
1

1 Introduction

CPU speed has doubled roughly every 18 months, while
DRAM core speed has increased at a more modest rate of
roughly 7%. This difference in speed contributes to the
growing latency of a memory request, in terms of CPU
cycles. This resulting latency increase has been termed
the “memory wall” [12]. DRAM chip density has
increased by roughly 4X-2X every three years and is said
to effectively track Moore’s law for DRAM. These
increases in capacity and increasing software complexity
have fuelled the increases in installed DRAM capacity in
a server and desk-top systems.

As memory accesses become slower with
respect to the processor and consume more power with
increasing memory size, the focus of memory
performance and power consumption have become
increasingly important. Many studies show that memory
power and access time dominate over 50% of the total
power and performance for computations with large
storage requirements[10,11,1]. With the trend to develop
multi-threaded, multi-core processors, the demands on
the memory system will continue to scale.

Memory system performance is sensitive to a
large number of parameters including DRAM timing
parameters, memory controller policies, and memory

system topologies. Each of these parameters take on a
number of values and interact in fashions that make
overall trends difficult to discern [9]. Each type of
DRAM i.e., SDRAM, DDR SDRAM etc., has different
behaviors and architectures. The DRAM type limits the
memory system architecture in terms of supportable
bandwidths and topologies, i.e. number of DIMMs,
number of channels, which in turn effects performance.
The choice of address mapping policy is sensitive to both
the memory controller row buffer management policy
(open-page vs closed page) and the system topology. The
efficacy of a memory access reordering policy (FIFO,
priority based, read centric) is impacted by all the address
mapping policy, row buffer management policy, and the
system topology. A comparison of the memory system
architectures becomes even harder when we add the
dimensions of power consumption and manufacturing
cost.

Although prior research demonstrates the
performance tuning possible by varying memory system
parameters, there is a lack of tools in the public-domain
that support such studies. Some tools implement the
memory as a constant time and constant energy per
access. Others implement the memory as banks, but
simplify the interactions between the memory commands
and elements.

DRAMsim: A Memory System Simulator

David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer Jaleel, and
Bruce Jacob

Dept. of Electrical & Computer Engineering
University of Maryland, College Park

{davewang,brinda,ohm,ktbaynes,ajaleel,blj}@eng.umd.edu
http://www.ece.umd.edu/dramsim/

As memory accesses become slower with respect to the processor and consume more power with increasing
memory size, the focus of memory performance and power consumption has become increasingly important. With the
trend to develop multi-threaded, multi-core processors, the demands on the memory system will continue to scale.
However, determining the optimal memory system configuration is non-trivial. The memory system performance is
sensitive to a large number of parameters. Each of these parameters take on a number of values and interact in
fashions that make overall trends difficult to discern. A comparison of the memory system architectures becomes even
harder when we add the dimensions of power consumption and manufacturing cost. Unfortunately, there is a lack of
tools in the public-domain that support such studies. Therefore, we introduce DRAMsim, a detailed and highly-
configurable C-based memory system simulator to fill this gap. DRAMsim implements detailed timing models for a
variety of existing memories, including SDRAM, DDR, DDR2, DRDRAM and FB-DIMM,with the capability to easily
vary their parameters. It also models the power consumption of SDRAM and its derivatives. It can be used as a stand-
alone simulator or as part of a more comprehensive system-level model. We have successfully integrated DRAMsim
into a variety of simulators including MASE[15], Sim-alpha[14], BOCHS[2] and GEMS[13].The simulator can be
downloaded from www.ece.umd.edu/dramsim.

ACM SIGARCH Computer Architecture News 100 Vol. 33, No. 4, September 2005

2

Therefore, we introduce DRAMsim, a detailed
and highly-configurable C-based memory system
simulator to fill this gap. DRAMsim implements detailed
timing models for a variety of existing memories
including SDRAM, DDR, DDR2, DRDRAM and FB-
DIMM. It also models the power consumption of
SDRAM and its derivatives. It can be used as a stand-
alone simulator or as a part of a more comprehensive
system-level model. We have successfully integrated
DRAMsim into a variety of simulators including
MASE[15], Sim-alpha[14], BOCHS[2] and GEMS[13].

