler of the OS utilizes one of several scheduling
algorithms to prioritize certain accesses over others in order
to maximize performance while maintaining fairness between
threads. In Linux, these algorithms include completely fair
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Access to SSDs and NVMM. Steps to access an SSD are shown on the 
left; steps involved in an NVMM access are shown on the right.

The previous figure shows the access process for NVMM 
(figure (b)).  In Step 1 the application generates a request to the 
virtual memory system. In Step 2, NVMM’s “hybrid” mem-
ory controller performs a lookup to determine if a particular 
cache line is present in the DRAM cache. If the cache line is 
present in the DRAM cache, then the access is serviced by the 
DRAM as a normal main memory access (not shown in the 
figure).  When an access misses the DRAM cache, the control-
ler selects a page to evict from the DRAM cache and performs 
a write-back to the flash subsystem if the page is dirty, Step 3. 
The missed page is then read in from the flash backing store 
and placed in the DRAM, Step 4. This involves translating the 
address for the request into the physical address of the data in 
the backing store (e.g., flash channel, device, plane, row, and 
page). A read command is issued to the appropriate flash de-
vice, and the resulting data is returned. The controller can also 
prefetch additional pages into the DRAM or write back cold 
dirty pages preemptively, similar to how current virtual mem-
ory systems work, to further improve read performance. Once 
the data has been received, the controller passes the requested 
data at a 64B granularity to the application, in Step 5. Finally, 
during Step 6 the page read from the flash subsystem is writ-
ten into the previously emptied DRAM cache block.

SSD Optimizations and Non-Volatile Main Memories
A number of similar projects exist that have modified the 
software interface to solid state drives by polling the disk con-
troller rather than utilizing an IO interrupt to indicate when a 
request completes [Yang et al. 2012; Foong et al.  2010; Caul-
field et al. 2010]. This is similar to our design in that it elimi-
nates interrupts, but it still requires polling on the CPU side. 

Another way to redesign the OS to work with SSDs is to 
build persistent object stores. These designs require careful 
management at the user and/or system level to prevent prob-
lems such as dangling pointers and to deal with allocation, 
garbage collection, and other issues. SSDAlloc [Badam & Pai 
2011] builds persistent objects for boosting the performance 
of flash-based SSDs, particularly the high end PCIe Fusion-IO 
drives [Fusion IO 2012]. NV-Heaps [Coburn et al.  2011] is a 
similar system designed to work with upcoming byte-
addressable non-volatile memories such as phase change 
memory. 

Other work describes file system approaches for managing 
non-volatile memory. One example is a file system for manag-
ing hybrid main memories [Mogul et al.  2009]. Another pro-
posed file system is optimized for byte-addressable and low 
latency non-volatile memories (e.g.  phase change memory) 
using a technique called short-circuit shadow paging [Condit 
et al. 2009].

Over the past few years, a significant amount of work has 
also been put into designing architectures that can effectively 
use PCM to replace or reduce the amount of DRAM needed 
by systems [Qureshi et al.  2009; Lee et al.  2009; Ferreira et 
al.  2010]. Some of the architectures that have been suggested 
for use with PCM are similar to our storage system design in 
that they also utilize the DRAM as a cache that is managed by 
the memory controller [Qureshi et al. 2009].  However, our 
work differs from these approaches in that our design only 
utilizes existing technologies and does not assume a low-
latency DRAM replacement (PCM, unlike flash, has access 
times comparable to DRAM).
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In 1994, eNVy was proposed as a way to increase the size 
of the main memory by pairing a NOR flash backing store 
with a DRAM cache [Wu & Zwaenepoel 1994]. This design is 
actually very similar to both our hybrid architecture and the 
hybrid PCM architectures,  except that it utilizes NOR flash as 
its non-volatile backing store technology,  which at the time 
had access time extremely close to that of DRAM. In addition, 
a very similar architecture was also proposed by FlashCache 
which utilized a small DRAM caching a larger NAND flash 
system [Kgil & Mudge 2006]. However, it is engineered to 
focus on low power consumption and to act as a file system 
buffer cache for web servers,  which means the performance 
requirements are significantly different than the more general 
purpose merged storage and memory in our system. In 2009, a 
follow-up paper to FlashCache proposed essentially the same 
design with the same goals using PCM [Roberts et al. 2009].

There have also been several industry solutions that address 
the problem of the backing store bottleneck [Oracle 2010; 
OCZ 2012; Fusion IO 2012; Spansion 2008; Tom's Hardware 
2012]. These solutions tend to fall in one of three categories: 
software acceleration for SSDs,  PCIe SSDs, and Non-Volatile 
DIMMs. Recently, several companies including Oracle have 
released software to improve the access times to SSDs by 
treating the SSD differently than a traditional hard disk [Ora-
cle 2010]. This approach is similar to ours in that it recognizes 
that flash should be used as an additional storage system tier 
between the DRAM and hard disks. However, our approach 
consists of hardware and organizational optimizations rather 
than software optimizations. Similarly, Samsung recently re-
leased a file system for use with its SSDs that takes into ac-
count factors such as garbage collection which can affect ac-
cess latency and performance. Our work differs in that it is 
trying to provide a better interface to access the flash for main 
memory, rather than improving just the file system.

For several years, companies such as Fusion IO [Fusion IO 
2012], OCZ [OCZ 2012],  and Intel [Intel 2012] have been 
producing SSDs that utilize the PCIe bus for communication 
rather than the traditional SATA bus. This additional channel 
bandwidth allows for much better overall system performance 
by alleviating one of the traditional storage system bottle-
necks. Our solution draws upon these designs in that it also 
provides considerable bandwidth to the flash in an effort to 
eliminate the bandwidth bottleneck between the CPU and the 
backing store.

Finally, in 2008 Spansion proposed EcoRAM which was a 
flash based DRAM replacement [Spansion 2008; InsideHPC 
2009]. Like our solution, EcoRAM allowed the flash to inter-
face directly with a special memory controller over the fast 
channel. However, EcoRAM utilized non-standard proprietary 
flash parts to construct its DIMMs and it was meant to be pin-
compatible with existing DRAM-based memory channels. 

Nonvolatile Main Memory System Architecture
As shown in the figure below, NVMM uses a DRAM cache, 
comprised entirely of DRAM (tags are held in DRAM, not in 
SRAM), and the main memory, comprised of a large number 
of flash channels—each of which contains numerous inde-
pendent, concurrently operative banks. The controller acts as 
the flash translation layer [Dirik & Jacob 2009] for the collec-
tion of flash devices, and it uses a dedicated mapping block to 
hold the translation information for the flash storage while 

running—this mapping information is in effect the system’s 
virtual page table. Just as in SSDs, the mapping information is 
kept permanently in flash and is cached in a dedicated DRAM 
while the system is running. 

Also just as is done in an SSD, NVMM extends its effective 
write lifetime by spreading writes out across numerous flash 
chips.  As individual pages wear out, they are removed from 
the system (marked by the flash controller as bad), and the 
usable storage per flash chip decreases. Pages within a flash 
device obey a distribution curve with respect to their write 
lifetimes—some pages wear out quickly, while others can 
withstand many times the number of writes before they wear 
out [Micron 2014].  With a DRAM cache of 32GB and a mod-
erate to light application load, a flash system comprised of but 
a single 8Gb device would lose half its storage capacity to the 
removal of bad pages in just under two days and would wear 
out completely in three.  Thus,  a 1TB flash system comprised 
of 1,000 8Gb devices (or an equivalent amount of storage in a 
denser technology point) would lose half its capacity in two to 
three years and would wear out completely in four to five.

The DRAM cache uses blocks that are very large, to ac-
commodate the large pages used in NAND flash.  It is also 
highly banked, using multiple DRAM channels, each with 
multiple ranks, so as to provide high sustained bandwidth for 
requests—both requests from the client processor and requests 
to fill cache blocks with data arriving from the (also highly 
banked and multi-channel) flash subsystem.

Every logical flash page in the address space of the non-
volatile memory is mapped into a cache set in the DRAM 
system using an LRU replacement policy. The tag store for the 
cache is located in the DRAM subsystem connected to the 
controller. The controller also contains a small TLB-like 
memory to cache mappings currently in use,  and in our ex-
periments we simulated the servicing that is required when 
this cache experiences a miss. 

