
1

ABSTRACT

If one is interested solely in processor speed, one must use virtually-
indexed caches. The traditional purported weakness of virtual caches
is their inability to support shared memory. Many implementations of
shared memory are at odds with virtual caches—ASID aliasing and
virtual-address aliasing (techniques used to provide shared memory)
can cause false cache misses and/or give rise to data inconsistencies in
a virtual cache, but are necessary features of many virtual memory
implementations. By appropriately using a segmented architecture
one can solve these problems. In this tech report we describe a virtual
memory system developed for a segmented microarchitecture and
present the following benefits derived from such an organization: (a)
the need to flush virtual caches can be eliminated, (b) virtual cache
consistency management can be eliminated, (c) page table space
requirements can be cut in half by eliminating the need to replicate
page table entries for shared pages, and (d) the virtual memory system
can be made less complex because it does not have to deal with the
virtual-cache synonym problem.

1 INTRODUCTION

Virtual caches allow faster processing in the common case because
they do not require address translation when requested data is found
in the caches. They are not used in many architectures despite their
apparent simplicity because they have several potential pitfalls that
need careful management [10, 16, 29]. In previous research on high
clock-rate PowerPC designs, we discovered that the segmented mem-
ory-management architecture of the PowerPC works extremely well
with a virtual cache organization and an appropriate virtual memory
organization, eliminating the need for virtual-cache management and
allowing the operating system to minimize the space requirements for
the page table. Though it might seem obvious that segmentation can
solve the problems of a virtual cache organization, we note that sev-
eral contemporary microarchitectures use segmented addressing
mechanisms—including PA-RISC [12], PowerPC [15], POWER2
[28], and x86 [17]—while only PA-RISC and POWER2 take advan-
tage of a virtual cache.

Management of the virtual cache can be avoided entirely if shar-
ing is implemented through the global segmented space. This gives
the same benefits as single address-space operating systems
(SASOS): if virtual-address aliasing (allowing processes to use differ-
ent virtual addresses for the same physical data) is eliminated, then so
is the virtual-cachesynonym problem [10]. Thus, consistency man-
agement of the virtual cache can be eliminated by a simple operating-
system organization. The advantage of a segmented approach (as
opposed to a SASOS approach) is that by mapping virtual addresses
to physical addresses in two steps, a segmented architecture divides
virtual aliasing and the synonym problem into two orthogonal issues.
Whereas they are linked in traditional architectures, they are unrelated
in a segmented architecture; thus applications can map physical mem-

ory at multiple locations within their address spaces—they can use
virtual address aliasing—without creating a synonym problem in the
virtual cache.

In this tech report we describe a hardware/software organization
that eliminates virtual-cache consistency problems, reduces the physi-
cal requirements of the page table, and eliminates contention in the
TLB. Memory is shared at the granularity of segments and relocated
at the granularity of pages. A single global page table maps the global
virtual address space, and guarantees a one-to-one mapping between
pages in the global space and pages in physical memory. Virtual-
cache synonyms are thus eliminated, and the virtual memory system
can be made less complicated. The global page table eliminates the
need for multiple mappings to the same shared physical page, which
reduces contention in the TLB. It also reduces the physical space
requirements for the page table by a factor of two. We show that the
segmented organization still supports the features expected of virtual
memory, from sharing pages at different addresses and protections to
complex operations such as copy-on-write.

2 BACKGROUND AND PERSPECTIVE

In this section we present the requirements of a memory-management
design: it must support the functions of virtual memory as we have
come to know them. We review the characteristics of segmented
architectures, then the fundamental problems of virtual caches and
shared memory.

2.1 Requirements

The basic functions of virtual memory are well-known [7]. One is to
create a virtual-machine environment for every process, which
(among other things) allows text, data, and stack regions to begin at
statically known locations in all processes without fear of conflict.
Another is demand-paging—setting a finer granularity for process
residence than an entire address space, thereby allowing a process to
execute as long as a single page is memory-resident. Today’s expecta-
tions of virtual memory extend its original semantics and now include
the following additional requirements:

Virtual-Address Aliasing: Processes must be able to map
shared objects at (multiple) different virtual addresses.

Protection Aliasing: Processes must be able to map shared
objects using different protections.

Virtual Caches: Fast systems require virtual caches. The
operating system should not have to flush a virtual cache to
ensure data consistency.

The traditional virtual memory mechanism is not well equipped to
deal with these requirements. In order to distinguish between con-

Segmented Ad dressing Solves the Vir tual Cac he
Synon ym Pr oblem
Bruce Jacob
Dept. of Electrical & Computer Engineering
University of Maryland, College Park
blj@eng.umd.edu

Technical Report UMD-SCA-1997-01 December, 1997

2

texts, the traditional architecture usesaddress space identifiers
(ASIDs), which by definition keep processes from sharing pages eas-
ily. A typical ASID mechanism assigns one identifier to every page,
and one identifier to every process; therefore multiple page-table and
TLB entries may be required to allow multiple processes/ASIDs to
map a given page—this can fill the TLB with duplicate entries map-
ping the same physical page, thereby reducing the hit rate of the TLB
significantly [19].

2.2 Segmented Ar chitectures

Traditional virtual memory systems provide a mapping between pro-
cess address spaces and physical memory. SASOS designs place all
processes in a single address space and map this large space onto
physical memory. Both can be represented as a single level of map-
ping, as shown in Figure 1. These organizations manage a single level
of indirection between virtual and physical memory; they combine
into a single mechanism the two primary functions of virtual mem-
ory: that of providing a virtual operating environment and that of
demand-paging on a small (page-sized) granularity. Segmentation
allows one to provide these two distinct functions through two distinct
mechanisms: two levels of indirection between the virtual address
space and main memory. The first level of indirection supports the
virtual operating environment and allows processes to locate objects
at arbitrary segment-aligned addresses. The second level of indirec-
tion provides movement of data between physical memory and back-
ing store at the granularity of pages.