2 Design Goals

Our goal is to provide a detailed, realistic, highly-
configurable simulator for evaluating the memory
system, independent of the host platform. The simulator
provide us the capability of simulating a variety of
memory types (SDRAM, DDR etc.) and easily vary their
parameters. It allows us to configure memory controller
policies and memory controller topologies. Explicit
moduralization makes it easy for first-time users to

familiarize themselves with the simulator. The simulator
comes with a number of default configurations for a
number of DRAM types. Users can choose to use these
defaults as is or over-ride the default parameters using
either configuration files or command-line options. The
simulator provides a variety of statistics including
detailed latency stats, resource usage numbers, bank
conflict and hit history. Besides performace statistics, the
simulator can also generate detailed breakdown power
consumption numbers for each rank. All statistics can be
generated either periodically or at the end of the
complete run. Finally, the simulator is versatile enough
that it can easily be integrated into any complete system
simulator, or be used as a stand-alone simulator.

3 DRAMsim Overview

Figure 1 shows the system topology of the simulated
processor-memory system. Three distinct and separate
entities that interact in the life of a memory transaction
request are assumed in this framework: processor(s),
memory controller(s), and DRAM memory system(s).

Fetch Decode WBMemExec

virtual to physical
address translation
(DTLB access) [A1]

[A2] L1 D-Cache
access. If miss
then proceed to

[A3] L2 Cache
access. If miss
then send to BIU

Bus Interface Unit (BIU)
obtains data from main
memory [A4 + B]

[B1] BIU arbitrates [B2] request
sent to system
controller

[B8] system
controller returns
data to CPU

Stages of instruction execution

Proceeding through
the memory hierarchy
in a modern processor

[B3]physical addr. to memory addr.
translation.

[B4] memory

L1
cache

L2
cache

DTLB

Processor Core

BIU (Bus Interface Unit)

DRAM System

for ownership of
address bus **

[B5] memory
addr. Setup request

scheduling** (RAS/CAS)

[A1]

[B8]

[A4]

[A2] [A3]

** Steps not required for some processor/system controllers. protocol specific

[B4]

[B3]

[B2]

[B1]

I/O to memory traffic memory request
scheduling

physical to
memory addr
mapping [B7]

[B5]

read
data
buffer

memory controller

processor

DRAM
core

[B6]

[B6, B7] DRAM dev.
obtains data and
returns to controller

Part A: Searching
on-chip for data

Part B: Going
off-chip for data

(CPU clocking
domain)

(DRAM clocking
domain)

Fig 1: : Abstract Illustration of a Load Instruction in a Processor-Memory System.

ACM SIGARCH Computer Architecture News 101 Vol. 33, No. 4, September 2005

3

Each of these entities is assumed to be an independently
clocked synchronous state machine that operates in
separate clocking domains. In the general
implementation of the simulation framework, there are
only two clocking domains: the CPU clock domain and
the DRAM memory system clock domain, excluding
FB-DIMM memory systems. Our simulator models the
transaction’s life once it leaves the processor core.

3.1 Bus Interface Unit

The memory system can support requests from an in-
order core or an out-of-order execution core, where
different portions of the processor can all generate
memory requests. Each request is tagged with a request
id (rid) to enable the callback function to uniquely
identify the request generator. The simulator assumes
that each functional unit can sustain more than one
memory transaction miss at a given instance in time, and
the memory transaction may be returned by the memory
system either out-of-order or in-order. The life of a
memory transaction request begins when a requesting
functional unit generates a DRAM memory request. The
requesting unit begins this process by attempting to place
the request into a slot in the bus interface unit (BIU), a
data structure with multiple unordered entries/slots. The
BIU has the functional equivalence to MSHR’s in this
simulator If there is a free slot available, then the request
will be successfully placed into the bus interface unit,
and the status MEM_UNKNOWN will be returned to the
requesting functional unit, and the memory system will
return the latency of the request at a later time. If all of
the slots have been filled, and no free slot is available,
then MEM_RETRY will be returned to the requesting
functional unit, and the functional unit must retry the
request at a later time to see if a memory slot has become
available at the later time.