As indicated in the figure, the non-volatile subsystem is 
comprised of numerous 8-bit ONFI channels (plus command 
signals), each with multiple volumes (logically equivalent to 
DRAM ranks). Flash devices are organized into packages, 
dies and planes. Packages are the organization level that is 
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NVMM Organization. The CPU connects through a high-bandwidth inter-
face to the NVMM hybrid DRAM/flash controller—this device controls both 
a large, last-level cache made from DRAM, and the flash subsystem. The 
NVMM controller maintains the flash mapping information in a dedicated 
DRAM while operating. When the system is powered down, the mapping 
information is stored into a dedicated flash location.
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connected to the 8 bit interface of the device. That interface is 
then shared by one or more dies that are internal to the pack-
age.  Those dies are in turn made up of one or planes, and the 
planes of the flash device actually perform the access opera-
tions. To enable better performance, the planes on most flash 
devices feature two registers which allow for the interleaving 
of reads and writes. One register can contain incoming read or 
write data while the other holds the data currently being used 
by the plane. In this way the transfer time of the 8 bit flash 
interface can be somewhat hidden. To take advantage of these 
interleaving registers, the controller needs to schedule opera-
tions appropriately. The flash controller in NVMM accom-
plishes this by giving commands priority over return data on 
the package interface. This ensures that a plane can begin 
working on its next access while simultaneously sending back 
the data from its last access. Alternatively, the return data us-
ing the interface would prevent the command from being sent, 
and the plane would sit idle during the data transmission.

The I/O scheduler of the OS uses several scheduling algo-
rithms to prioritize certain accesses over others, to maximize 
performance while maintaining fairness between threads. In 
Linux, these algorithms include completely fair queuing (the 
default), deadline, first come first serve, and anticipatory.  The 
SSD controller then handles the scheduling for the addresses 
via the Native Command Queuing protocol,  which enables the 
OS to send multiple outstanding requests to the SSD. The 
scheduling algorithms used by the SSD controller attempt to 
balance the concerns for high throughput, efficient request 
merging, load balancing among individual flash devices, wea-
rout, and low latency reads.

In addition,  to fully utilize the die parallelism of the backing 
store, the backing store flash controller has two layers of 
queues: the flash translation layer (FTL) queue and the die 
queues. The flash translation layer queue holds incoming ac-
cesses until the FTL is able to convert the flash logical address 
into the flash physical address. The die queues are then used 
to manage flow control at the die level. The bulk of on chip 
memory in the controller is devoted to the die queues with 
only a small amount devoted to the FTL master queue. This is 
because, relative to normal flash operations, the translation 
step incurs a very low latency.  Also, because the FTL queue is 
used to feed commands to many flash devices, it is a potential 
source of delay for the entire system. If the command at the 
head of the FTL queue cannot be added to its appropriate die 
queue, then no other commands in the FTL queue can proceed 
until a space has opened up for that particular die. Allowing 
for longer die queues reduces the probability that this event 
will occur. Queue reordering could also be used to address the 
queue delay problem by allowing commands to jump past the 
command which cannot be currently accommodated in the 
appropriate die queue. However, this is only useful if enough 
commands are being issued to just one die. In most situations 
queues of only a few entries deep are enough to prevent most 
queuing delays. In this work, most of the workloads did not 
generate enough traffic to fill the die queues.

Software Interface
The main memory system is non-volatile and journaled. Flash 
memories do not allow write-in-place,  and so to over-write a 
page one must actually write the new values to a new page. 
Thus,  the previously written values are held in a flash device 

until explicitly deleted—this is the way that all flash devices 
work. NVMM exploits this behavior by retaining the most 
recently written values in a journal, preferring to discard the 
oldest values first, instead of immediately marking the old 
page as invalid and deleting its block as soon as possible. 

The system exports its address space as both a physical 
space (using flash page numbers) and as a virtual space (using 
byte-addressable addresses). Thus, a system can choose to use 
either organization, as best suits the application software. This 
means that software can be written to use a 64-bit virtual ad-
dress space that matches exactly the addresses used by 
NVMM to keep track of its pages. The following figure illus-
trates the address format, indicating its role in multiprocessor 
systems. Note that the bottom page-offset bits are only used in 
the access of the DRAM cache and are thus ignored when the 
controller is accessing the flash devices. Two controller ID 
values are special: all 0s and all 1s, which are interpreted to 
mean local addresses—i.e., these addresses are not forwarded 
on to other controllers.

This organization allows compilers and operating systems 
either to use this 64-bit address space directly as a virtual 
space, i.e. write applications to use these addresses in their 
load/store instructions, or to use this 64-bit space as a physical 
space, onto which the virtual addresses are mapped. Moreo-
ver, if this space is used directly for virtual addresses, it can 
either be used as a Single Address Space Operating System 
organization [Chase et al. 1993; 1994], in which software on 
any CPU can in theory reference directly any data anywhere 
in the system, or as a set of individual main-memory spaces in 
which each CPU socket is tied only to its own controller.

NVMM exports a modified load/store interface to applica-
tion software, including a handful of additional mechanisms to 
handle non-volatility and journaling. In particular,  it imple-
ments the following functions:
alloc. Equivalent to malloc() in a Unix system—allows a 

client to request a page from the system. The client is 
given an address in return, a pointer to the first byte of the 
allocated page, or an indication that the allocation failed. 
The function takes an optional Controller ID as an argu-
ment, which causes the allocated page to be located on the 
specified controller. This latter argument is the mechanism 
used to create address sets that should exhibit sequential 
consistency, by locating them onto the same controller. 

read. Equivalent to a load instruction. Takes an address as 
an argument and returns a value into the register file. 
Reading an as-yet-un-alloc’ed page is not an error, if the 

Controller ID Byte in Page Virtual Page Number

20 bits = 1M IDs 16 bits = 64KB28 bits = 256M pages

44 bits = 16TB managed per controller

48 bits = up to 256 trillion pages system-wide

NVMM Virtual Address. The NVMM architecture uses a 64-bit address, 
which allows the address to be used by a CPU’s virtual memory system 
directly, if so desired. The top 20 bits specify a home controller for each 
page, supporting up to 1M separate controllers. Each controller can man-
age up to 16TB of virtual storage, in addition to several times that of ver-
sioned storage. 64KB pages are used, which is independent of the under-
lying flash page size.
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page is determined by the operating system to be within 
the thread’s address space and readable. If it is, then the 
page is created, and non-defined values are returned to the 
requesting thread. 

write. Equivalent to a store instruction. Takes an address and 
a datum as arguments. Writing an as-yet-un-alloc’ed page 
is not an error, if the page is determined by the operating 
system to be within the thread’s address space and writa-
ble. If it is, then the page is created, and the specified data 
is written to it.

delete. Immediately deletes the given flash page from the 
system, provided the calling application has the correct 
permissions.

setperms. Sets permissions for the identified page. Among 
other things, this can be used to indicate that a given tem-
porary flash page should become permanent, or a given 
permanent flash page should become temporary. Note that, 
by default, non-permanent pages are garbage-collected 
upon termination of the creating application. If a page is 
changed from permanent to temporary, it will be garbage-
collected upon termination of the calling application.

sync. Flushes dirty cached data from all pages out to flash. 
Returns a time token representing the system state [Lam-
port 1978].

rollback. Takes an argument of a time token received from 
the sync function and restores system state to the indicated 
point.

The sync/rollback mechanism allows for long-running appli-
cations to perform checkpointing without having to explicitly 
move application data to permanent store, and without having 
to overwrite data that is already there, as the sync only flushes 
dirty data from the DRAM cache.

Page Table Organization for NAND Main Memory
When handling the virtual mapping issues for a flash-based 
main memory system, there are several things that differ dra-
matically from a traditional DRAM-based main memory. 
Among them are the following:
• The Virtual Page Number 

that the flash system exports 
is smaller than the physical 
space that backs it up. In 
other words, traditional vir-
tual memory systems use 
main memory as a cache for a 
larger virtual space, so the 
physical space is smaller than 
the virtual space. In NVMM, 
because flash pages cannot be 
overwritten, and we use this 
fact to keep previous versions 
of all main memory data, the 
physical size is actually 
larger than the virtual space.

• Because the internal organi-
zation of the latest flash de-
vices changes over time—in 
particular, block sizes and 
page sizes are increasing with 

newer generations—one must choose a virtual page size 
that is independent of the underlying physical flash page 
size. So, in this section, unless otherwise indicated, “page” 
means a virtual-memory page managed by NVMM.

The NVMM flash controller requires a page table that maps 
pages from the virtual address space to the physical device 
space and also keeps track of previously written page data. We 
use a direct table that is kept in flash but is cached in a dedi-
cated DRAM table while the system is operating. Each entry 
of the page table contains the following data:

34 bits Flash Page Mapping (channel, device, block, & starting page)

30 bits Previous Mapping Index—pointer to entry within page table

32 bits Bit Vector—Sub-Page Valid Bits (Remapping Indicators)

24 bits Time Written

8 bits Page-Level Status & Permissions

16 Bytes Total Size

The Flash Page Mapping locates the virtual page within the 
set of physical flash-memory channels. A page must reside in 
a single flash block, but it need not reside in contiguous pages 
within that block.

