Segmented Ad dressing Solves the Vir tual Cac he
Synonym Problem

Bruce Jacob

Dept. of Electrical & Computer Engineering
University of Maryland, College Park
blj@eng.umd.edu

Technical Report UMD-SCA-1997-01 December, 1997

ABSTRACT ory at multiple locations within their address spacesy-t@n use
virtual address aliasing—without creating a symorproblem in the
If one is interested solely in processor speed, one must use virtuallyirtual cache.
indexed caches. The traditional purported weakness of virtual caches In this tech report we describe a haad@/softvare oganization
is their inability to support shared memdwary implementations of that eliminates virtual-cache consistgpecoblems, reduces theysi
shared memory are at odds with virtual caches—ASID aliasing anchl requirements of the page table, and eliminates contention in the
virtual-address aliasing (techniques used teigeoshared memory) TLB. Memory is shared at the granularity ofyjsents and relocated
can causedise cache misses and/orggiise to data inconsistencies in at the granularity of pages. A single global page table maps the global
a virtual cache, Ut are necessary features of martual memory virtual address space, and guarantees a one-to-one mapping between
implementations. By appropriately using areented architecture pages in the global space and pages ysipal memory Virtual-
one can sok these problems. In this tech report we describe a virtualache synogyms are thus eliminated, and the virtual memory system
memory system deloped for a ggmented microarchitecture and can be made less complicated. The global page table eliminates the
present the folling benefits devied from such an ganization: (&) need for multiple mappings to the same sharsgdipal page, which
the need to flush virtual caches can be eliminated, (b) virtual cachieduces contention in the TLB. It also reduces thesiphl space
consisteng management can be eliminated, (c) page table spagequirements for the page table byaatdr of two. e shov that the
requirements can be cut in half by eliminating the need to replicatsgmented aganization still supports the featuregected of virtual
page table entries for shared pages, and (d) the virtual memory systemmory from sharing pages at fdifent addresses and protections to
can be made less compleecause it does notvyeato deal with the complex operations such as gepn-write.
virtual-cache synomm problem.
2 BACKGROUND AND PERSPECTIVE
1 INTRODUCTION
In this section we present the requirements of a memory-management
Virtual caches alle faster processing in the common case becausdesign: it must support the functions of virtual memory as we ha
they do not require address translation when requested data is foundme to kna them. W review the characteristics of gmented
in the caches. Tlgeare not used in mgrarchitectures despite their architectures, then the fundamental problems of virtual caches and
apparent simplicity because yhbave seeral potential pitills that shared memory
need careful management [10, 16, 29]. Irviowgs research on high
clock-rate PwerPC designs, we disegred that the ggnented mem- 2.1 Requirements
ory-management architecture of theMed”C vorks etremely well
with a virtual cache ganization and an appropriate virtual memory The basic functions of virtual memory are well-wmo[7]. One is to
organization, eliminating the need for virtual-cache management antteate a virtual-machine \@ronment for gery process, which
allowing the operating system to minimize the space requirements fgamong other things) alles text, data, and stackgens to bgin at
the page table. Though it might seenviobs that sgmentation can statically knevn locations in all processes without fear of conflict.
solve the problems of a virtual cachegyamization, we note that\wse Another is demand-paging—setting a finer granularity for process
eral contemporary microarchitectures usgnsented addressing residence than an entire address space, theretynalla process to
mechanisms—including APRISC [12], PeverPC [15], PQVER2 execute as long as a single page is memory-residefay$ expecta-
[28], and x86 [17]—while only RRISC and PQVER?2 talke adan- tions of virtual memoryxend its original semantics andmanclude

tage of a virtual cache. the following additional requirements:
Management of the virtual cache can beided entirely if shar-
ing is implemented through the globagyseented space. Thisves Virtual-Address Aliasing: Processes must be able to map

the same benefits as single address-space operating systems shared objects at (multiple) féifent virtual addresses.
(SASOS): if virtual-address aliasing (allimg processes to usefeif-

ent virtual addresses for the samggital data) is eliminated, then so Protection Aliasing: Processes must be able to map shared

is the virtual-cachesynonym mblem[10]. Thus, consistegcman- objects using diérent protections.

agement of the virtual cache can be eliminated by a simple operating-

system qganization. The adntage of a ggnented approach (as Virtual Caches: Fast systems require virtual caches. The
opposed to a SASOS approach) is that by mapping virtual addresses operating system should notesto flush a virtual cache to

to physical addresses in tasteps, a ggnented architectureuiles ensure data consistgnc

virtual aliasing and the syngm problem into tw orthogonal issues.

Whereas theare linked in traditional architectures, thare unrelated The traditional virtual memory mechanism is not well equipped to
in a sgmented architecture; thus applications can mgpipdl mem- deal with these requirements. In order to distinguish between con-

Hardware Virtual Address Space Hardware Virtual Address Space

i i

Page Table Segment_ation
Mechanism Mechanism
Physical Memory Global Virtual fddress Space

Figure 1: The single indirection of traditional memor y-management

organizations. Page Table

Mechanism

l

Physical Memory

texts, the traditional architecture usesldess space identifiger
(ASIDs) which by definition kep processes from sharing pages €8Srigure 2: Multiple le vels of indirection in a segmented memor

ily. A typical ASID mechanism assigns one identifiervierg page, management or ganization. Y

and one identifier tovery process; therefore multiple page-table and

TLB entries may be required to allanultiple processes/ASIDs to

map a gien page—this can fill the TLB with duplicate entries map-

ping the same pisical page, thereby reducing the hit rate of the TLB

significantly [19]. individual usetlevel address space; processes generate 32-bit
addresses that argtended by 16-bit ggnent selectors. The selectors

