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The Case for VLIW-CMP as a Building Block for Exascale
Bruce Jacob, Senior Member, IEEE

Abstract—Current ultra-high-performance computers execute instructions at the rate of roughly 10 PFLOPS (10 quadrillion
floating-point operations per second) and dissipate power in the range of 10 MW. The next generation will need to execute instructions
at EFLOPS rates—100× as fast as today’s—but without dissipating any more power. To achieve this challenging goal, the emphasis is
on power-efficient execution, and for this we propose VLIW-CMP as a general architectural approach that improves significantly on the
power efficiency of existing solutions. Compared to manycore architectures using simple, single-issue cores, VLIW-CMP reduces both
power and die area, improves single-thread performance, and maintains aggregate FLOPS per die. To improve further on the power
advantages of VLIW, we describe a mechanism that reduces power dissipation of both data forwarding and register-file activity.

F

1 IMPLICATIONS OF THE OBVIOUS

MOVING to exascale, i.e., building a 1 exa-FLOPS com-
puting system (equivalent to 1,000,000 TFLOPS or 1,000

PFLOPS), is limited by how efficiently one can perform a stag-
geringly large number of operations. It is not really a question
of “can we build a machine that executes this many operations
per second?” but rather “can we build one and afford to power
it?” The power levels for existing supercomputers are barely
tolerated as high as they are today, and so a 1 EFLOPS machine
tomorrow must not dissipate significantly more power than
today’s low-double-digit PFLOPS machines, which dissipate
on the order of 10 MW. This leads to necessary conditions for
exascale that are challenging—such as approaching 1 TFLOPS
per Watt at the CPU or core level, and the ability to build a
1–10 PFLOPS rack that dissipates 10–100 kW. For perspective,
typical CPUs today execute at roughly 0.01 TFLOPS per Watt,
and typical cabinets (racks) today dissipate on the order of 100
kW to produce roughly 0.1 PFLOPS of execution.

Achieving the desired level of performance efficiency will
demand trade-offs between numerous conflicting requirements,
such as the following:

• high-performance cores, to meet single-thread
performance goals

• low-power cores (in direct conflict with above), to meet
stringent energy/power limitations

• small numbers of nodes, to reduce the bandwidth (and
thus power) needed of the system interconnect

• large numbers of nodes, to reach 1000 PFLOPS

This paper focuses on a small segment of the vast space that
is exascale-level system design. To achieve 100-fold speedup
without a commensurate increase in power dissipation will
require re-tooling at all levels of the system, from application
through operating system, middleware, computer architecture,
circuit design, down to process technology. In this paper we
focus on the general architecture approach used for the CPU.

Recent CPU trends have shied away from using numerous
multi-issue, out-of-order cores on-chip, because those designs
dissipate too much power; modern designs have instead fa-
vored large numbers of simple, single-issue, in-order cores [2]
[10][11][12]. Some architectures use a heterogeneous mix in-
cluding a small number of high-performance cores, but even
then, when these designs tile large numbers (tens to hundreds)

• The author is with the Department of Electrical Computer Engineering,
University of Maryland, College Park, MD 20742. E-mail: blj@umd.edu.
Manuscript received 4 Mar. 2015; revised 28 Mar. 2015; accepted 16 Apr.
2015. For information on obtaining reprints of this article, please send e-mail
to: reprints@ieee. org, and reference the Digital Object Identifier below. Digital
Object Identifier no. 10.1109/LCA.2015.2424699.

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

L1 I$

L1 D$

RF

(a) Typical manycore CPU organization
when tiling homogeneous cores

(b) Proposed VLIW-based
manycore CPU organization
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Fig. 1. Two manycore arrays, equivalent sub-units highlighted: (a) typical
tiling of single-issue, in-order cores, (b) tiling of n-way VLIW cores (n=4)

of cores in an array, those cores are single-issue, in-order. The
well-known downside of this approach is that it sacrifices
single-thread performance. Moreover, using numerous cores
demands significant bandwidth from main memory to avoid
overcrowding the memory channel. One way of looking at this
is that, when the computer-design community hit a power wall
using complex cores in the early 2000s, we made a 180◦ turn
and went as far as possible in the opposite direction, avoiding
the middle ground entirely. As it turns out, this middle ground
is perhaps the most power-efficient part of the design space.