3.2 System Controller

In figure 2, we show a generalized system controller that
supports multiple processors. The simulation of the
system controller begins with the selection of a memory
transaction from the BIU to the transaction queue. The
transaction queue then takes the memory transaction and
maps the physical address of the transaction to the
memory address in terms of channel ID, rank ID, bank
ID, row ID and column ID via an address mapping
scheme. Then, depending on the row-buffer management
policy used by the system, a sequence of DRAM
commands are generated for each memory transaction.
The simulated memory system supports multiple
memory controllers, each of which can independently
control a logical channel of memory. Each logical
channel may contain multiple physical channels of
memory.

3.3 Transaction Queue and Transaction
Ordering Policy

After the appropriate BIU entry (slot) has been selected,
the status of the BIU entry is marked as SCHEDULED,
then a memory transaction is created in the memory
transaction queue. The selection of the memory request
from the BIU into the transaction queue is referred to as
the transaction ordering policy. Since the transaction
queue is an in-order queue, where DRAM commands of
an earlier memory transaction are given higher priority
than DRAM commands from later transactions, the
transaction ordering policy is of great importance to
determine the bandwidth and latency characteristics of
DRAM memory systems. In this simulation framework,
four transaction ordering policies are supported: First
Come First Serve (FCFS), Read or Instruction Fetch
First (RIFF), Bank Round Robin (BRR), and Command
Pair Rank Hopping (CPRH).

cpu 3cpu 0 cpu 1 cpu 2

system controller/

(northbridge)
memory controller

transaction queue

Command
Sequence

DRAM SystemMemory
Controller

Memory
Controller

Memory
Controller

Memory
Controller

DRAM System

DRAM System

DRAM System

Fig 2: : Transaction Queue and Memory Controller(s) System Architecture.

BIU

ACM SIGARCH Computer Architecture News 102 Vol. 33, No. 4, September 2005

4

3.4 Row Buffer Management Policy

Modern memory controllers typically deploy one of two
policies to manage operations of the sense amplifiers.
Since a DRAM access is essentially a two step process,
in cases where the memory access sequence has a high
degree of spatial locality, it would be favorable to direct
the memory access sequences to the same row of
memory. The Open Page row buffer management policy
is designed to favor the case by keeping sense amplifiers
open and holding an entire row of data for ready access.
In contrast, the Close Page row buffer management
policy is designed to favor random accesses to different
rows of memory.

3.5 Address Mapping

Before data can be read from or written to a memory
location, the physical address given by the CPU is
translated into memory addresses in the form of channel
ID, rank ID, bank ID, row ID, and column ID. For
memory controllers that use the open page row buffer
management policy, the address mapping scheme should
optimize the temporal and spatial locality of the address
request stream and direct memory accesses to an open
DRAM row (bank) and minimize DRAM bank conflicts.
In a closed-page system, the goal of the address mapping
scheme is to minimize temporal and spatial locality to
any given bank and instead distribute memory accesses
throughout different banks in the memory system.

Address mapping scheme depends not only on
the row buffer management policy, but also on the
configuration of the DRAM memory system as well as
the expandability/non-expandability of the memory
system. For example, depending on design, the channel
ID or rank ID can be mapped to the low order address bit
to obtain the most bank parallelism, but in memory
systems that allow end users to flexibly configure the
memory system by adding more ranks or changing
channel configurations, the channel ID and rank ID’s are
typically mapped to the high order address bits. In the

simulator, the users can choose the address mapping
scheme from burger_base_map, burger_alt_map,
intel845g_map, sdram_base_map, sdram_hiperf_map,
and sdram_close_page_map.

3.6 DRAM Command Chain

Each memory transaction is translated into one or more
DRAM commands, which are RAS, CAS and
PRECHARGE. In this simulation framework, this
sequence of DRAM commands is referred to as the
DRAM command chain. The sequence of DRAM
commands in the command chain depends on the row
buffer management policy as well as on the state of the
DRAM memory system. In an open page memory
system, a memory transaction may be translated into: a
single column access command if the row is already
open, a precharge command, a row access command and
a column access command if there is a bank conflict, or
just a row access command and a column access
command if the bank is currently idle.