This organization is shown in Figure 2. Processes operate in the
top layer. A process sees a contiguous address space that stretches
from 0x00000000 to 0xFFFFFFFF, inclusive (we will restrict our-
selves to using 32-bit examples in this report for the purposes of brev-
ity and clarity). The process address space is transparently mapped
onto the middle layer at the granularity of hardware segments, identi-
fied by the top bits of the user address. The segments that make up a
user-level process may in actuality be scattered throughout the global
space and may very well not be contiguous. However, the addresses
generated by the process do not reach the cache; they are mapped
onto the global space first. The cache and TLB see global addresses
only. There is therefore no critical path between address generation
and a virtual cache lookup except for the segmentation mechanism—
and if the segment size is larger than the L1 cache size the segment
bits are not used in the cache lookup, thus the segmentation mecha-
nism can run in parallel with the cache access.

Segmented systems have a long history. Multics, one of the earli-
est segmented operating systems, used a segmented/paged architec-
ture, the GE 645 [23]. This architecture was similar to the Intel
Pentium memory management organization [17] in that both the GE
645 and the Intel Pentium support segments of variable size. An
important point is that the Pentium’s global space is no larger than an

individual user-level address space; processes generate 32-bit
addresses that are extended by 16-bit segment selectors. The selectors
are used by hardware to index into one of two descriptor tables that
produce a base address for the segment corresponding to the segment
selector. This base address is added to the 32-bit virtual address pro-
duced by the application to form a global 32-bit virtual address. The
segments can range from a single byte to 4GB in size. There is no
mechanism to prevent different segments from overlapping one
another in the global 4GB space. The segment selectors are produced
indirectly. At any given time a process can reference six of its seg-
ments; selectors for these six segments are stored in six segment reg-
isters that are referenced by context. One segment register is
referenced implicitly by executing instructions; it contains a segment
selector for the current code segment. Another segment register holds
the segment selector for the stack. The other four are used for data
segments, and a process can specify which of the segment registers to
use for different loads and stores. One of the data segment registers is
implicitly referenced for all string instructions, unless explicitly over-
ridden.

In contrast, the IBM 801 [2] introduced a fixed-size segmented
architecture that continued through to the POWER and PowerPC
architectures [15, 21, 28]. The PowerPC memory management design
maps user addresses onto a global flat address space much larger than
each per-process address space. Segments are 256MB contiguous
regions of virtual space, and (in a 32-bit implementation) 16 segments
make up an application’s address space. Programs generate 32-bit
“effective addresses.” The top four bits of the effective address select
a segment identifier from a set of 16 hardware segment registers. The
segment identifier is concatenated with the bottom 28 bits of the
effective address to form an extended virtual address. It is this
extended virtual address space that is mapped by the TLBs and page
table. For brevity and clarity, we will restrict ourselves to using fixed-
size segmentation for examples throughout this report.

Segmented architectures need not use address space identifiers;
address space protection is guaranteed by the segmentation mecha-
nism.1 If two processes have the same segment identifier, they share
that virtual segment by definition. Similarly, if a process has a given
segment identifier in several of its segment registers, it has mapped
the segment into its address space at multiple locations. The operating
system can enforce inter-process protection by disallowing shared
segments identifiers, or it can share memory between processes by
overlapping segment identifiers.

Hardware Virtual Address Space

Physical Memory

Page Table
Mechanism

Figure 1: The single indirection of traditional memor y-mana gement
organizations.

Hardware Virtual Address Space

Physical Memory

Page Table
Mechanism

Global Virtual Address Space

Segmentation
Mechanism

Figure 2: Multiple le vels of indirection in a segmented memor y-
management or ganization.

3

2.3 The Consistenc y Problem of Vir tual Cac hes

A virtually indexed cache allows the processor to use the untranslated
virtual address as an index. This removes the TLB from the critical
path, allowing shorter cycle times and/or a reduced number of pipe-
line stages. However, it introduces the possibility of data integrity
problems occurring when two processes write to the same physical
location through different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This is called the vir-
tual cachesynonym problem [10]. The problem is illustrated in Figure
3; a shared physical page maps to different locations in two different
process address spaces. The virtual cache is larger than a page, so the
pages map to different locations in the virtual cache. As far as the
cache is concerned, these are two different pages, not two different
views of the same page. Thus, if the processes write to the page at the
same time, two different values will be found in the cache.

Hardware Solutions

The synonym problem has been solved in hardware using schemes
such as dual tag sets [10] or back-pointers [27], but these require com-
plex hardware and control logic that can impede high clock rates. One
can also restrict the size of the cache to the page size, or, in the case of
set-associative caches, similarly restrict the size of eachcache column
(the size of the cache divided by its associativity, for lack of a better
term) to the size of one page. This is illustrated in Figure 4; it is the
solution used in the PowerPC and Pentium processors. The disadvan-

1. Page-level protection is a different thing entirely; whereas address-space
protection is intended to keep processes from accessing each other’s data,
page-level protection is intended to protect pages from misuse. For
instance, page-level protection keeps processes from writing to text pages
by marking them read-only, etc. Page-level protection is typically sup-
ported through a TLB but could be supported on a larger granularity
through the segmentation mechanism. However there is nothing intrinsic
to segments that provides page-level protection, whereas address-space
protectionis intrinsic to their nature.

tages are the limitation in cache size and the increased access time of
a set-associative cache. For example, the Pentium and PowerPC
architectures must increase associativity in order to increase the size
of their on-chip caches and both architectures have reached 8-way set-
associative cache designs. Physically-tagged caches guarantee consis-
tency within a single cache set, but this only applies when the virtual
synonyms map to the same set.