2.2 Segmented Ar chitectures are used by hardae to indg into one of tv descriptor tables that

produce a base address for thgnsent corresponding to thegseent
Traditional virtual memory systems pide a mapping between pro- selector This base address is added to the 32-bit virtual address pro-
cess address spaces angsptal memory SASOS designs place all duced by the application to form a global 32-bit virtual address. The
processes in a single address space and map tiesspace onto se@ments can range from a single byte to 4GB in size. There is no
physical memoryBoth can be represented as a singlellef map- mechanism to pwent diferent sgments from werlapping one
ping, as shan in Figure 1. These ganizations manage a singledé another in the global 4GB space. Thgment selectors are produced
of indirection between virtual and ysical memory; the combine indirectly. At ary given time a process can reference six of its se
into a single mechanism thedvprimary functions of virtual mem- ments; selectors for these sigsents are stored in sixgsaent rg-
ory: that of preiding a virtual operating @ironment and that of isters that are referenced by comteOne sgment rgister is
demand-paging on a small (page-sized) granulaBiggmentation referenced implicitly by>ecuting instructions; it contains agseent
allows one to praide these tw distinct functions through twdistinct ~ selector for the current codegseent. Another ggnent rgister holds
mechanisms: tw levels of indirection between the virtual addressthe sgment selector for the stack. The other four are used for data
space and main memorVhe first l@el of indirection supports the seyments, and a process can specify which of theest rgisters to
virtual operating erironment and alles processes to locate objects use for diferent loads and stores. One of the dagasat rgisters is

at arbitrary sgment-aligned addresses. The secowdl lef indirec- implicitly referenced for all string instructions, unleggpleitly over
tion provides m@ement of data betweenysical memory and back- ridden.
ing store at the granularity of pages. In contrast, the IBM 801 [2] introduced adiksize sgmented

This oganization is shen in Figure 2. Processes operate in thearchitecture that continued through to theWHEIR and PaerPC
top layer A process sees a contiguous address space that stretclheshitectures [15, 21, 28]. ThewdarPC memory management design
from 0x00000000 to OxFFFFFFFmclusve (we will restrict our- maps user addresses onto a global flat address space rgacthian
sehes to using 32-bib@mples in this report for the purposes olvbre each peprocess address spacegi®@ents are 256MB contiguous
ity and clarity). The process address space is transparently mappegions of virtual space, and (in a 32-bit implementation) gfhsats
onto the middle layer at the granularity of haadevsgments, identi- malke up an applicatios’ address space. Programs generate 32-bit
fied by the top bits of the user address. Tigensats that makup a “effective addressésThe top four bits of the &fctive address select
userlevel process may in actuality be scattered throughout the global sgment identifier from a set of 16 harahe sgment rgisters. The
space and mayevy well not be contiguous. Mever, the addresses segment identifier is concatenated with the bottom 28 bits of the
generated by the process do not reach the caclyeatbenapped effective address to form amnxtended virtual address. It is this
onto the global space first. The cache and TLB see global addressxtended virtual address space that is mapped by the TLBs and page
only. There is therefore no critical path between address generatidable. for brevity and clarity we will restrict ourseles to using fied-
and a virtual cache lookup@ept for the sgmentation mechanism— size sgmentation for eamples throughout this report.

and if the sgment size is lger than the L1 cache size thgreent Semented architectures need not use address space identifiers;
bits are not used in the cache lookup, thus theentation mecha- address space protection is guaranteed by tiraesgation mecha-
nism can run in parallel with the cache access. nism? If two processes kia the same genent identifierthey share

Semented systems v@a long historyMultics, one of the earli- that virtual sgment by definition. Similarlyif a process has avgin
est sgmented operating systems, used gmanted/paged architec- segment identifier in seeral of its sgment rgisters, it has mapped
ture, the GE 645 [23]. This architectureasvsimilar to the Intel the sgment into its address space at multiple locations. The operating
Pentium memory managemengamization [17] in that both the GE system can enforce intprocess protection by disalng shared
645 and the Intel Pentium supporgsents of ariable size. An segments identifiers, or it can share memory between processes by
important point is that the Pentiusrglobal space is no gar than an overlapping sgment identifiers.

Address Space A g Address Space A
I= I= —8 « &

- Virtual - Direct-Mapped Set-Associative
4"] e Cache 4"] - Virtual Cache Virtual Cache
Physical [Physical L
Memory Memory
Address Space B Address Space B
Figure 3: The synon ym problem of vir tual cac hes. If two processes are Figure 4: Simple har dware solution to pa ge aliasing. If the cache is no
allowed to map physical pages at arbitrary locations in their virtual address larger than the page size and direct-mapped, then no aliasing can occur. Set-
spaces, inconsistencies can occur in a virtually indexed cache. associative caches can be used, provided they have physical tags.
2.3 The Consistenc y Problem of Vir tual Cac hes tages are the limitation in cache size and the increased access time of

a set-associat cache. & example, the Pentium and WerPC
A virtually indexed cache allws the processor to use the untranslatedarchitectures must increase assodgtgtin order to increase the size
virtual address as an indeThis remoes the TLB from the critical of their on-chip caches and both architectures n@ached 8-ay set-
path, alleving shorter gcle times and/or a reduced number of pipe-associatie cache designs. Pically-tagged caches guarantee consis-
line stages. Heever, it introduces the possibility of data igtéy teng/ within a single cache setytithis only applies when the virtual
problems occurring when twprocesses write to the sameygibal synoryms map to the same set.
location through dferent virtual addresses; if the pages aligfedif
ently in the cache, erroneous results can odaus is called the vir- Software Solutions
tual cachesynonym pblem[10]. The problem is illustrated in Figure
3; a shared pfsical page maps to thfent locations in tev different ~ Wheeler & Bershad describe a state-machine approach to reduce the
process address spaces. The virtual cacheger ldran a page, so the number of cache flushes required to guarantee congig29jc The
pages map to dérent locations in the virtual cache. A fas the mechanism alles a page to be mappedyamere in an address
cache is concerned, these are tifferent pages, not twdifferent space, at some cost in implementation coriigieThe aliasing prob-
views of the same page. Thus, if the processes write to the page at thm can also be sad through operating system pglias shan in