The Previous Mapping Index  points to the table entry con-
taining the mapping for the previously written page data. The 
Time Written value keeps track of the data’s age, for use in 
garbage-collection schemes.

The Sub-Page Valid Bits bit vector allows the data for a 
64KB page to be mapped across multiple page versions writ-
ten at different times. It also allows for pages within the flash 
block to wear out. This is described in detail later.

The Virtual Page Number is used directly as an index into 
the table, and the located entry contains the mapping for the 
most recently written data. As pages are overwritten, the old 
mapping info is moved to other free locations in the table, 
maintaining a linked list, and the indexed entry is always the 
head of the list. The figure below illustrates.

When new data is written to an existing virtual page, in 
most cases flash memory requires the data written to a new 
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Table State 
After Page 
Modification

Mapping for 0x1234ABCD, v2

Mapping for 0x1234ABCD, v1

Mapping for 0x1234ABCD, v3

VPN 0x123ABCD

28-bit index

256M table entries
28-bit VPN is an index into 

the bottom 256M table 
entries, which require 4GB 
of storage. The rest of the 

table holds mapping 
entries for previously 

written versions of pages.

…

Free Space
Topmost entries of table 

hold mappings for previous 
versions of pages.

Mapping for 0x1234ABCD, v2

Mapping for 0x1234ABCD, v1

Mapping for 0x1234ABCD, v4

Mapping for 0x1234ABCD, v3

…

NVMM Page Table. NVMM uses a direct-mapped table and stores mappings for previously written pages as well 
as the most recent. Each VPN is a unique index and references the page’s primary entry; if older versions of a 
page exist, the primary entry points to them. When the primary mapping is overwritten, its old data is copied to an 
empty entry in the table, and this new entry is linked into the version chain.



physical page. This will be found on the free list maintained 
by the flash controller (identical to the operation currently 
performed by a flash controller in an SSD), and this operation 
will create new mapping information for the page data.  This 
mapping information must be placed into the table entry for 
the virtual page. Instead of deleting or overwriting the old 
mapping information, the NVMM page table keeps the old 
information in the topmost portion of the table, which cannot 
be indexed by the virtual page number (which would other-
wise expose the old pages directly to application software via 
normal virtual addresses). When new mapping data is inserted 
into the table, it goes to the indexed entry, and the previous 
entry is merely copied to an unused slot in the table. Note that 
the pointer value in the old entry is still valid even after it is 
copied. The indexed entry is then updated to point to the pre-
vious entry. The Previous Mapping Index is 30 bits, for a 
maximum table size of 1B entries,  meaning that it can hold 
three previous versions for every single virtual page in the 
system. The following pseudo-code indicates the steps per-
formed when updating the table on a write-update to an 
already-mapped block:
existing mapping entry is at index VPN

find a new, available entry E in top section of table

copy existing mapping from entry #VPN into entry #E
 i.e., table[E] <- table[VPN]

write "E" into table[VPN].previousMappingIndex

find free page N in flash system 
 (where N={chan|volume|LUN|block|page})

write dirty data from 64K page to flash pages N..N+7
 at 8K granularity

table[VPN].flashPageMapping = N

table[VPN].bitVector = set to indicate 
 which 8K chunks were written (as data from all  
 other chunks are in previously written pages)

table[VPN].timeWritten = now()

The Virtual Page Size is 64KB, and pages are written to flash 
at the granularity dictated by the flash device (the examples 
use 8KB, but it could also be 4KB or 16KB accordingly).  The 
8KB sections are called page segments, with eight such seg-
ments per 64KB page. 

Use of the Bit Vector’s Sub-Page Valid Bits
The fact that the page segments are 8KB, within a 64KB page, 
would suggest a Bit Vector of 8 bits, but the Bit Vector data 
structure shown above in the page table entry is 32 bits, not 8. 
This is chosen to support multiple features: it keeps track of 
data even if there are worn-out pages in the flash block, and it 
allows for page data to be spread out across multiple flash 
blocks, so as to avoid re-writing non-dirty data. 

If all the data in a Virtual Page is in the cache and is dirty—
for example, say this is the first time that the Virtual Page is 
written—then all 64KB would be written to eight consecutive 
flash pages in the same flash block, and the first 8 bits of the 
Bit Vector area would be set to “1,” the remaining 24 set to a 
value of “0” as follows (spaces inserted every 8 bits to show 
64KB-sized page groupings):
11111111 00000000 00000000 00000000

If, however, one or more of the flash pages in the first eight 
has exceeded its write endurance and is no longer usable, or if 
it is discovered to be “bad” when it is written,  then the flash 

page cannot be used. In this scenario, the controller will make 
use of the pages at a distance of eight away instead, or at a 
distance of 16, or 24. The 32-bit vector allows each 8KB 
page-segment of the 64KB Virtual Page to lie in one of four 
different locations in the flash block, starting at the given flash 
page-number offset within the block (note that the flash page 
number within the flash block need not be a power of 32). In 
this scenario, say that there are two bad pages in the initial set 
of eight—at the positions for page segments 3 and 6—but the 
other pages are free,  valid, and can be written. Assume also 
that the Starting Flash Page Number is 53—thus, flash pages 
56 and 59 within the given flash block are worn out and can-
not be written, but pages 53, 54, 55, 57, 58, and 60 can be 
written. The controller cannot write the data corresponding to 
page segment 3 to flash page 56, and so it will attempt to 
place the data at flash-page numbers 64, 72, or 80; assume 
that page 64 is available, writable, and can accept data.  The 
controller cannot write the data corresponding to page seg-
ment 6 to flash page 59, and so it will attempt to place the data 
at flash-page numbers 67, 75,  or 83; assume that page 67 al-
ready has data in it and that page 75 is available,  writable,  and 
can accept data. Then, once the data is written to the flash 
pages and the status confirmed by the controller, the Bit Vec-
tor is set to the following:
11101101 00010000 00000010 00000000

Suppose that the next time that data is written to this page and 
must be written back from the cache, that not all 64KB is 
“dirty” data—not all of it has been written. Assume, for ex-
ample, that only page segments 2 and 5 have been modified 
since the previous write-out to main memory. Only these 
page-segments should actually be written to flash pages, as 
writing non-dirty data is logically superfluous (the previous 
data is still held in the table) and also would cause pages to 
wear out faster than necessary.  In this scenario, a new location 
in the flash subsystem is chosen, representing a different de-
vice and a different block number. Suppose that the Starting 
Flash Page Number is 17 and that both pages 19 and 22 in this 
block are valid. The data corresponding to page segment 2 is 
written to flash page 19; the data corresponding to page seg-
ment 5 is written to flash page 22; and the Bit Vector for the 
new Page Table Entry is set to the following:
00100100 00000000 00000000 00000000

As flash blocks become fragmented (the pages in the blocks 
will not be written consecutively when the 64KB virtual pages 
start to age), the controller can exploit the Bit Vector. In the 
previous example, the controller would only need to find free 
writable pages at one of several possible distances from each 
other within the same flash block: 
distance 3  00100100 00000000 00000000 00000000

distance 5  00000100 00100000 00000000 00000000

distance 11 00100000 00000100 00000000 00000000

distance 13 00000100 00000000 00100000 00000000

distance 19 00100000 00000000 00000100 00000000

distance 21 00000100 00000000 00000000 00100000

distance 27 00100000 00000000 00000000 00000100

When a flash block needs to be reclaimed, in most cases it 
means that multiple page-segments need to be consolidated. 
Often, this would entail reading the entire chain of page-table 
entries, loading the corresponding flash pages, and coalescing 
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all of the data into a new page. This suggests a natural page-
replacement policy in which blocks are freed from the longest 
chains first. This frees up the most space in one replacement 
and also improves performance in the future by reducing the 
average length of linked lists that the controller needs to trav-
erse to find cache-fill data. 

Experimental Setup
Our simulation environment is based on the MARSSx86 cycle 
accurate full system simulator [Patel et al. 2011],  which con-
sists of PTLSim and QEMU subcomponents. PTLSim models 
an x86-64 multicore processor with full details of the pipeline, 
micro-op front end, trace cache, reorder buffers, and branch 
predictor.  This processor model includes a full cache hierar-
chy model and implements several cache-coherency proto-
cols. In addition, MARSSx86 utilizes QEMU as an emulation 
environment to support any hardware not explicitly modeled 
by the full system environment,  such as network cards and 
disks. This simulation environment is able to boot a full, un-
modified operating system, such as any modern Linux distri-
bution, and run benchmarks such as PARSEC or SPEC. The 
simulator captures both the user-level and kernel-level instruc-
tions, enabling the study of all operating system activity.