Software Solutions

Wheeler & Bershad describe a state-machine approach to reduce the
number of cache flushes required to guarantee consistency [29]. The
mechanism allows a page to be mapped anywhere in an address
space, at some cost in implementation complexity. The aliasing prob-
lem can also be solved through operating system policy, as shown in
Figure 5. For example, the SPUR project disallowed virtual aliases
altogether [13]. Similarly, OS/2 locates all shared segments at the
same address in all processes [6]. This reduces the amount of virtual
memory available to each process, whether the process uses the
shared segments or not; however, it eliminates the aliasing problem
entirely and allows pointers to be shared between address spaces.
SunOS requires shared pages to be aligned on cache-size boundaries
[11], allowing physical pages to be mapped into address spaces at
almost any location but ensuring that virtual aliases align in the cache.
Note that the SunOS scheme only solves the problem for direct-
mapped virtual caches or set-associative virtual caches with physical
tags; shared data can still exist in two different blocks of the same set
in an associative, virtually-indexed, virtually-tagged cache. Single
address space operating systems such as Opal [4, 5] or Psyche [24]
solve the problem by eliminating the concept of individual per-pro-
cess address spaces entirely. Like OS/2, they define a one-to-one cor-
respondence of virtual to physical addresses and in doing so allow
pointers to be freely shared across process boundaries.

Figure 3: The synon ym pr oblem of vir tual cac hes. If two processes are
allowed to map physical pages at arbitrary locations in their virtual address
spaces, inconsistencies can occur in a virtually indexed cache.

Address Space A

Address Space B

Physical
Memory

Virtual
Cache

Address Space A

Address Space B

Physical
Memory

Direct-Mapped
Virtual Cache

Figure 4: Simple har dware solution to pa ge aliasing. If the cache is no
larger than the page size and direct-mapped, then no aliasing can occur. Set-
associative caches can be used, provided they have physical tags.

Set-Associative
Virtual Cache

OR

4

3 SHARED MEMORY VS. THE VIRTUAL CACHE

This section describes some of the higher-level problems that arise
when implementing shared memory on virtual cache organizations.
As described above, virtual caches have an inherent consistency prob-
lem; this problem tends to conflict with the mechanisms used to
implement shared memory.

3.1 The Problems with Vir tual-Ad dress Aliasing

Virtual-address aliasing is a necessary evil; it is useful, yet it breaks
many simple models. Its usefulness outweighs its problems, therefore
future memory management systems must continue to support it.

Vir tual-Ad dress Aliasing is Necessar y

Most of the software solutions for the virtual-cache synonym problem
address the consistency problem by limiting the choices where a pro-
cess can map a physical page in its virtual space. In some cases, the
number of choices is reduced to one; the page is mapped at one glo-
bally unique location or it is not mapped at all. While disallowing vir-
tual aliases would seem to be a simple and elegant way to solve the
virtual cache consistency problem, it creates another headache for
operating systems—virtual fragmentation.

When a global shared region is garbage-collected, the region can-
not help but become fragmented. This is a problem: whereas de-frag-
mentation (compaction) of disk space or physically-addressed
memory is as simple as relocating pages or blocks, virtually
addressed regions cannot be easily relocated. They are location-
dependent; all pointers referencing the locations must also be
changed. This is not a trivial task and it is not clear that it can be done
at all. Thus, a system that forces all processes to use the same virtual
address for the same physical data will have a fragmented shared
region that cannot be de-fragmented without enormous effort.
Depending on the amount of sharing this could mean a monotonically

increasing shared region, which would be inimical to a 24x7 environ-
ment, i.e. one that is intended to be operative 24 hours a day, seven
days a week. 64-bit SASOS implementations avoid this problem by
using a global shared region that is so enormous it would take a very
long time to become overrun by fragmentation. Other systems [8, 9]
avoid the problem by dividing a fixed-size shared region into uniform
sections and/or turning down requests for more shared memory if all
sections are in use.

Vir tual-Ad dress Aliasing is Detrimental

There are two issues associated with global addresses: one is that they
eliminate virtual synonyms, the other is that they allow shared point-
ers. If a system requires global addressing, then shared regions run the
risk of fragmentation, but applications are allowed to place self-refer-
ential pointers in the shared regions without having to swizzle [22]
between address spaces. However, as suggested above, this require-
ment is too rigid; shared memory should be linked into address spaces
at any (page-aligned) address, even though allowing virtual aliasing
can reduce the ability to store pointers in the shared regions.

Figure 6 illustrates the problem: processes A and Z use different
names for the shared data, and using each other’s pointers will lead to
confusion. This problem arises because the operating system was
allowed or even instructed by the processes to place the shared region
at different virtual addresses within each of the two address spaces.
Using different addresses is not problematic until processes attempt to
share pointers that reference data within the shared region. In this
example, the shared region contains a binary tree that uses self-refer-
ential pointers that are not consistent because the shared region is
located at different virtual addresses in each address space.

It is clear that unless processes use the same virtual address for
the same data, there is little the operating system can do besides swiz-
zle the pointers or force apps to usebase+offset addressing schemes
in shared regions. Nonetheless, we have come to expect support for
virtual aliasing, therefore it is a requirement that a system support it.