same time, tw different \alues will be found in the cache. Figure 5. Br example, the SPUR project disalled virtual aliases
altogether [13]. SimilarlyOS/2 locates all sharedgseents at the
Hardware Solutions same address in all processes [6]. This reduces the amount of virtual

memory @&ailable to each process, whether the process uses the
The synogm problem has been sely in hardwre using schemes shared sgments or not; heever, it eliminates the aliasing problem
such as dual tag sets [10] or back-pointers [2i]{Hese require com- entirely and allws pointers to be shared between address spaces.
plex hardware and control logic that can impede high clock rates. On8unOS requires shared pages to be aligned on cache-size boundaries
can also restrict the size of the cache to the page sirettee case of [11], allowing ptysical pages to be mapped into address spaces at
set-associate caches, similarly restrict the size of eaathe column almost aw location tut ensuring that virtual aliases align in the cache.
(the size of the cachewitied by its associafity, for lack of a better Note that the SunOS scheme only selthe problem for direct-
term) to the size of one page. This is illustrated in Fiduieis the = mapped virtual caches or set-assoegatirtual caches with pisical
solution used in the R@rPC and Pentium processors. The digadv tags; shared data can stitis in two different blocks of the same set
in an associate, virtually-indexed, virtually-tagged cache. Single
address space operating systems such as Opal [4, 5] or Psyche [24]
solve the problem by eliminating the concept of wilial perpro-

1. Page-leel protection is a diérent thing entirely; whereas address-space
protection is intended taelep processes from accessing each sthata,

page-leel protection is intended to protect pages from misuze. F cess address spaces entirelye OS/2, thg define a one-to-one cor-
instance, pageel protection keps processes from writing tattpages respondence of virtual to pical addresses and in doing sowallo
by marking them read-onlgtc. Rige-level protection is typically sup- pointers to be freely shared across process boundaries.

ported through a TLBUi could be supported on adar granularity
through the sgmentation mechanism. Wever there is nothing intrinsic
to sgments that prades page-hel protection, whereas address-space
protectionis intrinsic to their nature.

Address Space A Address Space A
= — = —

Virtual Virtual

Cache Cache
Physical Physical

Memory Memory 4"] 1
- | — |

Address Space B Address Space B

(a) SPUR and OS/2 solutions (b) SunOS solution

Figure 5: Synon ym problem solved b y operating system polic y. OS/2 and the operating system for the SPUR processor guarantee the consistency of shared
data by mandating that shared segments map into every process at the same virtual location. SunOS guarantees data consistency by aligning shared pages on
cache-size boundaries. The bottom few bits of all virtual page numbers mapped to any given physical page will be identical, and the pages will map to the same
location in the cache. Note this works best with a direct-mapped cache.

3 SHARED MEMORY VS. THE VIRTUAL CACHE increasing sharedg®mn, which would be inimical to a 24x7 gmon-
ment, i.e. one that is intended to be opega?i4 hours a dage/en

This section describes some of the higheel problems that arise days a week. 64-bit SASOS implementationsichthis problem by

when implementing shared memory on virtual caclgarozations. using a global sharedgien that is so enormous itowid tale a \ery

As described alwe, virtual caches ka an inherent consistgnprob- long time to becomeverrun by fragmentation. Other systems [8, 9]
lem; this problem tends to conflict with the mechanisms used tavoid the problem by #liding a fixed-size shared geon into uniform
implement shared memory sections and/or turning dm requests for more shared memory if all

sections are in use.
3.1 The Problems with Vir tual-Ad dress Aliasing

Virtual-Ad dress Aliasing is Detrimental
Virtual-address aliasing is a necessa#iy; & is useful, yet it breaks
mary simple models. Its usefulness outweighs its problems, therefofEhere are tw issues associated with global addresses: one is that the
future memory management systems must continue to support it. eliminate virtual synoyms, the other is that thallow shared point-

ers. If a system requires global addressing, then shajiedseun the
Virtual-Ad dress Aliasing is Necessar y risk of fragmentation, Ut applications are alleed to place self-refer-

ential pointers in the sharedgiens without heing to swizzle[22]
Most of the softare solutions for the virtual-cache sygonproblem between address spaceswdeer, as suggested alm this require-
address the consistgnproblem by limiting the choices where a pro- ment is too rigid; shared memory should bedihknto address spaces
cess can map a ysical page in its virtual space. In some cases, that ary (page-aligned) address/ed though alleving virtual aliasing
number of choices is reduced to one; the page is mapped at one gtan reduce the ability to store pointers in the shagdns
bally unique location or it is not mapped at all. While digéhg vir- Figure 6 illustrates the problem: processes A and Z ufszedit
tual aliases wuld seem to be a simple andgelet way to sole the names for the shared data, and using each striters will lead to
virtual cache consistepgroblem, it creates another headache forconfusion. This problem arises because the operating systsm w
operating systems—virtual fragmentation. allowed or een instructed by the processes to place the shayied re

When a global sharedgien is grbage-collected, thegien can- at different virtual addresses within each of the &edress spaces.

not help it become fragmented. This is a problem: whereas de-fragJsing diferent addresses is not problematic until processes attempt to
mentation (compaction) of disk space orygbally-addressed share pointers that reference data within the shamgdnreln this
memory is as simple as relocating pages or blocks, virtuallgxample, the sharedg®n contains a binary tree that uses self-refer-
addressed ggons cannot be easily relocated. Yhere location- ential pointers that are not consistent because the shaied i®
dependent; all pointers referencing the locations must also Hecated at ditrent virtual addresses in each address space.
changed. This is not aui@l task and it is not clear that it can be done It is clear that unless processes use the same virtual address for
at all. Thus, a system that forces all processes to use the same virtilred same data, there is little the operating system can do besides swiz-
address for the same ydical data will hee a fragmented shared zle the pointers or force apps to bsse+ofsetaddressing schemes
region that cannot be de-fragmented without enormodisrtef in shared rgions. Nonetheless, wegacome to xpect support for
Depending on the amount of sharing this could mean a monotonicalgrtual aliasing, therefore it is a requirement that a system support it.