To model the memory system, we integrated into 
MARSSx86 the DRAMSim2 simulator [Rosenfeld et al. 
2011], a cycle accurate, hardware verified DRAM memory-
system simulator. We also wrote a detailed cycle-accurate 
simulator to model the hybrid controller and all non-volatile 
technologies, including PCM and flash at several different 
speed grades, as well as a detailed SSD model. To the best of 
our knowledge, this represents the first full-system SSD simu-
lation—as opposed to trace-based simulation [Agrawal et al. 
2008; Dirik & Jacob 2009]. The SSD model explicitly simu-
lates direct memory access via a callback to the DRAMSim2 
main memory. The addresses for the DMA requests are ex-
tracted from QEMU’s scatter-gather lists, which consist of 
pairs of pointers and sizes to enable the DMA request to ac-
cess non-contiguous locations in the DRAM address space. In 
addition, we have also modified QEMU to utilize AHCI driv-
ers instead of the default IDE drivers. This enables Native 
Command Queueing and allows the SSD-based system to take 
advantage of hardware parallelism.

The non-volatile memory parameters used in our experi-
ments are shown in the table below. Note that for several of      

Technology Read ns Write ns Erase References

DDR3 SDRAM 50 (min) 50 (min) n/a [Micron 2012]

PCM Optimistic 50 150 n/a [Lee et al. 2009]

PCM Expected 125 1000 n/a [Qureshi et al. 2012]

SLC / 8 *** 3125 200000 1.5 ms [Micron 2012; Micheloni 
et al. 2010]

SLC / 4 6250 200000 1.5 ms [Micheloni et al. 2010]

SLC / 2 12500 200000 1.5 ms [Micron 2012]

SLC NAND 25000 200000 1.5 ms [Micron 2012]

MLC NAND 50000 1200000 3 ms [Micron 2012]

*** The SLC/x values represent potential read latencies that could theoretically 
be achieved via design tradeoffs discussed in the cited sources. These were 
included to provide a range of latencies between SLC, MLC, and PCM.

*** The SLC/x values represent potential read latencies that could theoretically 
be achieved via design tradeoffs discussed in the cited sources. These were 
included to provide a range of latencies between SLC, MLC, and PCM.

*** The SLC/x values represent potential read latencies that could theoretically 
be achieved via design tradeoffs discussed in the cited sources. These were 
included to provide a range of latencies between SLC, MLC, and PCM.

*** The SLC/x values represent potential read latencies that could theoretically 
be achieved via design tradeoffs discussed in the cited sources. These were 
included to provide a range of latencies between SLC, MLC, and PCM.

*** The SLC/x values represent potential read latencies that could theoretically 
be achieved via design tradeoffs discussed in the cited sources. These were 
included to provide a range of latencies between SLC, MLC, and PCM.

the parameters, minimum values are given, even though in 
practice, the value exhibits a wide distribution of values (for 
example, DRAM read and write latencies, which are affected 
by the scheduling of the controller).

We average across 3 runs for all data values. All IPC results 
given are user instructions committed divided by total cycles, 
since the file system running in kernel mode creates overhead 
for the SSD that does not apply to the hybrid memory.

Performance Studies
In the following studies, we compare NVMM to two different 
baseline systems, shown below.

The sizes of the various levels of the hierarchy are given just 
for comparison, to indicate that this is a meaningful compari-
son. Each system uses the same sized caches and the same-
sized lowest level of the hierarchy. The system on the left rep-
resents current SSD-based architectures; the system on the 
right represents the upper bound on performance—a main 
memory of DRAM with the same capacity as an SSD (for 
example, 1TB). The system on the left is achievable today. 
The system on the right would be prohibitively expensive for 
most applications. 

Performance, Power, and Energy Comparisons
Performance numbers are normalized to that of the high-
performance all-DRAM system, as shown in the figure below. 
We also present the results of NVMM and SSDs using both 
MLC and SLC NAND flash. 

CPU

LLC
8M SRAM

Main Memory
32GB DRAM

SSD
1TB NAND Flash

CPU

L3 Cache
8M SRAM

Last-Level Cache
32GB DRAM

Main Memory
1TB NAND Flash

CPU

LLC
8M SRAM

Main Memory
1TB DRAM

DDRx 
SDRAMPCIe

DDRx 
SDRAM

NVMM System Organization
NVMM uses large L3 SRAM 

cache, last-level DRAM cache, 
and extremely large flash-based 

main memory

High Performance System
Baseline high-performance 

system uses SRAM last-level 
cache and extremely large DDRx 

SDRAM main memory

Current Enterprise Systems
Current servers use SRAM last-

level caches, large DDRx 
SDRAM main memories, and 

SSDs for fast I/O

Performance Comparisons. In these studies, NVMM is compared to two 
different baselines. The first is the typical design practice today: using 
DRAM as main memory and SSDs as I/O. The second is the upper bound 
on achievable performance, simply extending current practice to use a 
DRAM main memory with as much capacity as in the SSD approach. 
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Perhaps the most notable data point is that all of the perform-
ance numbers are within the same ballpark. Many of the ap-
plications running with flash-based main memory are rea-
sonably close to the performance of the all-DRAM main 
memory, which represents an organization that is “ideal” in 
the sense that it is what we would like to build but cannot af-
ford to build.  Using SLC flash approaches 95% of ideal sys-
tem performance for realistic single threaded workloads and 
80% of ideal system performance for some realistic multi-
threaded workloads.  Both NVMM and SSD architectures fail 
to approach the performance of all-DRAM systems for the file 
system workloads, which is due to the much higher bandwidth 
of DDR channels versus the ONFi 3.0 channels (note that  this 
should become a non-issue when devices following the re-
cently released ONFI 4.0 specification appear, as it increases 
individual device bandwidth up to 800 MB/s). The file-system 
benchmarks (DD and mmap) both use files that exceed the 
size of the DRAM system, forcing accesses to go to the non-
volatile memory for both NVMM and the SSD configurations. 
Averaging across all of the benchmarks,  NVMM tends to out-
perform SSD systems by a factor of 1.5 to 2 and comes within 
a factor of 2 of an all-DRAM system. 

Another interesting data point is that the SSD results for the 
Videoserver benchmark show that an SSD can slightly outper-
form an all-DRAM system. This is not a bug. It is due to the 
interplay between MARSSx86 and Linux: Linux detects when 
it is connected to an SSD as opposed to a spinning disk, and 
when it does, it activates an extremely aggressive software 
prefetching mode that, for highly sequential workloads, actu-
ally performs better than the baseline hardware prefetcher 
built into MARSSx86. This should settle the debate once and 
for all as to whether modern operating systems are mistakenly 
trying to control SSDs by relying on legacy I/O timing heuris-
tics designed for spinning disks: Linux, at least, clearly is not.

The power and energy for two different configurations are 
presented below: the graphs represent all-DRAM and hybrid 
systems of 8GB and 1TB. As the all-DRAM system increases 
from 8GB to 1TB, the contribution of background power 
(e.g., refresh power) changes dramatically. At 8GB the back-

ground power is relatively small, and the active power of pre-
charging, activating, and reading/writing across the bus domi-
nates. At 1TB, the refresh costs dominate. Note that in these 
configurations, the unused DRAM is allowed to be put into 
low-power modes, otherwise the power for a 1TB system 
would approach 100W. 

At 8GB, both the power (top) and energy (bottom) are 
roughly equivalent for all systems; at 1TB, the flash-based 
systems have significantly lower power and energy than the 
equivalent-capacity DRAM system. This is to be expected. 
Power and energy costs of a main memory system scale with 
both the bandwidth and the capacity of that memory. Both 
DRAM and flash scale with the desired read/write bandwidth, 
but in the graphs below the bandwidth is held constant. As 
main memory capacity increases, the power and energy costs 
of DRAM increase with it, as the cost of refresh scales with 
the number of bits that need refreshing. The power and energy 
costs of flash,  however, do not scale with the capacity, as flash 
has no background power costs.  Clearly, for extremely large 
main memories, non-volatile technologies are preferable to 
DRAM.

Latency Sensitivity
In this study, we sweep the latency parameter to see how well 
both NVMM and SSD architectures can tolerate long-latency 
non-volatile memories. The same latencies are used for both 
NVMM and the SSD internals.  The figure below shows the 
results for the GUPS benchmark (Giga-Updates Per Second: 
the benchmark creates a table larger than the DRAM cache 
and then randomly updates locations within the table 5000 
times). 