Address Space A

Address Space B

Physical
Memory

Virtual
Cache

Address Space A

Address Space B

Physical
Memory

Virtual
Cache

Figure 5: Synon ym pr oblem solved b y operating system polic y. OS/2 and the operating system for the SPUR processor guarantee the consistency of shared
data by mandating that shared segments map into every process at the same virtual location. SunOS guarantees data consistency by aligning shared pages on
cache-size boundaries. The bottom few bits of all virtual page numbers mapped to any given physical page will be identical, and the pages will map to the same
location in the cache. Note this works best with a direct-mapped cache.

(a) SPUR and OS/2 solutions (b) SunOS solution

5

3.2 The Problems with Ad dress-Space Identifier s

Sharing memory also causes performance problems at the same time
that it reduces the need for physical memory. The problem has been
mentioned earlier—the use of ASIDs for address space protection
makes sharing difficult, requiring multiple page table and TLB entries
for different aliases to the same physical page. Khalidi and Talluri
describe the problem:

Each alias traditionally requires separate page table and
translation lookaside buffer (TLB) entries that contain
identical translation information. In systems with many
aliases, this results in significant memory demand for storing
page tables and unnecessary TLB misses on context
switches. [Addressing these problems] reduces the number of
user TLB misses by up to 50% in a 256-entry fully-
associative TLB and a 4096-entry level-two TLB. The
memory used to store hashed page tables is dramatically
reduced by requiring a single page table entry instead of
separate page table entries for hundreds of aliases to a
physical page, [using] 97% less memory. [19]

Since ASIDs identify virtual pages with the processes that own them,
mapping information necessarily includes an ASID. However, this
ensures that for every shared page there are multiple entries in the
page tables, since each differs by at least the ASID. This redundant
mapping information requires more space in the page tables, and it
floods the TLB with superfluous entries; for instance, if the average
number of mappings per page were two, the effective size of the TLB
would be cut in half. In fact, Khalidi & Talluri report the average
number of mappings per page on an idle system to be 2.3, and they
report a decrease by 50% of TLB misses when the superfluous-PTE
problem is eliminated. A scheme that addresses this problem can
reduce TLB contention as well as physical memory requirements.

The problem can be solved by a global bit in the TLB entry,
which identifies a virtual page as belonging to no ASID in particular;
therefore, every ASID will successfully match. This reduces the num-

ber of TLB entries required to map a shared page to exactly one, how-
ever the scheme introduces additional problems. The use of a global
bit essentially circumvents the protection mechanism and thus
requires flushing the TLB of shared entries on context switch, as the
shared regions are unprotected. Moreover, it does not allow a shared
page to be mapped at different virtual addresses, or with different pro-
tections. Using a global-bit mechanism is clearly unsuitable for sup-
porting sharing if shared memory is to be used often.

If we eliminate the TLB, then the ASID, or something equivalent
to distinguish between different contexts, will be required in the cache
line. The use of ASIDs for protection causes the same problem but in
a new setting. Now, if two processes share the same region of data, the
data will be tagged by one ASID and if the wrong process tries to
access the data that is in the cache, it will see an apparent cache miss
simply because the data is tagged by the ASID of the other process.
Again, using a global-bit to marked shared cache lines makes them
unprotected against other processes and so the cache lines must be
flushed on context switch. This is potentially much more expensive
than flushing mappings from the TLB because the granularity for
flushing the cache is usually a cache line, requiring many operations
to flush an entire page.

4 THE “VIR TUE” OF SEGMENTATION

One obvious solution to the synonym and shared memory problems is
to use global naming, as in a SASOS implementation, so that every
physical address corresponds to exactly one virtual location. This
eliminates redundancy of page table entries for any given physical
page, with significant performance and space savings. However, it
does not allow processes to map objects at multiple locations within
their address spaces—all processes must use the same name for the
same data, which conflicts with our stated requirement of allowing
processes to map objects at different virtual addresses, and at multiple
locations within their address space.

A segmented architecture avoids this conflict; segmentation
divides virtual aliasing and the synonym problem into two orthogonal
issues. A one-to-one mapping from global space to physical space can

Figure 6: The pr oblem with allo wing pr ocesses to map shared data at diff erent vir tual ad dresses.

Process Z’s
Address Space

Process A’s
Address Space

Shared Region

Virtual Address
0x40000000

Virtual Address
0x60000000

Root of dynamic tree, located
at offset 0 from the beginning
of the shared segment

Object created by Process Z,
added to the tree at offset
0x20 from the beginning of
the shared segment (virtual
address 0x60000020)

Object created by Process A, added to the tree
using offset 0x10 from the beginning of the
shared segment (virtual address 0x40000010)

0

 0x800000000x80000000

0

6

be maintained—thereby eliminating the synonym problem—while
supporting virtual aliases by independently mapping segments in pro-
cess address spaces onto segments in the global space. Such an orga-
nization is illustrated in Figure 7. In the figure, three processes share
two different segments, and have mapped the segments into arbitrary
segment slots. Two of the processes have mapped the same segment
at multiple locations in their address spaces. The page table maps the
segments onto physical memory at the granularity of pages. If the
mapping of global pages to physical pages is one-to-one, there are no
virtual-cache synonym problems.

When the synonym problem is eliminated, there is no longer a
need to flush a virtual cache or a TLB for consistency reasons. The
only time flushing is required is when virtual segments are re-mapped
to new physical pages, such as when the operating system runs out of
unused segment identifiers and needs to re-use old ones; if there is
any data left in the caches or TLB tagged by the old virtual address,
data inconsistencies can occur. Direct Memory Access (DMA) also
requires flushing of the affected region before a transaction, as an I/O
controller does not know whether the data it overwrites is currently in
a virtual cache.