Root of dynamic tree, located

0x80000000 at offset 0 from the beginning 0x80000000
of the shared segment
Object created by Process Z,
added to the tree at offset .
0x20 from the beginning of Virtual Address
the shared segment (vittual ©<—@ | 0x60000000
address 0x60000020)
- ‘/
Virtual Address ™
0x40000000 | @—»O &
. Shared Region
Object created by Process A, added to the tree
using offset 0x10 from the beginning of the
shared segment (virtual address 0x40000010)
0 0
Process A’'s Process Z's
Address Space Address Space
Figure 6: The pr oblem with allo wing pr ocesses to map shared data at diff ~erent vir tual ad dresses.
3.2 The Problems with Ad dress-Space Identifier s ber of TLB entries required to map a shared pagestctly one, har-

ever the scheme introduces additional problems. The use of a global
Sharing memory also causes performance problems at the same tibie essentially circuments the protection mechanism and thus
that it reduces the need forygital memoryThe problem has been requires flushing the TLB of shared entries on cdrgeitch, as the
mentioned earlier—the use of ASIDs for address space protecti@hared rgions are unprotected. Moraw; it does not allv a shared
makes sharing difcult, requiring multiple page table and TLB entries page to be mapped atfdifent virtual addresses, or withfdifent pro-
for different aliases to the sameypital page. Khalidi andalluri tections. Using a global-bit mechanism is clearly unsuitable for sup-

describe the problem: porting sharing if shared memory is to be used often.

If we eliminate the TLB, then the ASID, or something ealgint
Each alias traditionally requires separate page table and to distinguish between @rent contets, will be required in the cache
translation lookasideutfer (TLB) entries that contain line. The use of ASIDs for protection causes the same prohbieim b
identical translation information. In systems with man a nav setting. N, if two processes share the sanggare of data, the
aliases, this results in significant memory demand for storing data will be tagged by one ASID and if the wrong process tries to
page tables and unnecessary TLB misses onxtonte access the data that is in the cache, it will see an apparent cache miss
switches. [Addressing these problems] reduces the number of simply because the data is tagged by the ASID of the other process.
user TLB misses by up to 50% in a 256-entry fully- Again, using a global-bit to magkl shared cache lines neskthem
associatie TLB and a 4096-entryvel-two TLB. The unprotected agjnst other processes and so the cache lines must be
memory used to store hashed page tables is dramatically flushed on conte switch. This is potentially much morepensie
reduced by requiring a single page table entry instead of than flushing mappings from the TLB because the granularity for
separate page table entries for hundreds of aliases to a flushing the cache is usually a cache line, requiringyrogerations
physical page, [using] 97% less memd@i9] to flush an entire page.

Since ASIDs identify virtual pages with the processes thattbem, 4 THE “VIR TUE” OF SEGMENTATION
mapping information necessarily includes an ASIDwHer, this
ensures that forvery shared page there are multiple entries in theéOne olvious solution to the syngm and shared memory problems is
page tables, since eachfeiit by at least the ASID. This redundant to use global naming, as in a SASOS implementation, sovbat e
mapping information requires more space in the page tables, andpitysical address corresponds teaetly one virtual location. This
floods the TLB with superfluous entries; for instance, if thewagge eliminates redundagcof page table entries for yamiven plysical
number of mappings per page were tihe efective size of the TLB page, with significant performance and spascénga. Havever, it
would be cut in half. Indct, Khalidi & Talluri report the werage does not allev processes to map objects at multiple locations within
number of mappings per page on an idle system to be 2.3, gnd thiheir address spaces—all processes must use the same name for the
report a decrease by 50% of TLB misses when the superfluous-PE&me data, which conflicts with our stated requirement ofialip
problem is eliminated. A scheme that addresses this problem c@nocesses to map objects afatiént virtual addresses, and at multiple
reduce TLB contention as well asygital memory requirements. locations within their address space.

The problem can be s@d by a global bit in the TLB enfry A segmented architectureveids this conflict; sgmentation
which identifies a virtual page as belonging to no ASID in particulargivides virtual aliasing and the synyon problem into tw orthogonal
therefore, gery ASID will successfully match. This reduces the num-issues. A one-to-one mapping from global spaceysighl space can

Process A Process B Process C ent sgment-level protections, or mapped into the same address space

el e e e e e at different locations with diérent protections.illustrate, Figure 8

shavs an @ample of one possible cpn-write implementation. It

assumes hardave support for protection in both thegsentation

mechanism (ggment granularity) and the TLB (page granulayiag

in the Pentium [17]. In the first step, a process maps an object with
) read-write permissions. The object is located in a singiaeet, and

‘G"’ba' Virual Space o v/ the permissions are associated with thgremt. In the second step,

‘ the process grants access to another process, which maps the object
Paged / \ into its address space at another virtual address. Thehare the
Segment object read-onlycopy-on-write. In the third step, Process B has writ-
ten to the object and the written page has been copied. At this point

g‘:;;em only there are tw choices. One is to cgphe entire object, which could be

NAN partially-used) mary pages, into a meset of page frames. Thisould allov both

processes to map their copies of the object read-write. Alternately

one could stop after the first page (the written page) to delgingop

the rest until absolutely necessamyaintaining reference pointers

until the entire object is copied; this scenario isshim Figure 8(c).