The NVMM system (“hybrid” controller) performs ex-
tremely well, especially when the controller uses prefetching. 
Compared to the SSD built with MLC NAND Flash (75000 
ns), the NVMM architecture provides a 3x improvement for a 
single thread of GUPS with no prefetching. However,  Linux is 
performing prefetching in the SSD case as a result of its adap-
tive readahead mechanism. As a comparison to prefetching, 
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NVMM fetches the next 16 pages after the one that caused a 
miss. This scheme is less intelligent than the readahead mech-
anism but still manages to provide a boost in performance 
resulting in a 3.7x improvement in the single threaded case 
versus the SSD for the MLC-like latency. Although one would 
expect prefetching to not help a random access workload, 
there is some benefit due to a “birthday attack”-like effect,  in 
which prefetching the pages from the backing store will help 
some future accesses with a certain probability. The boost 
provided by prefetching also indicates that there is additional 
bandwidth available to the backing store. This is because the 
backing store is not being fully utilized by the stream of traffic 
generated by GUPS, even though it is generating far more 
requests to the backing store than a typical workload. How-
ever, at the 750000 ns latency point, the additional traffic gen-
erated by the prefetching decreases performance rather than 
helping. This is because the additional read latency reduces 
the available bandwidth. The introduction of multiple threads 
increases the performance margin between Hybrid and the 
SSD even more to a 4.7x speedup.

For the MMAP benchmark (a file larger than the DRAM 
system is mapped into virtual memory via mmap() and then 
read 10000 times at random locations), the performance bene-
fits of multithreading and prefetching are even greater than 
they were with GUPS. These effects can be seen in the results 
in the figure below. 

For the single threaded version of MMAP, the Hybrid archi-
tecture has roughly the same performance as the SSD for an 
MLC backing store. Turning on prefetching for the single 
threaded case does provide a boost of 1.6x. However,  switch-
ing to the multithreaded case results in a large increase in per-

Table 3: Software and Hardware Access Time

Total Time (ns) Hardware Time (ns) Software Time (ns)
Mean Stdev Mean Stdev Mean Percent Software Delay

SLC Latency 85360.93 33837.39 38900.67 6689.59 46460.26 54.43
MLC Latency 162148.72 61060.33 88750.12 13016.83 73398.60 45.27
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Figure 5: Effects on System Performance from different backing store read latencies for the GUPS benchmark. The Y-Axis is the
execution time in cycles, so smaller is better. SLC flash is represented by 25000ns, MLC flash is represented by 75000 ns.

NAND Flash (75000 ns), the Hybrid architecture provides a 3x
improvement for a single thread of GUPS with no prefetching.
However, Linux is performing prefetching in the SSD case as
a result of its adaptive readahead mechanism. To counter this
advantage, we incorporated a sequential prefetching scheme
into the Hybrid controller which fetches the next 16 pages after
the one that caused a miss. This scheme is less intelligent than
the readahead mechanism but still manages to provide a small
boost in performance resulting in a 3.7x improvement in the
single threaded case versus the SSD for the MLC-like latency.
Although one would expect prefetching to not help a random
access workload, there is some benefit due to a “birthday
attack”-like effect, in which prefetching the pages from the
backing store will help some future accesses with a certain
probability. The boost provided by prefetching also indicates
that there is additional bandwidth available to the backing store.
This is because the backing store is not being fully utilized
by the stream of traffic generated by GUPS, even though it
is generating far more requests to the backing store than a
typical workload. However, at the 750000 ns latency point,
the additional traffic generated by the prefetching decreases
performance rather than helping. This is because the additional
read latency reduces the available bandwidth. The introduction
of multiple threads increases the performance margin between
Hybrid and the SSD even more to a 4.7x speedup.

For the MMAP benchmark, the performance benefits of
multithreading and prefetching are even greater than they were

with GUPS. These effects can be seen in the results in figure
6. For the single threaded version of MMAP, the Hybrid
architecture has roughly the same performance as the SSD
for an MLC backing store. Turning on prefetching for the
single threaded case does provide a boost of 1.64x. However,
switching to the multithreaded case results in a large increase
in performance for both the SSD and the Hybrid architecture.
The hybrid architecture still enjoys a clear advantage though
with a 3x speedup over the SSD for the MLC latency backing
store. Introducing prefetching increases this advantage to a
7x speedup. Prefetching has a greater effect for MMAP than
it did for GUPS because MMAP has roughly twice as many
accesses as GUPS so the “birthday attack” effect is amplified
somewhat.

Another interesting feature of this experiment is that we
can see a crossover point where the performance of the SSD
surpasses the performance of the Hybrid architecture. At the
150000 ns backing store latency, the performance of the SSD
surpasses the Hybrid architecture for the single threaded case,
when no prefetching enabled. This trend is extended at the
750000 ns point. Multithreading and prefetching push this
crossover point beyond the 750000 ns point. However, for
the most basic version of our Hybrid architecture, 2x MLC
is too much latency to be tolerated by a stalling application
and task switching provides a performance advantage. This
demonstrates that such a crossover point does exist but that it
exists at such long read latencies that the Hybrid approach is
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NAND Flash (75000 ns), the Hybrid architecture provides a 3x
improvement for a single thread of GUPS with no prefetching.
However, Linux is performing prefetching in the SSD case as
a result of its adaptive readahead mechanism. To counter this
advantage, we incorporated a sequential prefetching scheme
into the Hybrid controller which fetches the next 16 pages after
the one that caused a miss. This scheme is less intelligent than
the readahead mechanism but still manages to provide a small
boost in performance resulting in a 3.7x improvement in the
single threaded case versus the SSD for the MLC-like latency.
Although one would expect prefetching to not help a random
access workload, there is some benefit due to a “birthday
attack”-like effect, in which prefetching the pages from the
backing store will help some future accesses with a certain
probability. The boost provided by prefetching also indicates
that there is additional bandwidth available to the backing store.
This is because the backing store is not being fully utilized
by the stream of traffic generated by GUPS, even though it
is generating far more requests to the backing store than a
typical workload. However, at the 750000 ns latency point,
the additional traffic generated by the prefetching decreases
performance rather than helping. This is because the additional
read latency reduces the available bandwidth. The introduction
of multiple threads increases the performance margin between
Hybrid and the SSD even more to a 4.7x speedup.

For the MMAP benchmark, the performance benefits of
multithreading and prefetching are even greater than they were

with GUPS. These effects can be seen in the results in figure
6. For the single threaded version of MMAP, the Hybrid
architecture has roughly the same performance as the SSD
for an MLC backing store. Turning on prefetching for the
single threaded case does provide a boost of 1.64x. However,
switching to the multithreaded case results in a large increase
in performance for both the SSD and the Hybrid architecture.
The hybrid architecture still enjoys a clear advantage though
with a 3x speedup over the SSD for the MLC latency backing
store. Introducing prefetching increases this advantage to a
7x speedup. Prefetching has a greater effect for MMAP than
it did for GUPS because MMAP has roughly twice as many
accesses as GUPS so the “birthday attack” effect is amplified
somewhat.

Another interesting feature of this experiment is that we
can see a crossover point where the performance of the SSD
surpasses the performance of the Hybrid architecture. At the
150000 ns backing store latency, the performance of the SSD
surpasses the Hybrid architecture for the single threaded case,
when no prefetching enabled. This trend is extended at the
750000 ns point. Multithreading and prefetching push this
crossover point beyond the 750000 ns point. However, for
the most basic version of our Hybrid architecture, 2x MLC
is too much latency to be tolerated by a stalling application
and task switching provides a performance advantage. This
demonstrates that such a crossover point does exist but that it
exists at such long read latencies that the Hybrid approach is
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Figure 6: Effects on System Performance from different backing store read latencies for the GUPS benchmark. The Y-Axis is the
execution time in cycles, so smaller is better. SLC flash is represented by 25000ns, MLC flash is represented by 75000 ns.

viable for MLC NAND Flash with a few simple optimizations
such as sequential prefetching.

4.4. Filesystem Workload Performance

To provide some additional context for the performance gains
we have observed with the GUPS and MMAP benchmarks
we have included results for several filesystem benchmarks
as well. These results can be seen in Figure 7. For these ex-
periments, the SLC and MLC read latency were again 25000
ns and 75000 ns respectively. However, the filebench bench-
marks feature a variety of access patterns that differ from the
purely random read traffic generated by GUPS and MMAP. As
a result, for these experiments the write latency plays a role,
unlike the other experiments in this work. For the purposes
of these experiments a simple write latency of 10x the read
latency is used.

Of the filebench workloads, OLTP and Varmail are sped
up by the Hybrid architecture with OLTP seeing a 1.1x speed
up and Varmail seeing a 3x speed up. The performance im-
provement is due to the random nature of the traffic generated
by OLTP and Varmail. The other workloads, however, are
much more sequential in nature and benefit greatly from the
intelligent prefetching perfomed by the readahead mechanism
in Linux. As a result, we see the Hybrid architecture perform
worse than the SSD in the other three workloads: Fileserver,
Webproxy and Webserver. This performance difference can be
made up by implementing more intelligent adaptive prefetch-
ing algorithms in the Hybrid controller. However an in depth
investigation of the effects of different prefetching algorithms
is beyond the scope of this work and is a subject for future
study. Linux introduces some nondeterminism to the SSD
runs for these workloads as it did in several of the earlier ex-
periments. This is why the performance for the OLTP and

Webserver appears to increase as the backing store latency in-
creases. The relative insensitivity to the backing store latency
exhibited by the SSD-based runs of OLTP and Varmail are
probably the result of the software overhead becoming the pri-
mary bottleneck in the system. For the Webserver benchmark,
this insensitivity is instead probably due to the prefetching ef-
fectively hiding the backing store latency. These results show
the potential for the Hybrid architecture to speed up random
access workloads while providing some motivation for future
work to improve the prefetching performance of the Hybrid
architecture.