Applications may map objects using different protections; the
same object can be mapped into different address spaces with differ-

ent segment-level protections, or mapped into the same address space
at different locations with different protections. To illustrate, Figure 8
shows an example of one possible copy-on-write implementation. It
assumes hardware support for protection in both the segmentation
mechanism (segment granularity) and the TLB (page granularity), as
in the Pentium [17]. In the first step, a process maps an object with
read-write permissions. The object is located in a single segment, and
the permissions are associated with the segment. In the second step,
the process grants access to another process, which maps the object
into its address space at another virtual address. The two share the
object read-only, copy-on-write. In the third step, Process B has writ-
ten to the object and the written page has been copied. At this point
there are two choices. One is to copy the entire object, which could be
many pages, into a new set of page frames. This would allow both
processes to map their copies of the object read-write. Alternately,
one could stop after the first page (the written page) to delay copying
the rest until absolutely necessary, maintaining reference pointers
until the entire object is copied; this scenario is shown in Figure 8(c).
At this point, both processes have read-write access to the object at
the segment level, but this could fail at the page-access level. If either
process writes to the read-only pages they will be copied. The disad-
vantage of this scheme is that it requires sibling-pointers to the origi-
nal mappings so that if a copy is performed, access to the original
page can be changed to read-write. An alternate organization is shown
in Figure 9, in which there is no hardware support for page-level pro-
tection. Here, we need sibling-pointers at the segment level. As in the
previous example, we can avoid chains of sibling-pointers by simply
copying the entire object when it is first written.

The issue becomes one of segment granularity. If segments repre-
sent the granularity of sharing and data placement within an address
space (but not the granularity of data movement between memory and
disk), they must be numerous and small. They should still be larger
than the L1 cache, to keep the critical path between address genera-
tion and cache access clear. Therefore the address space should be
divided into a large number of small segments, for instance 1024
4MB segments, 4096 1MB segments, 16,384 256KB segments, etc.

5 DISCUSSION

In this section, we discuss a page-table mechanism that supports the
required virtual memory features. We compare its space requirements
against a more traditional organization, and we briefly describe how
the page table would work on several commercial architectures.

Global Virtual Space

Figure 7: The use of segments to pr ovide vir tual ad dress aliasing.

Process A Process B Process C

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment

Global Virtual Space

Process A Process B

Physical Memory

RO,
COW

Global Virtual Space

Process A

Physical Memory

Global Virtual Space

Process A Process B

Physical Memory

Figure 8: Cop y-on-write in a segmented ar chitecture .

RW RO,
COW

RO,
COW

RW RW

(a) Single process owns an object, placed
in a segment

(b) Process shares object with another
process via shared segments

(c) Second process writes to first page in
segment, gets own copy

RW

Sibling-pointers

copy

7

5.1 Global P age Table

The segmentation mechanism suggests a two-tiered page table, one
table mapping global pages to physical page frames, and a per-pro-
cess table mapping segments onto the global space. For the purposes
of this discussion, we assume PowerPC-like segmentation based on
the top bits of the address space, a 32-bit effective address space, a 52-
bit virtual address space, and a 4KB page size. Figure 10 illustrates
the mechanism. We assume that the segmentation granularity is 4MB;
the 4GB address space is divided into 1024 segments. This simplifies
the design and should make the discussion clear; a four-byte page-
table entry (PTE) can map a 4KB page, which can in turn map an
entire 4MB segment.

Our page table organization uses a single global table to map the
entire 52-bit segmented virtual address space. Any single process is
mapped onto at most 2GB of this global space, and so it requires at
most 2MB of the global table at any given moment. The page-table
organization is pictured in Figure 11; it shows the global table as a
4TB linear structure at the top of the global virtual address space,
composed of 230 4KB PTE pages that each map a 4MB segment.
Each user process has a 2MB address space (as in MIPS [18]), which
can be mapped by 512 PTE pages in the global page table. These 512
PTE pages make up auser page table, a disjunct set of virtual pages at
the top of the global address space. These 512 pages can be mapped
by 512 PTEs—a collective structure small enough to wire down in
physical memory for every running process (2KB). This structure is
termed theuser root page table in the figure. In addition, there must
be a table of 512 segment IDs for every process, a 4KB structure,
since each segment ID is 30 bits plus protection and “mode” bits such
as copy-on-write. The size of this structure can be cut in half if we can
encode the protection and mode information in two bits.

This hardware/software organization satisfies our requirements.
Each process has a virtual-machine environment in which to operate;
the segment mechanism maps the process address space onto the glo-
bal space transparently. Demand-paging is handled by the global page
table. Processes map objects at arbitrary segment-aligned addresses in
their address spaces, and can map objects at multiple locations if they
wish. Processes can also map objects with different protections, as
long as the segmentation mechanism supports protection bits for each
segment. And, as we have described, the global page table maintains a

one-to-one mapping between global pages and physical page frames,
therefore the virtual-cache synonym problem disappears. Though we
have not stated it as a requirement, the virtual-memory fragmentation
problem is also solved by this organization; there is no restriction on
where an object is placed in the global space, and there is no restric-
tion on where an object is placed in a process address space.

5.2 Page Table Efficienc y

The theoretical minimum page table size is 0.1% of working set size,
assuming 4KB pages, 4B page table entries, and fully-populated page
table pages. However, most virtual memory organizations do not
share PTEs when pages are shared; for every shared page there is
more than one PTE in the page table. Khalidi & Talluri show that
these extra PTEs can increase the page table size by an order of mag-
nitude or more [19].