At this point, both processesvearead-write access to the object at

the sgment leel, but this could &il at the page-acceswiéd If either

process writes to the read-only pagey il be copied. The disad-

be maintained—thereby eliminating the syyronproblem—uwhile vantage of this scheme is that it requires sibling-pointers to the origi-

supporting virtual aliases by independently mappiggesits in pro- nal mappings so that if a opjis performed, access to the original

cess address spaces ongnsents in the global space. Such agaer page can be changed to read-write. An alternggniation is shon

nization is illustrated in Figure 7. In the figure, three processes shaire Figure 9, in which there is no harawe support for pagevel pro-

two different sgments, and ve mapped the geents into arbitrary tection. Here, we need sibling-pointers at thggremnt leel. As in the

sggment slots. Wo of the processes V@mapped the samegseent previous example, we canvid chains of sibling-pointers by simply

at multiple locations in their address spaces. The page table maps togying the entire object when it is first written.

sggments onto pysical memory at the granularity of pages. If the The issue becomes one ofsent granularitylf segments repre-

mapping of global pages toysical pages is one-to-one, there are nosent the granularity of sharing and data placement within an address

virtual-cache syngmm problems. space (bt not the granularity of data wmement between memory and
When the synoyim problem is eliminated, there is no longer a disk), theg must be numerous and small. ¥tshould still be lager

need to flush a virtual cache or a TLB for consistemasons. The than the L1 cache, tcekp the critical path between address genera-

only time flushing is required is when virtuagjegents are re-mapped tion and cache access cle@herefore the address space should be

to nav physical pages, such as when the operating system runs outafided into a lage number of small genents, for instance 1024

unused sgment identifiers and needs to re-use old ones; if there KMB seyments, 4096 1MB genents, 16,384 256KB gments, etc.

ary data left in the caches or TLB tagged by the old virtual address,

data inconsistencies can occhDirect Memory Access (DMA) also 5 DISCUSSION

requires flushing of the fatted rgion before a transaction, as an 1/0

controller does not kmowhether the data ivverwrites is currently in In this section, we discuss a page-table mechanism that supports the

a virtual cache. required virtual memory featureseWompare its space requirements
Applications may map objects usingfelient protections; the against a more traditional gainization, and we briefly describevho

same object can be mapped intdedént address spaces withfelif the page table @uld work on seeral commercial architectures.

Physical Memory [11 T

Figure 7: The use of segments to pr ovide vir tual ad dress aliasing.

Process A Process A Process B Process A Process B
e Y S O N | e Y

RW RO, RO, RW RW
cow cow
Global Virtual Space Global Virtual Space Global Virtual Space ,/ éigﬁng-poir{féfé\
[il [T [i T
[N /0
\ (i
\
\
N s,
.)) w
Physical Memory I 1 - i m Physical Memory I i i m Physical Memory I 1
copy
(a) Single process owns an object, placed (b) Process shares object with another (c) Second process wiites to first page in
in a segment process via shared segments segment, gets own copy

Figure 8: Cop y-on-write in a segmented ar chitecture .

32-bit Effective Address
Segno (10 bits) Segment Offset (22 bits)

Process A Process B
CIT T T 171 CTC T T T]
‘\\ _ Sibling-pointers _~

RW,
COFault
Segment Registers

Global Virtual Space
[[T [T

52-bit Virtual Address

Segment ID (30 bits) Segment Offset (22 bits)
NULL
Physical Memory [[T il [T il
co
ied TLB and Cach
. . . Page Table ache
(c) Second process wiites to first page in segment, gets avn copy

Figure 9: An alternate implementation of cop y-on-write .

Figure 10: Segmentation mec hanism used in Discussion.

5.1 Global P age Table one-to-one mapping between global pages agsdigdl page frames,
therefore the virtual-cache syryon problem disappears. Though we

The sgmentation mechanism suggests a-tigred page table, one have not stated it as a requirement, the virtual-memory fragmentation

table mapping global pages toypltal page frames, and a {peo- problem is also sobd by this ayanization; there is no restriction on

cess table mappinggments onto the global spacer Ehe purposes where an object is placed in the global space, and there is no restric-

of this discussion, we assumewoPC-like sgmentation based on tion on where an object is placed in a process address space.

the top bits of the address space, a 32-gitfe address space, a 52-

bit virtual address space, and a 4KB page size. Figure 10 illustrate®2 Page Table Efficienc y

the mechanism. Wassume that theggaentation granularity is 4MB;

the 4GB address space isided into 1024 sgments. This simplifies The theoretical minimum page table size is 0.1%aking set size,

the design and should nalthe discussion clear; a feoyte page- assuming 4KB pages, 4B page table entries, and fully-populated page

table entry (PTE) can map a 4KB page, which can in turn map aable pages. Heever, most virtual memory ganizations do not

entire 4MB sgment. share PTEs when pages are shared;feryeshared page there is

Our page table ganization uses a single global table to map themore than one PTE in the page table. Khalidi @&IUfi shav that

entire 52-bit sgmented virtual address spacey/Asingle process is these gtra PTES can increase the page table size by an order of mag-

mapped onto at most 2GB of this global space, and so it requiresrdtude or more [19].

most 2MB of the global table atyagiven moment. The page-table We compare the size of the global page table to the theoretical

organization is pictured in Figure 11; it sh® the global table as a minimum size of a traditional page table. Khalidi &Itiri report that

4TB linear structure at the top of the global virtual address spacthe aerage number of mappings per page on an idle system is 2.3,

composed of ¥ 4KB PTE pages that each map a 4M@nsent. and the gerage number of mappings $haed pages is 27. This

Each user process has a 2MB address space (as in MIPS [18]), whigiplies that the ratio of prate to shared pages in arege system is

can be mapped by 512 PTE pages in the global page table. These 8921 or that 5% of a typical systesrpages are shared pagdhese