5. Related Work

A number of similar projects exist that have modified the soft-
ware interface to solid state drives by polling the disk controller
rather than utilizing an IO interrupt to indicate when a request
completes [29] [13] [8]. This is similar to our design in that
our memory controller and the application poll when a request
is outstanding to the non-volatile memory. The key differences
are that these designs still utilize the same PCIe interface and
basic operating system structures as current PCIe SSD designs.
It is an open question as to whether the IO polling approach
will perform adequately for the latency of flash memory and
what performance advantages/limitations IO polling would
have compared to the Hybrid architecture approach. One pos-
sible disadvantage of the IO polling approach is that it requires
the CPU pipeline to perform work to monitor the state of the
storage request, while the hybrid approach hands this task
off to the memory controller and allows the pipeline to be
free to perform work from other threads in a simultaneous
multithreading processor (e.g. Intel Hyperthreading).

Another way to redesign the OS to work with SSDs is to
build persistent object stores. These designs require the pro-
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NAND Flash (75000 ns), the Hybrid architecture provides a 3x
improvement for a single thread of GUPS with no prefetching.
However, Linux is performing prefetching in the SSD case as
a result of its adaptive readahead mechanism. To counter this
advantage, we incorporated a sequential prefetching scheme
into the Hybrid controller which fetches the next 16 pages after
the one that caused a miss. This scheme is less intelligent than
the readahead mechanism but still manages to provide a small
boost in performance resulting in a 3.7x improvement in the
single threaded case versus the SSD for the MLC-like latency.
Although one would expect prefetching to not help a random
access workload, there is some benefit due to a “birthday
attack”-like effect, in which prefetching the pages from the
backing store will help some future accesses with a certain
probability. The boost provided by prefetching also indicates
that there is additional bandwidth available to the backing store.
This is because the backing store is not being fully utilized
by the stream of traffic generated by GUPS, even though it
is generating far more requests to the backing store than a
typical workload. However, at the 750000 ns latency point,
the additional traffic generated by the prefetching decreases
performance rather than helping. This is because the additional
read latency reduces the available bandwidth. The introduction
of multiple threads increases the performance margin between
Hybrid and the SSD even more to a 4.7x speedup.

For the MMAP benchmark, the performance benefits of
multithreading and prefetching are even greater than they were

with GUPS. These effects can be seen in the results in figure
6. For the single threaded version of MMAP, the Hybrid
architecture has roughly the same performance as the SSD
for an MLC backing store. Turning on prefetching for the
single threaded case does provide a boost of 1.64x. However,
switching to the multithreaded case results in a large increase
in performance for both the SSD and the Hybrid architecture.
The hybrid architecture still enjoys a clear advantage though
with a 3x speedup over the SSD for the MLC latency backing
store. Introducing prefetching increases this advantage to a
7x speedup. Prefetching has a greater effect for MMAP than
it did for GUPS because MMAP has roughly twice as many
accesses as GUPS so the “birthday attack” effect is amplified
somewhat.

Another interesting feature of this experiment is that we
can see a crossover point where the performance of the SSD
surpasses the performance of the Hybrid architecture. At the
150000 ns backing store latency, the performance of the SSD
surpasses the Hybrid architecture for the single threaded case,
when no prefetching enabled. This trend is extended at the
750000 ns point. Multithreading and prefetching push this
crossover point beyond the 750000 ns point. However, for
the most basic version of our Hybrid architecture, 2x MLC
is too much latency to be tolerated by a stalling application
and task switching provides a performance advantage. This
demonstrates that such a crossover point does exist but that it
exists at such long read latencies that the Hybrid approach is
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formance for both the SSD and the Hybrid architecture. 
NVMM has a 3x speedup over the SSD for the MLC latency 
backing store; with prefetching this becomes a 7x speedup. 
Prefetching has a greater effect for MMAP than it did for 
GUPS because MMAP has roughly twice as many accesses as 
GUPS so the “birthday attack” effect is amplified.

Another interesting feature of this experiment is that we can 
see a crossover point where the performance of the SSD sur-
passes the performance of the Hybrid architecture. At the 
150000 ns backing store latency, the performance of the SSD 
surpasses the Hybrid architecture for the single threaded case, 
when no prefetching enabled. This trend is extended at the 
750000 ns point. Multithreading and prefetching push this 
crossover point beyond the 750000 ns point. This demon-
strates that NVMM is viable for MLC NAND Flash with a 
few simple optimizations such as sequential prefetching.

We also look at a number of other workloads in non-
prefetching organizations, and with several more latency val-
ues, to try to highlight the behavior of systems as a function of 
technology latency.

In general, PCM-based systems perform extremely well (usu-
ally close to the upper limit of an all-DRAM system); NAND-
based systems approach the performance of PCM-based ones; 
and SSD architectures do well on largely sequential work-
loads.  In addition, SSDs appear to be the least sensitive of the 
three architectures to variations in non-volatile latency. For 
workloads with many random accesses, NVMM outperforms 
SSDs because Linux is highly optimized for sequential file-
system access, prefetching a substantial amount in software. 
By comparison, NVMM is configured in these results for 
single-block lookahead. Additional OS optimizations are re-

0
0.1
0.2
0.3
0.4
0.5
0.6

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

Light Mix 

Hybrid
SSD

0

0.2

0.4

0.6

0.8

1

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

PNum 

Hybrid
SSD

0
0.05
0.1
0.15
0.2
0.25
0.3

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

DD_Write 
Hybrid
SSD

0

0.2

0.4

0.6

0.8

1

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

Heavy Mix 

Hybrid
SSD

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

MMap 

Hybrid
SSD

0

0.2

0.4

0.6

0.8

1

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

Swaptions 
Hybrid
SSD

0

0.2

0.4

0.6

0.8

1

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

Freqmine 
Hybrid
SSD

0

0.05

0.1

0.15

0.2

0.25

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

DD_Read 

Hybrid
SSD

0

0.2

0.4

0.6

0.8

1

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

Ferret 

Hybrid
SSD

0

0.2

0.4

0.6

0.8

1

DRAM PCM
(opt)

PCM
(exp)

SLC/8 SLC/4 SLC/2 SLC MLC

N
or

m
al

iz
ed

 IP
C 

Technology 

Fluidanimate 

Hybrid
SSD

Figure 5: Effects on System Performance from Latency Variance. The IPC is normalized to the ideal case with enough DRAM to
store the entire working set.

5.3. Effect of Prefetching on Hybrid System Performance

When the operating system sends a request to a disk drive or
an SSD, it does not typically send requests as single pages.
Rather, it requests a large number of sequential pages at one
time. For example, an OS might decide to request 128 kilo-
bytes in a single disk access. This effective prefetching allows
the application’s future file system requests to be serviced from
the DRAM buffer cache rather than the disk drive. This means
that in the prior experiment, we were effectively comparing
prefetching to no prefetching. Since sequential prefetching is
trivial to add to the hybrid memory controller, we now show
an experiment varying the sequential prefetching window for
hybrid memories.

Figure 6 shows the results for varying the prefetching win-

dow. In all benchmarks, sequential prefetching provides a
benefit over no prefetching. For sequential workloads such as
dd_read, we see speedups as high as 6x for MLC. Even the
highly random mmap workload received some benefit from
prefetching. This is because larger sections of the 256 MB file
used by the benchmark get loaded into the 512 MB DRAM
cache per access and eventually even random accesses start
hitting the DRAM cache. The dd_write workload received a
benefit from prefetching because our hybrid memory cache is
write allocate, meaning that on a write miss, the cache con-
troller reads the missed page into the DRAM cache. This
resulted in the sequential nature of dd_write having almost a
3x speedup for MLC with a prefetching window of 16. For the
lower latency numbers, prefetching provides less of a benefit
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Latency Sensitivity. IPC is normalized to the performance of the large-
DRAM system.
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sponsible for the performance gap between the SSD system 
and NVMM in the light mix workload. This workload fits 
entirely into main memory, so the OS uses the swap token 
technique [Jiang & Zhang 2005] to ensure that the working set 
of each scheduler quantum does not cause swapping, which 
enables the over-all system performance to be much higher. 
This shows the importance of tailoring the operating system to 
the memory system’s technology and is an important area of 
future work. 