We compare the size of the global page table to the theoretical
minimum size of a traditional page table. Khalidi & Talluri report that
the average number of mappings per page on an idle system is 2.3,
and the average number of mappings toshared pages is 27. This
implies that the ratio of private to shared pages in an average system is
19:1 or that 5% of a typical system’s pages are shared pages.2 These
are the figures we use in our calculations. The overhead of a tradi-
tional page table (one in which there must be multiple PTEs for multi-
ple mappings to the same page) can be calculated as

wherep is the number of private (non-shared) pages in the system,
ands is the number of shared pages in the system. We assume a ratio
of 1024:1 between page size and PTE size. This represents the theo-
retical minimum overhead since it does not take into account par-
tially-filled PTE pages. For every shared page there is on average 27

2. The average number of mappings per page is the total number of map-
pings in the system divided by the total number of pages, or

, which yields ap:s ratio of 19:1.

Global Virtual Space

Process A Process B

Physical Memory

NULL

RO,
COW

RW,
COFault

(c) Second process writes to first page in segment, gets own copy

Figure 9: An alternate implementation of cop y-on-write .

Sibling-pointers

copy
TLB and

Page Table

Segment Offset (22 bits)

32-bit Effective Address

Segno (10 bits)

Segment Registers

Segment Offset (22 bits)Segment ID (30 bits)

52-bit Virtual Address

Figure 10: Segmentation mec hanism used in Discussion.

Cache

� � � ��
� ��� ��

number of PTEs() size of PTE()
number of pages() size of page()

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 p 27s+()4
p s+()4096

----------------------------- p 27s+()
p s+()1024

-----------------------------= =

8

processes mapping it, therefore the page table requires 27 PTEs for
every shared page. The overhead is in terms of the physical-page
working set size; the fraction of physical memory required to map a
certain number of physical pages. As the percentage of sharing
increases, the number of physical pages does not increase, but the
number of PTEs in the page table does increase.

The global page table overhead is calculated the same way, except
that PTEs are not duplicated when pages are shared. Thus, the over-
head of the table is a constant:

Clearly, the global page table is smaller than a traditional page table,
and it approaches the minimum size necessary to map a given amount
of physical memory. Figure 12 shows the overhead of each page table
organization as the level of sharing in a system changes. The x-axis
represents the degree of sharing in a system, as the number of pages
that are shared (s/(p + s)). The y-axis represents the overhead of the
page table, as the size of the page table divided by the total size of the
data pages. In an average system, where 5% of the pages are shared,
we should expect to use less than half the space required by a tradi-
tional page table organization.

5.3 Por tability

Since sharing is on a segment basis, we would like fine-grained seg-
mentation, which is unavailable in most commercial processors.
Therefore any segmented architecture could benefit from this organi-
zation, but a granularity of large segments might make the system less
useful. Also, the lack of protection bits associated with segments in
most architectures (including PA-RISC and PowerPC) means that
processes will not be able to share segments with different protec-
tions. In architectures lacking segment protection bits, all mappings to
an object will be protected through the page table, not through seg-
ments. Since the page table does not distinguish between different
mappings to the same virtual segment, all mappings to a given virtual
segment will have the same protections.

Design f or PowerPC

The PowerPC organization would differ in two additional ways. As
described above, since there are no protection bits associated with
segments the system would not allow different mappings to the same
object with different protections. A copy-on-write mechanism could
still be implemented, however, through the global page table—by
marking individual pages as read-only, copy-on-write. This scheme
would require back-pointers to determine the multiple aliases to a
physical page, so that they could be re-mapped when the page is cop-
ied. Second, since there are only sixteen segments available, only 16
entries would be needed in the segment table—it could therefore fit in

Figure 11: A global pa ge table or ganization.

User Root Page Table
2KB: 512 PTEs

User Page Table
2MB: 512 4KB PTE Pages, 512K PTEs

Per-Process User Address Space
2GB: 512 4MB segments, 512K 4KB virtual pages

Unmapped Physical Memory

Mapped Virtual Memory

A 4-byte PTE,
which maps 4KB

A 4KB PTE Page: a continuous group
of 1024 PTEs that collectively map 4MB

4 B

4 KB

Two pages:
8KB Process
Control Block

52-bit Global Virtual Address Space: 230 4MB virtual segments

4 MB
Virtual Segment

A 4MB virtual segment,
1/512 of an address space

230 PTE Pages: 4KB each,
4TB total

4 MB

4 KB

4 MB

Segment Table: 4KB of Segment Identifiers
512 30-bit IDs plus protection bits

Process State

. . .

. . .

4KB Page

Maps

Maps

 ��()4

 ��()4096

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 � � �	 	 	 	 	 	 	 	 	 	 		�

0%� 5%� 10%� 15%� 20%�
Percentage of pages shared

0.000

0.002

0.004

0.006

0.008

O
ve

rh
ea

d
of

 p
ag

e
ta

bl
e

Traditional page table
Global page table

Figure 12: Comparison of pa ge table space requirements.

9

with process state, and so the process control block would be half as
large.

The PowerPC hardware-defined inverted page table is not a true
page table (not all mappings are guaranteed to reside in the page
table), but rather a software TLB [1]. Therefore we can use any page
table organization we want.

Design f or PA-RISC

The PA-RISC architecture [12] has a facility similar to PowerPC seg-
ments, a set of 8space registers, that maps a 32-bit address onto a
larger (64-bit) virtual address space. User applications may load val-
ues into the space registers at will. Protection is guaranteed by
restricting access to some of the registers and by the use of protection
IDs, similar to ASIDs. The processor maintains four protection IDs
per process and if any protection ID matches the access ID of a page,
access is granted. Note that a process may not alter the contents of the
protection-ID registers.