In a close page memory system, all of the
memory transactions translate to a sequence of three
DRAM commands that completes a read cycle. Figure 3
illustrates a read cycle in a close-page DDRx SDRAM
memory system. DRAMsim can be configured to print a
detailed text-based view of the command and data buses.

3.7 Power

With continuing emphasis placed on memory system
performance, DRAM manufacturers are expected to push
for ever higher data transfer rates in each successive
generation of DRAM devices. However, just as
increasing operating frequencies lead to higher activity
rates and higher power consumption in modern
processors, increasing data rates for DRAM devices also
increase the potential for higher activity rates and higher
power consumptions on DRAM devices. In modern
DRAM devices, each time a row is activated, thousands
of bits are discharged, sensed, then recharged in parallel.
As a result, the row activation command is a relatively

Fig 3: : A Complete “Read Cycle” in DDRx SDRAM Memory System (@ 1 Gbit).

tRCD tBurst

tRC

tCAS

tRP

tRAS

row column read
precharge

tCMD Row Activation Command

Column Read Command

Precharge Command

activation

@ 1Gbps
tCAS = 10 ns = 5 cycles = 10 beats
tRCD = 10 ns = 5 cycles = 10 beats
tRP = 10 ns = 5 cycles = 10 beats
tRRD = 10 ns = 5 cycles = 10 beats
tRAS = 40 ns = 20 cycles = 40 beats
tburst = 8 ns = 4 cycles = 8 beats
tFAW = 48 ns = 24 cycles = 48 beats
tDQS = 4 ns = 2 cycles = 4 beats

4

51 2 6
C P

P
R

R
C

R

data

clock

command

data bus

bus

ACM SIGARCH Computer Architecture News 103 Vol. 33, No. 4, September 2005

5

energy intensive operation. Figure 4 shows the current
profile of a DRAM read cycle. Figure 4 shows that an
active DRAM device draws a relatively constant current
level. The DRAM device then draws additional current
for each activity on the DRAM device. The total current
draw of the DRAM device is simply the summation of
the quiescent current draw and the current draw of each
activity on the DRAM device.

DRAMsim is incorporated with a power model
for DDR, DDR2 SDRAM, and fully-buffered DIMMS.
The model calculates the average power in one
activation-to-activation cycle, by calculating the power
in each DRAM state, according to the current drawn, and
multiplying it with the fraction of time the device spends
in each state in one activation-to-activation cycle. DDR
and DDR2 power models are based on the power model
from Micron [7]. The power model for the fully-buffered
DIMMS has an additional component, the Advanced
Memory Buffer (AMB).

The power consumption statistics of the
memory system are broken down into its various
components, depending on the power states. These
statistics can be obtained for individual ranks in the
system. They can be logged periodically or at the end to
obtain an over-time view or global view respectively.

4 Interfacing with other simulators

The DRAM simulator can be easily integrated
with any processor simulator or memory simulation
frame-work that supports the following features
• Variable Memory Latency The latency of a memory

request is not a fixed value. It is a function of the
state of the DRAM, temporally adjacent requests to
memory and controller policies. For example, in a
system that uses the open page policy, a request that
accesses an already open row will have a lower
latency than one that has a bank conflict.

• Unknown Memory Latency at the point of issue The
dram simulator is an execution driven simulator.

Hence the latency of a request is determined only
after processing the request and not at the time of
issue. Upon the completion of a request, the DRAM
simulator calls back the processor simulator using a
specified function with the timing information. An
advantage of this approach is that it allows us to
study memory controller scheduling policies that
reorder requests.

• Support for Retries As described earlier, requests
sent to memory are placed in a slot in the bus
interface unit (BIU) queue. When all available slots
are occupied, the simulator will refuse to process
additional requests. The processor simulator should
handle the inability of the DRAM simulator to
process requests due to queues filling up and retry
such requests later.

4.1 Functional Interface

DRAMsim can be used as part of a larger simulation
framework. For the purpose of interfacing, several
functions are provided. These functions are classified
based on their actions and described in further detail
below.