PTE pages makup auser pae table a disjunct set of virtual pages at are the figures we use in our calculations. TWerhlead of a tradi-

the top of the global address space. These 512 pages can be magjmethl page table (one in which there must be multiple PTEs for multi-

by 512 PTEs—a colleet structure small enough to wirevdoin ple mappings to the same page) can be calculated as

physical memory foreery running process (2KB). This structure is (number of PTEX(size of PTE _ (p+27s)4 _ (p+279)

termed theuser oot paye tablein the figure. In addition, there must _ = =
be a table of 512 genent IDs for wery process, a 4KB structure, (number of pagggsize of page (p+s)4096 (p+5)1024

since each ggnent ID is 30 bits plus protection and “mode” bits such
as cog-on-write. The size of this structure can be cut in half if we ca
encode the protection and mode information o hits.

wherep is the number of prate (non-shared) pages in the system,
hndsis the number of shared pages in the systegna¥§ume a ratio

. C - . of 1024:1 between page size and PTE size. This represents the theo-
This hardvare/softvare oganization satisfies our requirements. retical minimum gerhead since it does not eaknto account par-

Each process has a virtual-machingimmment in which to operate; ..~ ° " .
the sgment mechanism maps the process address space onto the gt]l%n-y filled PTE pages. 67 every shared page there is arezge 27

bal space transparentlyemand-paging is handled by the global page
table. Processes map objects at arbitraggnsat-aligned addresses in
their address spaces, and can map objects at multiple locations if th The aerage number of mappings per page is the total number of map-
wish. Processes can also map objects witlereifit protections, as ~ Pings in the systemded by the total number of pages, or

long as the sgnentation mechanism supports protection bits for each £+ 275 _ 23, which yields g:sratio of 19:1.

segment. And, as we kia described, the global page table maintains a

processes mapping it, therefore the page table requires 27 PTEs
every shared page. Thevarhead is in terms of the ydical-page
working set size; the fraction of y$ical memory required to map a
certain number of pisical pages. As the percentage of sharing
increases, the number of ysital pages does not increaset the
number of PTEs in the page table does increase.

The global page tablererhead is calculated the sameywexcept
that PTEs are not duplicated when pages are shared. Thusethe o
head of the table is a constant:

(p+s)d 1
(p +5)4096 1024

Clearly the global page table is smaller than a traditional page table,

and it approaches the minimum size necessary to mapraagnount
of physical memoryFigure 12 shes the eerhead of each page table

organization as the Vel of sharing in a system changes. The x-axis
represents the deee of sharing in a system, as the number of pages

that are shared/(p + 9)). The y-axis represents theeshead of the
page table, as the size of the page tabideti by the total size of the
data pages. In average system, where 5% of the pages are share

for
0.008
@—@ Traditional page table
l—HM Global page table

0.006 4
Q@
Qo
8
o
j=2]
154
o
‘5 0.004 4
°
54
Q
<
[
>
o

0.002 4

0.000 L - - .

0% 5% 10% 15%

Percentage of pages shared

20%

d,

we should rpect to use less than half the space required by a tradkgure 12: Comparison of pa ge table space requirements.

tional page table ganization.

5.3 Portability

Since sharing is on agment basis, we ould like fine-grained gg
mentation, which is umailable in most commercial processors.
Therefore ap s@mented architecture could benefit from thigaoi-
zation, lut a granularity of layje sgments might makthe system less
useful. Also, the lack of protection bits associated wigmsts in
most architectures (includingAFRISC and PwerPC) means that
processes will not be able to shargmsents with dierent protec-
tions. In architectures lackinggsaent protection bits, all mappings to
an object will be protected through the page table, not throggh se
ments. Since the page table does not distinguish betwedererlif
mappings to the same virtuabseent, all mappings to avgin virtual
segment will hae the same protections.

Design f or PowerPC

The PaverPC oganization vould differ in two additional vays. As
described abe, since there are no protection bits associated with
seggments the systemawld not allev different mappings to the same
object with diferent protections. A cgpon-write mechanism could
still be implemented, heever, through the global page table—by
marking indvidual pages as read-onlgopy-on-write. This scheme
would require back-pointers to determine the multiple aliases to a
physical page, so that theould be re-mapped when the page is cop-
ied. Second, since there are only sixtegmants gailable, only 16
entries vould be needed in theggaent table—it could therefore fit in

4KB Page

Segment Table: 4KB of Segment Identifiers

512 30-bit IDs plus protection bits Two pages:
A 4-byte PTE U R P Tabl SKB Process
-byte s ser Root Page Table Control Block
| e maps e e siz pres (UL~ erocesssme |
4B
Unmapped Physical Memory
Mapped Virtual Memory
Maps

2MB: 51

User Page Table
2 4KB PTE Pages, 512K PTEs

A 4KB PTE Page: a continuous group
of 1024 PTEs that collectively map 4MB

4 KB 4 KB

Maps

2GB:

Per-Process User Address Space
512 4MB segments, 512K 4KB virtual pages

- A 4MB virtual segment,

1/512 of an address space

4 MB

52-bit Global Virtual Address Space: 22?0 4MB virtual segments

[[[T [[[T [T [[T

4 MB
Virtual Segment

Figure 11: A global pa ge table organization.