PA-RISC supports the concept of a global address space and a
global page table though the space registers. In fact, researchers at
Hewlett-Packard have stressed that this is the best way to share mem-
ory on PA-RISC:

[One can] take advantage of the global virtual address space
provided by the PA-RISC to eliminate all remapping of text
pages shared between tasks. The idea is to map the text object
to a single range of virtual addresses in the global virtual
address space, and to have all tasks sharing the text object to
access it using that same range of virtual addresses. This not
only eliminates virtual address aliasing at the hardware level,
it eliminates it at all levels. This is the “right” way to share
memory on PA-RISC. [3]

Unlike PowerPC, PA-RISC does not specify a page table organization
for the operating system, though HP-UX has traditionally used an
inverted page table [14]. One can therefore use a global page table
organization. The difference is that the user root page tables would
not be as simple as in our generic design, in which a process only has
access to a 2GB window at any time and so the maximum size of the
user root page table is 2KB. PA-RISC allows processes to extend their
address space at will without operating system intervention, by plac-
ing space IDs into the space registers—subject to the access-ID con-
straints. This allows the process to swap globalspaces in and out of
its address space at will, implying that the size of the wired-down user
root page table can grow without bounds. This can be solved by
another level of indirection, where the user root page table is a
dynamic data structure; the disadvantage is that user root page table
access becomes slower.

Design f or Pentium

The Pentium [17] memory management architecture corresponds
very closely to the needs of our generic design. It maps 32-bit
addresses onto a global 4GB “linear” address space. Besides the limi-
tation of a small global address space, the architecture is very nearly
identical to the hardware described in this section. The mapping from
user address space to global linear space is made before cache access.
The segments have associated protection independent of the underly-
ing page protection. Every feature of our addressing scheme is sup-
ported.

However, the architecture does not take full advantage of its own
design. The cache is effectively virtually indexed, but only by con-
straining the cache index to be identical to the 4KB page size. There

are six segment registers and they are addressed according to the con-
text in which they are used—there is only one register for code seg-
ments, one register for stack segments, etc. The segment registers are
therefore much less flexible than PowerPC segments, and they could
have a lower hit rate. The segmentation mechanism is not used by
many systems because a process requiring numerous segments will
frequently reference memory to reload segment registers. Pentium
performance and flexibility could improve dramatically if the caches
were virtual and larger (allow the cache index to be larger than the
page size) and if the segment registers were less context-oriented and
more numerous.

The Pentium segment registers include one for the stack, one for
code, and four for data—one of which is used by string instructions.
An application can reference 8192 local (per-process) segments, and
8191 global segments. Segment sizes are software-defined and can
range from 1 byte to 4 gigabytes. Each segment has a four-bit protec-
tion ID associated with it encodingread-only, read/write, execute-
only, etc. The protection ID also encodes information such as whether
the segment size is allowed to change.

The system supports a global 4MB page table that maps the 4GB
shared linear address space. The main problem is the relatively small
global address space. Four gigabytes is not much room in which to
work, which could cause the memory allocation logic to become
complicated. On the other hand, a benefit is that the segmentation
mechanism would become an address space protection mechanism.
This is similar to the use of segments in the PowerPC architecture. A
set of segments uniquely identifies a process address space; full pro-
tection is guaranteed by not overlapping segments. Any segment that
is not shared by another process is protected from all other processes.
The advantage is that one classical argument against the Intel archi-
tecture—that its lack of ASIDs is a performance drag by requiring
TLB flushes on context switch—disappears. Since the TLB maps
addresses from the global linear space, no flushing would be neces-
sary.

Design f or 64-bit Ar chitectures

The virtual-cache synonym problem does not automatically go away
with 64-bit addressing, unless one uses the 64-bit address space for a
SASOS organization. As described earlier, this has some disadvan-
tages and does not support all the required virtual memory features. A
segmentation mechanism is still necessary in a 64-bit architecture in
order to satisfy all of our stated requirements.

Note that the 64-bit PowerPC implementation has the same fixed
segment size as the 32-bit implementation: 256 MB. The architecture
maps a 64-bit user address space onto an 80-bit global virtual space,
at a 256MB granularity, then maps the global space onto physical
memory at a page granularity. This satisfies one of the requirements
discussed earlier: that the architecture offer numerous segments for
sharing. The 64-bit PowerPC offers 236 segments per address space,
which should be enough for even an operating system like Windows,
in which there are thousands of shared libraries. The segment map-
ping in this implementation is through asegment lookaside buffer, an
associative cache managed like a TLB, as opposed to the lookup table
found in the 32-bit implementation.

The primary difference when moving to a 64-bit machine is the
structure of the page table. The page table need not be linear, or even
hierarchical; it simply must map the global space and provide a guar-
antee that global pages map one-to-one onto the physical memory.
Therefore several organizations are possible, including the hierarchi-
cal table of OSF/1 on Alpha [25], a guarded page table [20], or an
inverted page table [14], including the variant described by Talluri, et
al. [26].

10

6 CONCLUSIONS

One can employ a virtually indexed cache in order to meet the mem-
ory requirements of a high-speed processor and avoid the potential
slowdown of address translation. However, virtual caches do not
appear in the majority of today’s processors. Virtual caches help
achieve fast clock speeds but have traditionally been left out of micro-
processor architectures because the naming dichotomy between the
cache and main memory creates the potential for data inconsistencies,
requiring significant management overhead. A segmented architec-
ture adds another level of naming and allows a system to use a virtual
cache organization without explicit consistency management, as long
as the operating system ensures a one-to-one mapping of pages
between the segmented address space and physical memory.