Initialization : is done using the function
init_dram. The main purpose of this function is to create
and initialize the simulators data structures in the default
configuration. By default, the simulator models an
SDRAM-based memory system. The memory controller
uses a closed page policy and a FIFO memory access
ordering policy. Statistics are enabled to be collected and
written to stdout.

Configuration: DRAMsim supports the
configuration of a wide variety of parameters including
DRAM parameters like row activation time (t_ras),
column access latencies (t_cas), etc., memory topology
informations like number of ranks, channels, etc., and
memory controller policies like row buffer management
policies, memory access ordering policy, etc. The
configuration details can be specified using a

Fig 4: : Current Profile of a DRAM Read Cycle.

cmd&addr

bank “i” util.
rank “m” util.
data bus

row x open - data restore

data burst
I/O gating

bank i precharge

read 0
prec

time

row act

data sense
rank “m” internal cmd

cu
rr

en
t d

ra
w

 in
ab

st
ra

ct
 u

ni
ts Quiescent

current draw
of active device current draw

profile due to
device activity

row act

ACM SIGARCH Computer Architecture News 104 Vol. 33, No. 4, September 2005

6

configuration file, also known as the spd file. Power
consumption details can be specified using an additional
file. In order to support a high-degree of configurability,
DRAMsim also allows the user to over-ride the base
configuration file parameters. This configuration
capability is supported in the basic stand-alone version
via a number of command-line flags. These flags are
described in detail in the simulator manual [16]. A
processor simulator can perform this configuration using
the configure_sim_dram function, which takes as an
argument a configuration structure (dram_config_info).
Both the dram_config_info data structure and the
configuration file specify identical parameters. This
capability we found was very useful for the purpose of
automating our simulations for design space
explorations.

Request Dispatch: The processor sends a request
to the memory sub-system using the function
dram_access_memory. The processor passes on access
specific information using a special data structure,
dram_access_t. The essential elements of this structure
include unique rid (request id), a memory address, and a
callback function, which is to be called by the DRAM
simulator upon the completion of a memory request.
Besides these the structure also has optional elements
which are used to simulate particular memory controller
policies. These include priority i.e. processor-specified
priority which can be used by priority-based memory
access reordering schemes and a thread id which is useful
in multi-threaded or multi-processor contexts.

Periodic Update Manager: The function
dram_update_system serves as the heart-beat of the
simulator. This function should be called every cycle that
the dram sub-system is busy processing a request. In
order to interface with simulators that use event
managers it returns information whether the dram
simulator has active requests or not.

Request Return: The periodic update manager,
dram_update_system, checks for the completion of
memory requests. While taking such requests off its
queue, the dram simulator invokes the specified callback
function. The actual callback is performed in the
function, invoke_callback_fn.

Statistics: The simulator allows for the collection of
a variety of statistics including latency distributions, BIU
occupancy, bank hit and bank conflict information. The
interface supports the initialization of this statistic
gathering via the function dram_stats_init and its logging
via the file, dram_print_stats_common, statistics are
logged to a common file and dram_print_stats_general,
for statistics to be logged onto individual files or stdout.

4.2 Existing Simulator Ports

SYSim - full system simulator . SYSim is a model
of the entire memory hierarchy for a uni-processor
system that includes performance and energy models for
caches, DRAM, and disk. The main purpose of the
project is to investigate the systemic behaviors of the
entire memory hierarchy in virtual memory, with
extremely detailed simulation. The SYSim project is
incorporated with several simulators for each component
of the system.

Bochs[2], a Pentium emulator, is used as the
CPU model that generates the memory accesses and I/O
interrupts. The cache model comes from Wattch[8] and
Cacti [3]. DRAMsim is integrated into the system to give
the timing behavior and also the power consumption of
the memory system. Since the Disk model in Bochs takes
the responsibility only to read and write data from/to the
disk image, a modified DiskSim[4] simulator is
integrated as described in the DRPM paper[5] into the
system. The DRPM version of DiskSim is used for only
timing and power consumption statistics collection.