To illustrate, the typical manycore chip using simple cores
looks like the stylized representation in Fig. 1(a): numerous
pipelines are tiled across the chip, each with its own L1 data
cache, its own L1 instruction cache, and its own register file.
An alternate architecture is shown in Fig. 1(b), in which the
fundamental building blocks are not single-issue cores but
instead n-way VLIW cores, in this example 4-way VLIW cores.
Note that, even though the diagram shows each VLIW pipeline
having equal access to all resources, this need not be the case:
not every pipe needs a port to the data cache; not every pipe
needs a hardware multiplier in its ALU; etc. Commercial VLIW
designs such as the TMS320C6000 from Texas Instruments have
already explored the asymmetric-pipe design space, in which
every pipeline accepts a different mix of instruction opcodes,
and they have shown it to be viable [17].

With that in mind, there are a few important things to note
about this architecture, as it compares favorably with the more
orthodox arrangement in Fig. 1(a):

• The number of execution pipelines is the same. Thus,
the aggregate performance (chip-wide instructions per
clock) is also the same, assuming that the VLIW width
n is small enough the compiler can extract near-linear
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parallelism (VLIW speedup is effectively linear at small
issue widths [3]).

• The number of register files in (b) is lower than the num-
ber of register files in (a) by a factor of n. This should
improve die area, and it can reduce power dissipation as
well, to the extent that the number of read/write ports
and/or amount of read/write activity can be reduced. A
solution to this is presented later.

• Data forwarding can be expensive in VLIW, and a so-
lution is given later that scales linearly, instead of the
quadratic nature of typical VLIW forwarding logic.

• The L1 cache capacity would remain roughly the same,
as an n-fold increase in storage per core would likely be
offset by the n-way pipeline arrangement. However, the
total number of ports could be decreased, as an n-way
VLIW would only need one instruction-cache port and
fewer than n data-cache ports.

• The on-chip interconnect in (b) would have fewer end-
points by a factor of n than the interconnect in (a); thus
its complexity should decrease, potentially improving
power dissipation and/or die area.

• Shared caches should have fewer simultaneous threads
vying for resources, potentially reducing complexity.

Nearly any VLIW instruction-set architecture is a potential can-
didate, including the commercial DSPs [6][17] and embedded
processors [9][16] that already exist. With these, it is possible
to aggregate multiple low-power VLIW cores into execution-
dense arrangements that are not also power-dense. These em-
bedded architectures today focus on low power, and as they
execute multiple instructions from the same thread simulta-
neously, they tend to achieve good power/performance ratios
relative to both single-issue cores and high-performance out-of-
order cores. By comparison, CPU designs that require hundreds
of watts of power, and, with that, large heat sinks and active
fans to keep them cool, are going to have a much rougher time
integrating into exascale-class systems at reasonable power
levels. The power-density issues alone are problematic: when
power delivery and heat extraction force socket spacing to be
every cubic foot, then each socket has to deliver 10–100 ter-
aflops to reach the desired performance level per rack. While it
will certainly be possible to go that route, and most teams are
already headed in that direction, it certainly seems like going
low-power to begin with will make the way easier.

In particular, with VLIW-CMP, power will decrease relative
to existing architectures, total aggregate performance (chip-
wide IPC) will be maintained, and single-thread performance will
improve by almost a factor of n. Thus, one should expect an
immediate improvement of 2–3× at the node level, just by
moving to VLIW-CMP, and this seems to be borne out in actual
practice [4]. This is what is needed to reach exascale: re-thinking
systems from a power and energy perspective.