230 PTE Pages: 4KB each,
4TB total

with process state, and so the process control blockdvbe half as are six sgment rgisters and theare addressed according to the con-
large. text in which the are used—there is only onagister for code ¢
The PoverPC hardare-defined ierted page table is not a true ments, one gister for stack ggments, etc. The gment rgisters are
page table (not all mappings are guaranteed to reside in the patperefore much less Rible than PwerPC sgments, and tlyecould
table), lut rather a softare TLB [1]. Therefore we can useygage have a laver hit rate. The ggnentation mechanism is not used by

table oganization we \ant. mary systems because a process requiring numergusests will
frequently reference memory to reloadyreent rgisters. Pentium
Design f or PA-RISC performance and fkébility could improve dramatically if the caches

were virtual and layer (allav the cache indeto be lager than the
The FA-RISC architecture [12] has adility similar to PaverPC sg- page size) and if the gment rgisters were less comteoriented and
ments, a set of 8pace egisters, that maps a 32-bit address onto a more numerous.
larger (64-bit) virtual address space. User applications may &lad v The Pentium sgment rgisters include one for the stack, one for
ues into the space gisters at will. Protection is guaranteed by code, and four for data—one of which is used by string instructions.
restricting access to some of thgiséers and by the use of protection An application can reference 8192 local {peycess) sgments, and
IDs, similar to ASIDs. The processor maintains four protection ID8191 global sgments. Sgment sizes are sofare-defined and can
per process and if grprotection ID matches the access ID of a pagerange from 1 byte to 4 gifpytes. Each genent has a fotit protec-
access is granted. Note that a process may not alter the contents ofttbe ID associated with it encodingad-only read/write execute-
protection-ID reisters. only, etc. The protection ID also encodes information such as whether
PA-RISC supports the concept of a global address space andttze sgment size is allwed to change.
global page table though the spacgisters. In #ct, researchers at The system supports a global 4MB page table that maps the 4GB
Hewlett-Packard hee stressed that this is the beaimo share mem- shared linear address space. The main problem is theelglatinall
ory on A-RISC: global address spaceol¥ gigabytes is not much room in which to
work, which could cause the memory allocation logic to become
[One can] tak adantage of the global virtual address space complicated. On the other hand, a benefit is that theesatation

provided by the R-RISC to eliminate all remapping ofxte mechanism wuld become an address space protection mechanism.
pages shared between tasks. The idea is to maptiobject This is similar to the use ofg®ents in the ReerPC architecture. A

to a single range of virtual addresses in the global virtual set of sgments uniquely identifies a process address space; full pro-
address space, and tosball tasks sharing thextsobject to tection is guaranteed by noteslapping sgments. Ay segment that
access it using that same range of virtual addresses. This not is not shared by another process is protected from all other processes.
only eliminates virtual address aliasing at the hareveavel, The adantage is that one classicafjament aginst the Intel archi-

it eliminates it at all leels. This is the “right” \ay to share tecture—that its lack of ASIDs is a performance drag by requiring
memory on B-RISC. [3] TLB flushes on conie switch—disappears. Since the TLB maps

addresses from the global linear space, no flushingdabe neces-
Unlike PaverPC, R-RISC does not specify a page tablgamization sary
for the operating system, though HP-UX has traditionally used an
inverted page table [14]. One can therefore use a global page taldesign f or 64-bit Ar chitectures
organization. The diérence is that the user root page tablesla
not be as simple as in our generic design, in which a process only HHse virtual-cache syngm problem does not automatically gwey
access to a 2GB windoat ary time and so the maximum size of the with 64-bit addressing, unless one uses the 64-bit address space for a
user root page table is 2KBAMRISC allowvs processes taxtend their SASOS aoganization. As described earlighis has some disaaiv-
address space at will without operating system iatgion, by plac- tages and does not support all the required virtual memory features. A
ing space IDs into the spacgjisters—subject to the access-ID con- segmentation mechanism is still necessary in a 64-bit architecture in
straints. This alles the process to sw globalspacesn and out of order to satisfy all of our stated requirements.
its address space at will, implying that the size of the wiredidser Note that the 64-bit ReerPC implementation has the samedix
root page table can gwowithout bounds. This can be set’by sement size as the 32-bit implementation: 256 MB. The architecture
another lgel of indirection, where the user root page table is amaps a 64-bit user address space onto an 80-bit global virtual space,
dynamic data structure; the disadtage is that user root page table at a 256MB granularitythen maps the global space ontysitel

access becomes wler. memory at a page granularifihis satisfies one of the requirements
discussed earlier: that the architectuferohumerous ggments for
Design f or Pentium sharing. The 64-bit ReerPC ofers 28 sgments per address space,

which should be enough foven an operating systemdikMndows,

The Pentium [17] memory management architecture corresponds which there are thousands of shared libraries. Tipmesat map-
very closely to the needs of our generic design. It maps 32-bjiing in this implementation is througtsement lookasideuffer, an
addresses onto a global 4GB “linear” address space. Besides the limssociatie cache managed dika TLB, as opposed to the lookup table
tation of a small global address space, the architectuezyisnearly found in the 32-bit implementation.
identical to the hardare described in this section. The mapping from The primary diference when mang to a 64-bit machine is the
user address space to global linear space is made before cache acatsgture of the page table. The page table need not be tinean
The sgments hee associated protection independent of the underlyhierarchical; it simply must map the global space andigea guar-
ing page protection. Evy feature of our addressing scheme is sup-antee that global pages map one-to-one onto tisigath memory
ported. Therefore seeral oganizations are possible, including the hierarchi-

However, the architecture does not ¢akull adantage of itswn cal table of OSF/1 on Alpha [25], a guarded page table [20], or an
design. The cache isfettively virtually indexed, hut only by con- inverted page table [14], including thariant described byalluri, et
straining the cache ingéo be identical to the 4KB page size. There al. [26].