The challenges of integration were to reflect the
multiple memory and I/O requests on the fly while
maintaining the correct interaction between the disk,
caches, and DRAM communication via DMA. Memory
management is another issue as careless allocation of the
simulator memory, could cause the host system to crash.

GEMS . This is a multi-processor simulation
framework developed at the University of Wisconsin
Madison [13]. This simulator ships with several cache
coherence protocols for both SMP and CMP machines.
Our simulator currently does not support the concept of
multiple BIUs and memory sub-systems, hence we
ported our simulator to the CMP based protocols. This
involved modifying the protocol definition files and
insert calls to the memory system at the appropriate
points. The challenges were in introducing the concept of
retries due to resource shortages in the memory system.
This was fairly trivial in the case of READ transactions.
In the case of WRITE transactions the protocols by
default evicted cachelines that were written back to
memory. By postponing these evictions to only when the
memory system indicated the completion of the write
transaction, we discovered several state transitions that
were not previously handled by the protocol.

Traditional uniprocessor simulators - MASE/
Sim-alpha . The DRAM simulator has been
successfully integrated into sim-alpha[14], a detailed
execution-drive simulator of the Alpha 21264, and into
SIM-MASE[15], SimpleScalar 4.0.

ACM SIGARCH Computer Architecture News 105 Vol. 33, No. 4, September 2005

7

5 Problems and Limitations

The development of sim-DRAM was started by David
Wang while working on his Ph.D. research roughly three
years ago[6]. The code since then has been worked on by
a number of students and has expanded to support a wide
variety of DRAM systems, provide different statistics
and interface with several different processor simulators.
The simulator comes with some limitations that we hope
to fix in future releases.
• C-Based Implementation The simulator is entirely

written in C. Many of the scalability issues that we
face currently stem from the choice of
programming language.

• Simulation of Distributed Memory The simulator
data-structures by default assume the existence of a
single memory system. Thus, there is no current
support in the memory system for distributed
physical memory.

• Lack of Event Queue There is no built-in event
queue in the simulator. The absence of such a queue
requires the simulator to be polled every cycle
while a transaction is active.

• Clock Domains The simulation framework
currently implements only two clocking domains:
the CPU domain and the memory system domain
(FBDIMM excepted). The DRAM memory system
and the memory controller are operated in the
DRAM memory system clock domain, and the CPU
is operated in the CPU clock domain. This is true
for legacy systems with separate memory
controllers, while newer systems where the memory
controllers is integrated into the CPU core the
assumption may be reversed. A more generalized
model would operate the CPU, memory controller
and dram system in three independent clock
domains. However, this implementation would be
unnecessarily complex, and decrease simulation
speed for minimal increase in the system simulation
model flexibility and accuracy.

6 Conclusion

The focus of memory performance and power
consumption have become increasingly important due to
the memory wall, increase in memory size, and
complexity of applications. The memory system
performance is sensitive to a large number of parameters
interacting in unexpected fashions. The memory system
design decision becomes even harder when we add the
dimensions of power consumption and manufacturing
cost. Due to a lack of tools in the public-domain that
support such detailed studies, we introduce DRAMsim, a
detailed and highly-configurable C-based memory

system simulator. DRAMsim implements detailed timing
models for a variety of existing memories, including
SDRAM, DDR, DDR2, DRDRAM and FB-DIMM, with
the capability to easily vary their parameters. It also
models the power consumption of SDRAM and its
derivatives. It can be used as a stand-alone simulator or
as a part of a more comprehensive system-level model.
We have successfully integrated into a variety of
simulators including MASE[15], Sim-alpha[14],
BOCHS[2] and GEMS[13]. The simulator can be
downloaded from www.ece.umd.edu/dramsim.