This type of efficiency optimization will be required, at
all levels, to build power-efficient exascale computers. For in-
stance, if one can achieve a factor of 2–3× improvement in each
of the system’s building blocks (e.g., application, programming
language, operating system, runtime system, microarchitecture,
system-on-chip network, memory system, system interconnect,
circuit design, process technology), then a system-wide factor
of 100× is within reach today.

2 PROBLEMS AND SOLUTIONS

Some VLIW-specific issues remain, including backwards com-
patibility and the complexities and increased power dissipation
brought about by (a) data forwarding across multiple pipelines
and (b) multiple read and write ports into the register file.

2.1 Backwards Compatibility
The first obvious issue is backwards compatibility. VLIW has
always offered significant promise, but it has had little lasting
success in general-purpose computing because the executable
images are not typically compatible between generations.

The answer is two-fold: first, the problem has been solved
by stop bits, as in TI’s C6000 [17] and Intel’s IA-64 [8]. These
encode the widest available parallelism in the executable, and
the chip extracts as much of that as it can. Second, and more
importantly, backwards compatibility is a non-issue here: the
proposed architecture is not intended for commodity general-
purpose machines such as laptops and smartphones; the pro-
posal specifically targets ultra-high-performance machines such
as datacenters and supercomputers. These machines bear far
more resemblance to embedded systems than to commodity
general-purpose computers. Like embedded systems, and un-
like general-purpose machines, these large-scale systems

• tend to execute the same small set of mission-specific
software programs 24/7/365;

• often have teams of developers that spend significant
time on code optimization;

• hold power as the limiting criterion (i.e., performance is
desirable, as long as it is within the power envelope);

• and often use non-standard, non-commodity
components like bespoke operating systems and
hardware designs, for better power/performance than
commodity systems.

Most supercomputers and datacenters already have software
staffs and even non-standard and/or unique hardware. Back-
wards compatibility is not a must-have feature for them, espe-
cially if sacrificing it leads to a significant reduction in power
dissipation. A well-known example is IBM’s Cell Broadband
Engine, in which the ISA was changed, and a significant
amount of software was rewritten and optimized for it [7].

2.2 Forwarding and Register-File Ports
Several technical issues still need to be addressed:

• VLIW architectures typically require data-forwarding
logic between their multiple pipelines that scales as
O(n2) instead of O(n), and thus potentially dissipates
more power than that of n single-issue pipes.

• VLIW architectures typically require a complex register
file to support their multiple pipelines; the increased
number of read/write ports on the register file leads to
more complex circuits and increased power dissipation.

Clustering [1][17] is typically used to address these issues in
wide designs (e.g. 8-way or wider), at the cost of penalizing
inter-cluster communication. Another solution, software register-
renaming, addresses both issues, can be used even for 2-way
VLIW, exacts no performance penalty, and actually reduces
read and write activity, rather than simply reducing the number
of ports on the local segment of the register file. The trade-offs
are that it encodes details of the pipeline and therefore is not
backwards compatible, and it cannot easily pass values across
an exception boundary. This latter limitation means that precise
interrupts must take forwarded values into account.

2.2.1 Renaming Hardware Registers in Software
As the literature shows [5][13][15], register lifetimes are typi-
cally short, and the number of active registers is typically low;
i.e., most of a processor’s output is temporary and not intended
to last long in the register file. This should not be surprising, as
it is why hardware register renaming works so well, and is
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regnumv the instruction word’s register-specifier bit-vector includes a valid bit v

Fig. 3. Pipeline organization showing forwarding MUXes

also one of the touted strengths of Tomasulo’s Algorithm—for
instance, that long strings of back-to-back writes to the same
physical register will ultimately be ignored by the register file,
and only the last write causes a physical update [18]. Software
register-renaming acts in a similar manner.