6 CONCLUSIONS [12]
One can emplpa virtually indeed cache in order to meet the mem- [13]
ory requirements of a high-speed processor &oiti dhe potential

slovdown of address translation. tever, virtual caches do not
appear in the majority of today’processors. ifual caches help
achieve fast clock speedsibhave traditionally been left out of micro-
processor architectures because the naming dichotomy between H\@
cache and main memory creates the potential for data inconsistencies,
requiring significant managementeshead. A sgmented architec-

ture adds anothendel of naming and alles a system to use a virtual [15]
cache aganization without xplicit consisteng management, as long

as the operating system ensures a one-to-one mapping of pages
between the ggnented address space angsital memory

7 REFERENCES [17]

[1] [18]

K. Bala, M.F. Kaashoek, and VEE. Weihl. “Software prefetching and
caching for translation lookaside buffers."Rroc. First USENIX
Symposium on Operating Systems Design and Implementation (OSDI{19]
1), November 1994, pp. 243-253.

[2] A.Chang and MF. Mergen. “801 storage: Architecture and

programming.”’ACM Transactions on Computer Systewas. 6, no. 1, [20]
February 1988.
[3] C.Chao, M.Mackey, and BSears. “Mach on a virtually addressed [21]

cache architecture.” IISENIX Mach Worksho@®ctober 1990.

J.S. Chase, HM. Levy, M. Baker-Harvey, and BD. Lazowska. “How

to use a 64-bit virtual address space.” Tech. Rep. 92-03-02, University d2]
Washington, March 1992.

J.S. Chase, HM. Levy, E.D. Lazowska, and MBaker-Harvey.

“Lightweight shared objects in a 64-bit operating system.” Tech. Rep. [23]
92-03-09, University of Washington, March 1992.

H. Deitel. Inside OS/2Addison-Wesley, Reading MA, 1990.

P.J. Denning. “Virtual memory.Computing Surveysol. 2, no. 3, pp.
153-189, September 1970.

P.Druschel and LL. Peterson. “Fbufs: A high-bandwidth cross-domain [25]
transfer facility.” InProc. Fourteenth ACM Symposium on Operating

[4
(5]
6]
[
@8

[24]

Systems Principles (SOSP-1Bgecember 1993, pp. 189-202. [26]
[9] W.E. Garrett, ML. Scott, RBianchini, L.l. Kontothanassis, R.

McCallumm, JA. Thomas, RWisniewski, and SLuk. “Linking shared

segments.” IVSENIX Technical Conference Proceedinigsuary [27]

1993, pp. 13-27.

J.R. Goodman. “Coherency for multiprocessor virtual address caches.”
In Proc. Second Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS@&pber 1987, pp. 72—
81.

J.L. Hennessy and [A. PattersonComputer Architecture: A
Quantitative ApproachMorgan Kaufmann Publishers, Inc., 1990.

[10]
(28]

[11] [29]

10

Hewlett-Packard®?A-RISC 1.1 Architecture and Instruction Set
Reference ManuaHewlett-Packard Company, 1990.

M. D. Hill, S.J. Eggers, R. Larus, GS. Taylor, GAdams, BK. Bose,
G.A. Gibson, PM. Hansen, Xeller, S.I. Kong, C.G. Lee, DLee,
J.M. Pendleton, SA. Ritchie, D.A. Wood, B.G. Zorn, PN. Hilfinger,
D. Hodges, RH. Katz, JK. Ousterhout, and DA. Patterson. “Design
decisions in SPURIEEE Computervol. 19, no. 11, November 1986.
J.Huck and JHays. “Architectural support for translation table
management in large address space machineBrom 20th Annual
International Symposium on Computer Architecture (ISCANE@Y
1993, pp. 39-50.

IBM and MotorolaPowerPC 601 RISC Microprocessor User’'s Manual
IBM Microelectronics and Motorola, 1993.

J.Inouye, RKonuru, JWalpole, and BSears. “The effects of virtually
addressed caches on virtual memory design and performance.” Tech.
Rep. CS/E 92-010, Oregon Graduate Institute, 1992.

Intel. Pentium Processor User's Manuaitel Corporation, Mt. Prospect
IL, 1993.

G. Kane and JHeinrich.MIPS RISC ArchitecturdPrentice-Hall,
Englewood Cliffs NJ, 1992.

Y. A. Khalidi and M.Talluri. “Improving the address translation
performance of widely shared pages.” Tech. Rep. SMLI TR-95-38, Sun
Microsystems, February 1995.

J.Liedtke. “Address space sparsity and fine granularkCM
Operating Systems Reviewol. 29, no. 1, pp. 87-90, January 1995.
C. May, E.Silha, R.Simpson, and HVarren, EdsThe PowerPC
Architecture: A Specification for a New Family of RISC Processors
Morgan Kaufmann Publishers, San Francisco CA, 1994.

J.E. B. Moss. “Working with persistent objects: To swizzle or not to
swizzle.”|EEE Transactions on Software Engineeringl. 18, no. 8, pp.
657-673, August 1992.

E.I. Organick The Multics System: An Examination of its Structlihe
MIT Press, Cambridge MA, 1972.

M. L. Scott, T.J. LeBlanc, and BD. Marsh. “Design rationale for
Psyche, a general-purpose multiprocessor operating systeRrddn
1988 International Conference on Parallel Processitiagust 1988.
R.L. Sites, EdAlpha Architecture Reference ManuBlgital
Equipment Corporation, Maynard MA, 1992.

M. Talluri, M. D. Hill, and Y.A. Khalidi. “A new page table for 64-bit
address spaces.” Rroc. Fifteenth ACM Symposium on Operating
Systems Principles (SOSP-1Bgcember 1995.

W.-H. Wang, J.-L. Baer, and M. Levy. “Organization and
performance of a two-level virtual-real cache hierarchyProc. 16th
Annual International Symposium on Computer Architecture (ISCA-16)
June 1989, pp. 140-148.

S.Weiss and E. Smith.POWER and PowerP®lorgan Kaufmann
Publishers, San Francisco CA, 1994.

B. Wheeler and BN. Bershad. “Consistency management for virtually
indexed caches.” IRroc. Fifth Int'l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLIR:®per
1992, pp. 124-136.