7 Acknowledgements

The work of Brinda Ganesh, Katie Baynes, and Aamer
Jaleel was supported in part by NSF CAREER Award
CCR-9983618, NSF grant EIA-9806645, and NSF grant
EIA-0000439. The work of Dave Wang was supported in
part by NSF CAREER Award CCR-9983618, NSF grant
EIA-9806645, NSF grant EIA-0000439, and Cray
Inc.The work of Nuengwong Tuaycharoen is supported
by Dhurakij Pundit University, Bangkok, Thailand.. The
work of Bruce Jacob was supported in part by NSF
CAREER Award CCR-9983618, NSF grant EIA-
9806645, NSF grant EIA-0000439, DOD MURI award
AFOSR-F496200110374, the Laboratory of Physical
Sciences in College Park MD, the National Institute of
Standards and Technology, and Cray Inc.

ACM SIGARCH Computer Architecture News 106 Vol. 33, No. 4, September 2005

8

References
[1] S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N. Vi-

jaykrishnan, M. Kandemir, T. Li, L.K. John, “Using
Complete Machine Simulation for Software Power
Estimation: The SoftWatt Approach,” In Proceedings
of the International Symposium on High Performance
Computer Architecture (HPCA-8), Cambridge, MA,
pages 141-150, February, 2002.

[2] The Bochs IA-32 Emulator Project. http://bochs.source-
forge.net

[3] S. Wilton and N. Jouppi, “An Enhanced Access and Cy-
cle Time Model for On-chip Caches,” In WRL Re-
search Report 93/5, DEC Western Research
Laboratory, 1994.

[4] G. Ganger, B.Worthington, and Y. Patt, “The DiskSim
Simulation Environment Version 2.0 Reference Man-
ual,” http://www.ece.cmu.edu/ ganger/disksim/.

[5] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H.
Franke, “DRPM: Dynamic Speed Control for Power
Management in Server Class Disks,” In the Proceed-
ings of the International Symposium on Computer Ar-
chitecture (ISCA), pages 169-179, June, 2003.

[6] David T. Wang, “Modern DRAM Memory systems: Per-
formance Analysis and Scheduling Algorithm,” Ph.D.
Dissertation, Electrical and Computer Engineering,
University of Maryland at College Park, 2005.

[7] Jeff Janzen, The Micron System-Power Calculator. http:/
/www.micron.com/products/dram/syscalc.html

[8] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
framework for architectural-level power analysis and
optimizations,” In Proceedings of the 27th Annual In-
ternational Symposium on Computer Architecture,
June 2000.

[9] Vinodh Cuppu and Bruce Jacob, “Concurrency, latency,
or system overhead: Which has the largest impact on
uniprocessor DRAM-system performance?,” In Proc.
28th International Symposium on Computer Architec-
ture (ISCA 2001), pp. 62-71, Goteborg Sweden, June
2001.

[10] D. Lidsky and J. Rabaey, “Low-power design of memory
intensive functions,” Proceedings of the IEEE Sympo-
sium on Low Power Electronics (Sept.), IEEE Com-
puter Society Press, Los Alamitos, CA, 16-17, 1994.

[11] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.
Nachtergaele, and A. Vandecappelle, “Custom Mem-
ory Management Methodology: Exploration of Mem-
ory Organization for Embedded Multimedia System
Design,” Kluwer Academic, Dordrecht, Netherlands,
1998a.

[12] Wm. A. Wulf, Sally A. McKee, “Hitting the memory
wall: implications of the obvious”, SACM SIGARCH
Computer Architecture News, Volume 23,Issue 1
(March 1995),Pages:20 - 24.

[13] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beck-
mann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, and Dav-
id A. Wood, "Multifacet's General Execution-driven
Multiprocessor Simulator (GEMS)Toolset," Comput-
er Architecture News (CAN), TBA 2005.

[14] R. Desikan, D.C. Burger, S.W. Keckler, and Todd Aus-
tin. "Sim-alpha: a Validated, Execution-Driven Alpha
21264 Simulator.", The University of Texas at Austin,
Department of Computer Sciences. Technical Report
TR-01-23.

[15] Eric Larson, Saugata Chatterjee, and Todd Austin,
“MASE: A Novel Infrastructure for Detailed Micro
architectural Modeling,” In the 2001 International
Symposium on Performance Analysis of Systems and
Software, Nov. 2001.

[16] David Wang, University of Maryland Memory System
Simulator

ACM SIGARCH Computer Architecture News 107 Vol. 33, No. 4, September 2005