In a VLIW pipeline, the number of forwarding paths is mn:
the stages m between execute and writeback times the width n of
the machine. Rather than have hardware perform dependency-
checking across pipelines—i.e., compare every register speci-
fier against every other, an expensive O(mn2) priority-encode
operation—software register-renaming explicitly encodes the
forwarding path under control of the compiler. This produces
exactly the same performance; it is simply under the control of
the assembler/compiler, not the hardware. A valid bit in the
instruction word indicates that the associated register specifier
indicates not a register in the register file but the output of
another instruction still in the pipeline ahead. Thus, the per-
operand hardware reduces to a single mn+1-wide multiplexer
or a series of n+1-wide multiplexers, in which each select signal
comes directly from the instruction word.

This is illustrated in Fig. 2. A valid bit associated with an
operand identifies whether the operand should be read from
the register file or not; in the case of a ‘1’ valid bit, the register
file is read. A ‘0’ valid bit indicates that the register-file read
can be gated off, thereby saving power, and either the operand
field contains a short immediate value, or the register specifier
field indicates which pipeline is producing the result and how
many cycles ahead from the current instruction it is.

Fig. 3 shows this in use. A simple 4-way VLIW pipeline
includes a set of 2n-wide multiplexers, two for each pipe (only
one shown, for simplicity), each controlled by software. In this
example, three bits of the register specifier identify a forward-
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4-way VLIW pipes using traditional n×n forwarding, and (c) 2- 3- and
4-way VLIW pipes using software register-renaming

ing path: one bit indicates whether the source of the data is
one or two stages ahead in the pipeline, and two bits indicate
the pipeline producing the result. Instructions depending on
the result of the instruction immediately before them activate
the forwarding path from writeback to execute. To accommodate
instructions that depend results two stages ahead, an extra reg-
ister is placed at the end of the pipeline. Instructions depending
on the result of the instruction two stages before them activate
the forwarding path from this extra register to the execute stage.
Longer pipelines could simply use longer FIFO structures and
wider forwarding MUXes. As the figure shows, the valid bit of
the register specifier is known in the decode stage; therefore,
if it indicates forwarding (or immediate value), the register-file
read is deactivated for the corresponding operand during that
cycle, avoiding unnecessary register-file read energy.

One obvious limitation is that forwarding data across
branch boundaries can be tricky, as the distance is dependent on
the branch penalty. The problem becomes more difficult when
dealing with precise exceptions: if a producer-consumer pair is
separated by an interrupt, the data is lost. A similar problem
was solved by forcing the temporary data into the register
file when an exception was raised [14], but that technique
is only possible if each producer has a register-file target in
mind; in our implementation, most producer instructions write
to the r0 register, thereby throwing their results away. Our
implementation mirrors typical software practices in the design
of drivers, firmware, and other low-level software: we use
markers to designate critical sections and hold off the handling
of an interrupt until after the critical section is exited. If an
exception occurs that would lead to killing the process (a
software error as opposed to an external interrupt), then the
critical section is ignored, and the exception is handled.

2.2.2 Power Dissipation of Software Register-Renaming
Fig. 4 compares the forwarding-logic power of a regular single-
issue pipeline, three different instances of traditional VLIW
forwarding schemes, and software register-renaming. Power is
estimated from RTL by using Cadence’s Encounter RTL Com-
piler and Synopsys’s SAED 90nm Library. As the figure shows,
traditional forwarding within VLIW pipelines scales quadrati-
cally: the power for forwarding logic in 2-way, 3-way, and 4-
way VLIW are 4.1×, 9.3×, and 18.1× the power of a single
in-order pipe. The 2-way, 3-way, and 4-way software register-
renaming implementations scale linearly (from a higher base,
due to wider MUXes) and exhibit power that is 2.9×, 4.2×, and
6.0× the power of the single in-order pipe.

Note that these results represent only the power dissipated
in the forwarding logic; when the register-file read power is
included, the savings are higher, as software register-renaming
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reduces the number of register-file reads, compared to a normal
in-order pipeline. Thus, software register-renaming reduces the
amount of register-file read energy the more it is used.