A Closer Look at Random Accesses
This experiment demonstrates the effect of varying degrees of 
randomness in the memory access pattern on both NVMM 
and a DRAM/SSD system when swapping. For this experi-
ment,  each access has a probability of being either sequential 
or random, and by changing the probability, we can adjust the 
degree of randomness in the workload. This experiment estab-
lishes the substantial benefit enjoyed by NVMM for even a 
small degree of random read traffic. This because the operat-
ing system’s heuristics for SSD control are targeted towards 
sequential access and are not particularly tolerant to random 
accesses.

Even programs that are largely sequential can benefit from 
NVMM’s efficient handling of random reads, as the SSD ar-
chitecture is affected by even small amounts of randomness. 
In the multi-threaded version of the workload, the relatively 
sequential threads interfere with one another and produce traf-
fic that is largely random at the memory and storage levels. As 
the randomness of the workload increases,  the performance 
benefits of the multithreaded version begin to outweigh the 
randomness introduced by the multithreading interference. 
This transition appears to occur at around 70 percent random 
access. However,  the considerable involvement of the OS in 
the SSD version of the system introduces some nondetermin-
ism to the results. NVMM is more deterministic due to its 
reduced dependence on software. 

The Software Overhead of SSDs
To measure the software component of a storage access in the 
standard SSD-based system we instrumented our MMAP 
benchmark to log when a request began and ended at the ap-
plication level. To accomplish this we used x86 rdtsc instruc-
tions that ran immediately before and after each accesses.  We 
also implemented code in the SSD host interface to record 
when accesses began and ended at the hardware level. The 
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Figure 4: Effects on System Performance from different percentages of random access for the GUPS benchmark. The Y-Axis is
the execution time in cycles, so smaller is better.

dependence on the OS. The Hybrid architecture also benefits
from the additional threads for all levels of random access. As
the degree of randomness increases, the performance boost
provided by the Hybrid architecture increases from around 2X
at the 10 percent randomness point to 5x when the workload
is totally random.

4.2. The Software Overhead of the Storage System

To establish the contribution of the software portion of a stor-
age access in the standard SSD-based system we instrumented
our MMAP benchmark to log when a request began and ended
at the application level. To accomplish this we used x86 rdtsc
instructions that ran immediately before and after each ac-
cesses. We also implemented code in the SSD host interface to
record when accesses began and ended at the hardware level.
The hardware time includes the host interface time, the time
it took to process the access in the SSD controller, and the
time it took to perform the DMA. Since the raw time from
the software level logs include the hardware time, we must
subtract the hardware time from those raw values to compute
the actual time spent processing the access in software. To
provide an accurate picture of the associated delays, 10000
accesses were measured and their delays were averaged. Also,
the same analysis was performed with a backing store that had
a read latency roughly equivalent to SLC NAND Flash (25000
ns) and MLC NAND Flash (75000 ns). The resulting values
are presented in Table 3.

From these results it is clear that the software level of a stor-
age system access represents a significant portion of the total
delay. As the latency of the backing store increases, the rela-
tive percentage of the delay that is due to software decreases
because it remains relatively constant. However, even at MLC
NAND Flash latencies the software delays represent almost
half of the time it takes to access the backing store. This con-

firms the hypothesis that a great deal of performance can be
gained by eliminating as many of these software processes as
possible or migrating them to hardware.

It is also worth pointing out that the standard deviation of
the total delay is roughly five times the standard deviation of
the hardware delay. This indicates that the software layer intro-
duces a significant amount of nondeterminism to the system.
This same effect can clearly be seen in our other results where
the traditional SSD approach exhibits considerably more non-
determinism than the Hybrid architecture.

4.3. The Effect of Backing Store Latency

The backing store latency experiments are designed to estab-
lish the maximum backing store latency that can be tolerated
by a system executing a random read workload that is stalling
on an access rather than task switching. At some point, the
delay incurred as a result of the task switch will be less than
the time it takes to access the backing store. When this occurs
the SSD performance should surpass the Hybrid. To find this
crossover point for the backing store latency, we steadily in-
crease the read latency of the backing store by a factor of 10
from 75 to 750000 ns. In addition, we also included some ad-
ditional latencies at particular points of interest. For instance,
150 ns is roughly the expected read latency of PCM while
25000 ns is the current read latency of SLC NAND Flash and
75000 ns is the current read latency of MLC NAND Flash.
The results of this latency sweep show that the crossover point
is at a latency that is greater than 10x the current read latency
of MLC NAND Flash for all but one case. Therefore, these
experiments provide strong support for the idea that an effec-
tive Hybrid architecture can be constructed using low cost and
readily available MLC NAND Flash.

The performance benefits of the Hybrid architecture are
clear from figure 5. Compared to the SSD built with MLC
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This same effect can clearly be seen in our other results where
the traditional SSD approach exhibits considerably more non-
determinism than the Hybrid architecture.
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lish the maximum backing store latency that can be tolerated
by a system executing a random read workload that is stalling
on an access rather than task switching. At some point, the
delay incurred as a result of the task switch will be less than
the time it takes to access the backing store. When this occurs
the SSD performance should surpass the Hybrid. To find this
crossover point for the backing store latency, we steadily in-
crease the read latency of the backing store by a factor of 10
from 75 to 750000 ns. In addition, we also included some ad-
ditional latencies at particular points of interest. For instance,
150 ns is roughly the expected read latency of PCM while
25000 ns is the current read latency of SLC NAND Flash and
75000 ns is the current read latency of MLC NAND Flash.
The results of this latency sweep show that the crossover point
is at a latency that is greater than 10x the current read latency
of MLC NAND Flash for all but one case. Therefore, these
experiments provide strong support for the idea that an effec-
tive Hybrid architecture can be constructed using low cost and
readily available MLC NAND Flash.

The performance benefits of the Hybrid architecture are
clear from figure 5. Compared to the SSD built with MLC
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hardware time includes the host interface time,  the time it took 
to process the access in the SSD controller, and the time it 
took to perform the DMA. Since the raw time from the soft-
ware level logs include the hardware time, we subtract the 
hardware time from those raw values to compute the actual 
time spent processing the access in software. To provide an 
accurate picture of the associated delays, 10000 accesses were 
measured,  and their delays were averaged. Also,  the same 
analysis was performed with a backing store that had a read 
latency roughly equivalent to SLC NAND Flash (25000 ns) 
and MLC NAND Flash (75000 ns). The resulting values are 
presented in the table below.

Total Time (ns)Total Time (ns) HW Time (ns)HW Time (ns) SW Time (ns)SW Time (ns)

Latency Mean Std Dev Mean Std Dev Mean SW Delay

SLC 85,400 33,800 38,900 6,700 46,500 54%

MLC 162,200 61,100 88,800 13,000 73,400 45%

It is clear that the software level of a storage system access 
represents a significant portion of the total delay. As the la-
tency of the backing store increases, the relative percentage of 
the delay that is due to software decreases because it remains 
relatively constant. However, even at MLC NAND Flash la-
tencies the software delays represent almost half of the time it 
takes to access the backing store. 

Note that the standard deviation of the total delay is roughly 
five times the standard deviation of the hardware delay. This 
indicates that the software layer introduces a significant 
amount of nondeterminism to the system. This same effect can 
clearly be seen in our other results where the traditional SSD 
approach exhibits considerably more non-determinism than 
the Hybrid architecture.

Conclusions

The entire point of a memory hierarchy is that,  properly con-
figured and organized, it can offer average latency approach-
ing that of the fastest technology and at the same time the cost 
per bit approaching that of the densest technology.  Thus it 
should be no surprise that one could build a main memory out 
of an extremely dense but extremely slow memory technology 
such as modern flash, representing a roughly thousand-fold 
slowdown relative to DRAM.

We have demonstrated such a system to be viable and have 
shown that, at large capacities, it approaches the performance 
of an all-DRAM system, in particular an all-DRAM system 
that would be extremely expensive to build. Moreover, the 
DRAM system would also be expensive to operate, as, at 
terabyte-sized DRAM capacities, the power is significantly 
higher than a flash-based system.

Upcoming technologies such as HMC and ONFI 4.0 will be 
extremely useful in addressing any bandwidth shortcomings; 
in particular, the channel between DRAM cache and Flash 
devices requires significant bandwidth to be effective.

As we have shown, terabyte-scale main memories can be a 
reality today, and the wear-out issues of flash are addressed by 
spreading writes across enormous numbers of chips. In addi-
tion, future solutions such as active flash management and on-
chip annealing processes that “heal” the cells promise to make 
wear-out a thing of the past.

11



References
N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. 

Manasse, and A.R. Panigrahy (2008). “Design tradeoffs for 
SSD performance.” In Proceedings of the 2008 USENIX 
Technical Conference (USENIX'08).