7 REFERENCES

[1] K. Bala, M.F. Kaashoek, and W.E. Weihl. “Software prefetching and
caching for translation lookaside buffers.” InProc. First USENIX
Symposium on Operating Systems Design and Implementation (OSDI-
1), November 1994, pp. 243–253.

[2] A. Chang and M.F. Mergen. “801 storage: Architecture and
programming.”ACM Transactions on Computer Systems, vol. 6, no. 1,
February 1988.

[3] C. Chao, M.Mackey, and B.Sears. “Mach on a virtually addressed
cache architecture.” InUSENIX Mach Workshop, October 1990.

[4] J.S. Chase, H.M. Levy, M. Baker-Harvey, and E.D. Lazowska. “How
to use a 64-bit virtual address space.” Tech. Rep. 92-03-02, University of
Washington, March 1992.

[5] J.S. Chase, H.M. Levy, E.D. Lazowska, and M.Baker-Harvey.
“Lightweight shared objects in a 64-bit operating system.” Tech. Rep.
92-03-09, University of Washington, March 1992.

[6] H. Deitel. Inside OS/2. Addison-Wesley, Reading MA, 1990.
[7] P.J. Denning. “Virtual memory.”Computing Surveys, vol. 2, no. 3, pp.

153–189, September 1970.
[8] P.Druschel and L.L. Peterson. “Fbufs: A high-bandwidth cross-domain

transfer facility.” InProc. Fourteenth ACM Symposium on Operating
Systems Principles (SOSP-14), December 1993, pp. 189–202.

[9] W. E. Garrett, M.L. Scott, R.Bianchini, L.I. Kontothanassis, R.A.
McCallumm, J.A. Thomas, R.Wisniewski, and S.Luk. “Linking shared
segments.” InUSENIX Technical Conference Proceedings, January
1993, pp. 13–27.

[10] J.R. Goodman. “Coherency for multiprocessor virtual address caches.”
In Proc. Second Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-2), October 1987, pp. 72–
81.

[11] J.L. Hennessy and D.A. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., 1990.

[12] Hewlett-Packard.PA-RISC 1.1 Architecture and Instruction Set
Reference Manual. Hewlett-Packard Company, 1990.

[13] M. D. Hill, S. J. Eggers, J.R. Larus, G.S. Taylor, G.Adams, B.K. Bose,
G. A. Gibson, P.M. Hansen, J.Keller, S.I. Kong, C.G. Lee, D.Lee,
J.M. Pendleton, S.A. Ritchie, D.A. Wood, B.G. Zorn, P.N. Hilfinger,
D. Hodges, R.H. Katz, J.K. Ousterhout, and D.A. Patterson. “Design
decisions in SPUR.”IEEE Computer, vol. 19, no. 11, November 1986.

[14] J.Huck and J.Hays. “Architectural support for translation table
management in large address space machines.” InProc. 20th Annual
International Symposium on Computer Architecture (ISCA-20), May
1993, pp. 39–50.

[15] IBM and Motorola.PowerPC 601 RISC Microprocessor User’s Manual.
IBM Microelectronics and Motorola, 1993.

[16] J.Inouye, R.Konuru, J.Walpole, and B.Sears. “The effects of virtually
addressed caches on virtual memory design and performance.” Tech.
Rep. CS/E 92-010, Oregon Graduate Institute, 1992.

[17] Intel.Pentium Processor User’s Manual. Intel Corporation, Mt. Prospect
IL, 1993.

[18] G. Kane and J.Heinrich.MIPS RISC Architecture. Prentice-Hall,
Englewood Cliffs NJ, 1992.

[19] Y. A. Khalidi and M.Talluri. “Improving the address translation
performance of widely shared pages.” Tech. Rep. SMLI TR-95-38, Sun
Microsystems, February 1995.

[20] J.Liedtke. “Address space sparsity and fine granularity.”ACM
Operating Systems Review, vol. 29, no. 1, pp. 87–90, January 1995.

[21] C. May, E.Silha, R.Simpson, and H.Warren, Eds.The PowerPC
Architecture: A Specification for a New Family of RISC Processors.
Morgan Kaufmann Publishers, San Francisco CA, 1994.

[22] J.E. B. Moss. “Working with persistent objects: To swizzle or not to
swizzle.”IEEE Transactions on Software Engineering, vol. 18, no. 8, pp.
657–673, August 1992.

[23] E. I. Organick.The Multics System: An Examination of its Structure. The
MIT Press, Cambridge MA, 1972.

[24] M. L. Scott, T.J. LeBlanc, and B.D. Marsh. “Design rationale for
Psyche, a general-purpose multiprocessor operating system.” InProc.
1988 International Conference on Parallel Processing, August 1988.

[25] R. L. Sites, Ed.Alpha Architecture Reference Manual. Digital
Equipment Corporation, Maynard MA, 1992.

[26] M. Talluri, M. D. Hill, and Y.A. Khalidi. “A new page table for 64-bit
address spaces.” InProc. Fifteenth ACM Symposium on Operating
Systems Principles (SOSP-15), December 1995.

[27] W.-H. Wang, J.-L. Baer, and H.M. Levy. “Organization and
performance of a two-level virtual-real cache hierarchy.” InProc. 16th
Annual International Symposium on Computer Architecture (ISCA-16),
June 1989, pp. 140–148.

[28] S.Weiss and J.E. Smith.POWER and PowerPC. Morgan Kaufmann
Publishers, San Francisco CA, 1994.

[29] B. Wheeler and B.N. Bershad. “Consistency management for virtually
indexed caches.” InProc. Fifth Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-5), October
1992, pp. 124–136.