In addition to read energy, software register-renaming can
also reduce the register-file write energy in two different ways.
The first effect is similar to Tomasulo: when temporary values
are produced and consumed within a short number of cycles,
they never need to be written to the register file, and software
register-renaming enables the pipeline to consume these tem-
porary values immediately without ever writing them to the
register file; they are simply produced and consumed within
the pipeline and are never written out.

The second effect is that one can use fewer write ports
on the VLIW register file. The more an application produces
temporary results, the less important the register-file’s write
port becomes. For instance, a load-word instruction using r1+r2
as a load address could be implemented as follows:

add r0:tmp0, r1, r2
lw r29, tmp0

The first instruction adds the contents of r1 and r2 and “writes”
the result to r0, which is defined by the architecture to be
0 and is therefore unwritable. Thus, this is the equivalent of
performing a “cat > /dev/null” operation.

Through the “:tmp0” declaration, the instruction’s output is
tagged as tmp0, a label used by the assembler to forward values
within the pipeline: for instance, the tmp0 tag is referenced in
the following instruction, indicating that the lw instruction’s
address operand will not be read from the register file but will
instead be forwarded within the pipeline. At run time, the sum
produced by the add instruction is forwarded by the control
logic directly from the add instruction to the lw instruction,
and the result never gets written to the register file because
the add’s write target is r0. This produces the exact same CPI as
traditional data forwarding; it simply uses less power.

In addition to reducing register-file write energy, this can
reduce the need for an entire register file port, and yet maintain
the architecture’s existing instruction-assignment symmetry
(i.e., one can eliminate one or more write ports without having
to change which opcodes can be assigned to which pipelines).
One or more of the n pipelines can be dedicated to instructions
that write no results, even ALU instructions such as the add
instruction above. For instance, one could have an example
pipeline arrangement such as the following:

• pipe0: all ALU types & memory types*
• pipe1: all ALU types & memory types*
• pipe2: all ALU types & memory types* (no RF writes)
• pipe3: all ALU types (no RF writes), branches & jumps

(* maximum two total memory ops across the four pipes)

This arrangement allows instructions in pipelines #0 and #1 to
write the register file freely, while the other two pipelines (#2
and #3) can execute instructions but cannot writeback any results.
Instructions in pipelines #2 and #3 may include memory-store
instructions (pipe #2), or branches and jumps (pipe #3), or any
ALU and memory-load instructions that produce temporary
outputs—i.e., results consumed within the pipeline and never
intended to be written to the register file.

Compared to a fully symmetric arrangement, in which all
pipes have write ports to the register file, this organization
reduces wiring, die area, and power dissipation; it also reduces
the number of bits in the VLIW instruction word. Note these
benefits are enabled by software register-renaming: traditional
architectures have no simple way to indicate “do not write
this result to the register file” without also causing problems

in the forwarding paths (e.g., causing the value of zero to be
forwarded instead of the output produced).

3 CONCLUSIONS

To achieve exascale-level computing rates, and simultaneously
stay within single-digit megawatt power levels, we will need
to reach CPU-level capabilities approaching 1 TFLOPS per
Watt. We have argued that a VLIW-CMP chip architecture,
irrespective of core instruction-set, is the right node-level ar-
chitecture choice to achieve this target, as it reduces power
dissipation without sacrificing single-thread performance. Even
in hybrid proposals that combine latency-optimized cores with
throughput-optimized cores, VLIW-CMP is competitive, as it
approaches the performance of the former, while offering a
better power footprint, and it matches the power footprint of
the latter, while offering better per-thread performance.

Additionally, it should be clear that this kind of approach
to power/performance optimization will be important all
throughout the system hierarchy, from circuits to microarchi-
tectures, to chip organizations, to networks on chip, to node ar-
chitectures, to board interconnects, to rack architectures, to rack
interconnects, and so on. Without such efficiency optimization,
exascale will remain continually in the future.
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