A. Badam and V.S. Pai (2011). “SSDAlloc: Hybrid SSD/
RAM memory management made easy.” In In Proc. 8th 
USENIX Symposium on Networked Systems Design and 
Implementation (NSDI '11).

D.P. Bovet and M. Cesati (2005). Understanding the Linux 
Kernel. O'Reilly Media.

A.M. Caulfield, A. De, J. Coburn, T.I. Mollow, R.K. Gupta, 
and S. Swanson (2010). “Moneta: A high-performance 
storage array architecture for next-generation, non-volatile 
memories.” In Proceedings of the 2010 43rd Annual IEEE/
ACM International Symposium on Microarchitecture, pp. 
385–395.

J. Chase, M. Feeley, and H. Levy (1993). “Some issues for 
single address space systems.” In Proc. Fourth Workshop 
on Workstation Operating Systems.

J.S. Chase, H.M. Levy, M.J. Feeley, and E.D. Lazowska 
(1994). “Sharing and protection in a single-address-space 
operating system.” ACM Transactions on Computer Sys-
tems (TOCS), 12(4), 271–307.

J. Coburn, A.M. Caulfield, A. Akel, L.M. Grupp, R.K. Gupta, 
R. Jhala, and S. Swanson (2011). “NV-Heaps: Making per-
sistent objects fast and safe with next-generation, non-
volatile memories.” SIGARCH Comput. Archit. News, 
39(1), 105–118.

J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Bur-
ger, and D. Coetzee (2009). “Better I/O through byte-
addressable, persistent memory.” In Proceedings of the 
ACM SIGOPS 22nd symposium on Operating systems 
principles, pp. 133–146.

J. Cooke (2009). “Choosing the right NAND for your applica-
tion.” In Denali MemCon.

E. Cooper-Balis, P. Rosenfeld, and B. Jacob (2012). “Buffer-
on-board memory systems.” In Proceedings of the 39th 
Annual International Symposium on Computer Architec-
ture, pp. 392–403.

C. Dirik and B. Jacob (2009). “The performance of PC solid-
state disks (SSDs) as a function of bandwidth, concurrency, 
device architecture, and system organization.” In Proceed-
ings of the 36th annual international symposium on Com-
puter architecture, pp. 279–289.

A.P. Ferreira, B. Childers, R. Melhem, D. Mosse, and M. You-
sif (2010). “Using PCM in next-generation embedded 
space applications.” In Real-Time and Embedded Technol-
ogy and Applications Symposium, pp. 153–162.

A. Foong, B. Veal, and F. Hady (2010). “Towards SSD-ready 
enterprise platforms.” In 1st International Workshop on 
Accelerating Data Management Systems Using Modern 
Processor and Storage Architectures (ADMS).

Fusion IO (2012). Fusion IO. Retrieved 2012, from 
http://www.fusionio.com

B. Ganesh, A. Jaleel, D. Wang, and B. Jacob (2007). “Fully-
Buffered DIMM memory architectures: Understanding 

mechanisms, overheads and scaling.” In Proceedings of the 
2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture, pp. 109–120.

InsideHPC (2009). Spansion packs a whole lotta RAM into 
your server. Retrieved 2009, from 
http://insidehpc.com/2009/04/24/spansion-packs-a-whole-l
otta-ram-into-your-server/

Intel, Micron, Phison, SanDisk, SK Hynix, Sony, and Span-
sion (2013). Open NAND Flash Interface Specification 
Revision 3.2. ONFI Working Group.

Intel (2012). Intel Solid-State Drive 910 Series: Product 
Specification. Retrieved 2012, from 
http://www.intel.com/content/www/us/en/solid-state-drives
/ssd-910-series-specification.html

B. Jacob, S.W. Ng, and D.T. Wang (2007). Memory Systems: 
Cache, DRAM, Disk. San Francisco, CA, USA: Morgan 
Kaufmann Publishers Inc.

S. Jiang and X. Zhang (2005). “Token-ordered LRU: An ef-
fective page replacement policy and its implementation in 
linux systems.” Perform. Eval., 60(1-4), 5-29.

T. Kgil and T. Mudge (2006). “FlashCache: A NAND flash 
memory file cache for low power web servers.” In Pro-
ceedings of the 2006 International Conference on Compil-
ers, Architecture and Synthesis for Embedded systems, pp. 
103–112.

T. Kidder (1981). The Soul of a New Machine. Little, Brown 
& Co. Inc.

L. Lamport (1978). “Time, clocks, and the ordering of events 
in a distributed system.” Communications of the ACM, 
21(7), 558–565.

B.C. Lee, E. Ipek, O. Mutlu, and D. Burger (2009). “Archi-
tecting phase change memory as a scalable DRAM alterna-
tive.” ACM SIGARCH Computer Architecture News, 37(3), 
2-13.

Marvell (2012, March). Marvell Unveils Third-Generation 
SSD 6Gb/s SATA Controller. Retrieved 2014, from 
http://www.marvell.com/company/news/pressDetail.do?rel
easeID=2176

J. Mashey (1999). Why No More SRAM Main Memories? 
Retrieved March 3, 2014, from the yarchive.net database, 
http://yarchive.net/comp/sram_main_mem.html

R. Micheloni, L. Crippa, and A. Marelli (2010). Inside NAND 
Flash Memories. Springer.

Micron (2014, January). Personal Communication.
Micron (2012). Small-Block vs. Large-Block NAND Flash 

Devices.
J.C. Mogul, E. Argollo, M. Shah, and P. Faraboschi (2009). 

“Operating system support for NVM+DRAM hybrid main 
memory.” In Proceedings of the 12th conference on Hot 
topics in operating systems, pp. 14–14.

Newegg (2014, February 28). Newegg.com - Computer Parts, 
Laptops, Electronics, and More!. Retrieved February 28, 
2014, from the Newegg database, http://www.newegg.com/

OCZ Technology (2012). PCI Express OCZ Technology. Re-
trieved 2012, from the OCZ Technology database, 
http://www.ocztechnology.com/products/solid_state_drives
/pci-e_solid_state_drives

12



Oracle (2010). Achieving New Levels of Datacenter Perform-
ance and Efficiency with Software-optimized Flash Stor-
age. Retrieved 2012, from 
http://www.oracle.com/us/products/servers-storage/storage/
tape-storage/software-optimized-flash-192597.pdf

A. Patel, F. Afram, S. Chen, and K. Ghose (2011). 
“MARSSx86: A full system simulator for x86 cpus.” In 
Design Automation Conference 2011 (DAC'11).

M.K. Qureshi, M. Franceschini, A. Jagmohan, and L. Lastras 
(2012). “PreSET: Improving performance of phase change 
memories by exploiting asymmetry in write times.” In In-
ternational Symposium on Computer Architecture, pp. 380–
391.

M.K. Qureshi, V. Srinivasan, and J.A. Rivers (2009). “Scal-
able high performance main memory system using phase-
change memory technology.” In Proc. 36th Annual Interna-
tional Symposium on Computer Architecture, pp. 24–33.

D. Roberts, T. Kgil, and T. Mudge (2009). “Using non-volatile 
memory to save energy in servers.” In Proceedings of the 
Conference on Design, Automation and Test in Europe, pp. 
743–748.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob (2011). “DRAM-
Sim2: A cycle accurate memory system simulator.” IEEE 
Computer Architecture Letters, 10(1), 16–19.

Spansion (2008). Using Spansion EcoRAM To Improve TCO 
and Power Consumption in Internet Data Centers. Re-
trieved 2012, from 
http://www.spansion.com/jp/About/Documents/spansion_e
coram_whitepaper_0608.pdf

J. Stokes (2008, February 25). “MetaRAM quadruples DDR2 
DIMM capacities, launches 8GB DIMMs.” Ars Technica. 
Retrieved February 28, 2014, from the arstechnica.com 
database, 
http://arstechnica.com/gadgets/2008/02/metaram-quadruple
s-ddr2-dimm-capacities-launches-8gb-dimms/

J.E. Thornton (1970). Design of a Computer—The Control 
Data 6600. Scott Foresman & Co.

Tom's Hardware (2012). Samsung Intros NAND Flash-
Friendly File System. Retrieved 2012, from 
http://www.tomshardware.com/news/NAND-Flash-Flash-F
riendly-File-System-F2FS-Jaegeuk-Kim,18229.html

R.M. Tomasulo (1967). “An efficient algorithm for exploiting 
multiple arithmetic units.” IBM Journal of Research and 
Development, 11(1), 25–33.

M. Wu and W. Zwaenepoel (1994). “ENVy: A non-volatile, 
main memory storage system.” In Proceedings of the 1994 
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

J. Yang, D.B. Minturn, and F. Hady (2012). “When poll is 
better than interrupt.” In FAST'12: Proceedings of the 10th 
USENIX conference on File and Storage Technologies, pp. 
3–3.

 

13


