

1

ABSTRACT

Today’s digital signal processors (DSPs), unlike general-purpose
processors, use a non-uniform addressing model in which the pri-
mary components of the memory system—the DRAM and dual tag-
less SRAMs—are referenced through completely separate segments
of the address space. The recent trend of programming DSPs in high-
level languages instead of assembly code has exposed this memory
model as a potential weakness, as the model makes for a poor com-
piler target. In many of today’s high-performance DSPs this non-uni-
form model is being replaced by a uniform model—a transparent
organization like that of most general-purpose systems, in which all
memory structures share the same address space as the DRAM sys-
tem.

In such a memory organization, one must replace the DSP’s tag-
less SRAMs with something resembling a general-purpose cache.
This study investigates the performance of a range of traditional and
slightly non-traditional cache organizations for a high-performance
DSP, the Texas Instruments ’C6000 VLIW DSP. The traditional
cache organizations range from a fraction of a kilobyte to several
kilobytes; they approach the SRAM performance and, for some
benchmarks, beat it. In the non-traditional cache organizations,
rather than simply adding tags to the large on-chip SRAM structure,
we take advantage of the relatively regular memory access behavior
of most DSP applications and replace the tagless SRAM with a near-
traditional cache that uses a very small number of wide blocks. This
performs similarly to the traditional caches but uses less storage. In
general, we find that one can achieve nearly the same performance as
a tagless SRAM while using a much smaller footprint.

1. INTRODUCTION

Traditional memory organizations for DSPs include dual tagless
SRAMs to hold important data and DRAM to hold everything else.

The dual-channel SRAM design provides a large amount of fast stor-
age while supporting guaranteed single-cycle access to both oper-
ands of a typical instruction (e.g. the product terms of a multiply-
accumulate) [Lapsley et al. 1994]. The SRAMs are tagless because
they are not transparent to the programmer: DSPs offer segmented
memory spaces where different physical memory structures
(SRAM0, SRAM1, DRAM, ROM, etc.) are explicitly indicated by
corresponding sets of data addresses.

The difference is best served by illustration. Figure 1 shows two
separate organizations; on the left is a DSP-style tagless SRAM, on
the right is a traditional cache. The tagless SRAM is in a separate
namespace from the primary memory system; it is

non-transparent

in that a program addresses it explicitly. A datum is brought into the
SRAM by an explicit move that does not destroy the original copy.
Therefore, two equal versions of the data remain—there is no
attempt by the hardware to keep the versions consistent (ensure that
they always have the same value) because the semantics of the mech-
anism suggest that the two copies are not, in fact, copies of the same
datum but instead two independent data. If they are to remain consis-
tent, it is up to software. By contrast, the traditional cache uses the
same namespace as the primary memory system; it is transparent in
that a program addresses main memory to access the cache—a pro-
gram does not explicitly access the cache or even need to know that
the cache exists.

How each of the mechanisms fits into the CPU’s memory model is
also shown in Figure 2. A general-purpose memory model (using
physically indexed caches) has a single namespace that is shared by
all memory structures. A DSP memory model explicitly places the
system’s memory structures at specific disjunct locations in the
namespace.

Because they behave differently, traditional caches and tagless
SRAMs have different implementations and different ramifications.
Traditional caches, because they could potentially hold anything in
the space, require tags to indicate which data is currently cached.
Tagless SRAMs require no tags. Traditional caches are managed
transparently: if a data item is touched, it is brought into the cache.
Tagless SRAMs require explicit management: nothing is brought
into the SRAM unless it is done so intentionally in software through
a load and store. The flip-side of this is interesting: whereas any ref-
erence can potentially cause important information to be removed
from a traditional cache, data is never removed from a tagless SRAM
unless it is done so intentionally. This is why tagless SRAMs have
better real-time behavior.

Transparent Data-Memory Organizations
for Digital Signal Processors

Sadagopan Srinivasan, Vinodh Cuppu, and Bruce Jacob

Dept. of Electrical & Computer Engineering
University of Maryland at College Park

College Park, MD 20742
http://www.ece.umd.edu/~blj/embedded/

{sgopan,ramvinod,blj}@eng.umd.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
In Proc. Int’l Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'01), November 16-17, 2001, Atlanta, Georgia, USA.
Copyright © 2001 ACM 1-58113-399-5/01/0011...$5.00.

2

However, the addressing of tagless SRAMs makes them difficult
to work with: Contiguity in the address space must be preserved, and
distance between objects must be preserved. If two items are adja-
cent, they must remain so if one of them is to be brought into the
SRAM. For example, one could not place into a tagless SRAM only
the odd elements of an array without wasting the SRAM storage for
all the elements in between. Furthermore, distance between objects
must be preserved: The fields of a C structure are referenced by their
relative distances, and two fields that are

n

 bytes apart in the execut-
able file must be

n

 bytes apart in the tagless SRAM as well. By con-
trast, it

is

 possible to cache every other element in an array if one
uses traditional caches and a uniform memory space (and the ele-
ment size is large enough), and two items that are

n

 bytes apart in the
executable file need not be

n

 bytes apart in the cache (in fact, they
usually are not, if the data structure is large enough).

Not surprisingly, the industry has decided that the tagless SRAM
model is quite difficult to compile for. This is not good, as the trend is
increasingly toward programming all embedded systems in high-

level languages. The solution is to provide DSPs with memory struc-
tures that use a uniform address space resembling traditional general-
purpose caches. We note that several of the newest DSP architectures
(for example, the ’C6000 from Texas Instruments [Turley 1997] and
the StarCore from Lucent and Motorola [Wolf & Bier 1998]) are
moving to a unified memory model to make their architectures more
compiler-friendly.

Therefore it is worth investigating different cache organizations
for DSPs, as their applications tend to behave slightly different than
traditional general-purpose applications. This study looks at tradi-
tional cache organizations, and it also looks at a slight modification
that exploits some of the behavior seen in DSP applications: One
might be able to make good use of large cache blocks, in particular
block sizes where a general-purpose application might exhibit high
degrees of cache pollution. An obvious downside of doing so is the
long fill-time for large blocks. One trend that we can exploit is the
appearance of new DRAM architectures that provide an abundance
of bandwidth, such as Enhanced SDRAM [ESDRAM 1998], Ram-

NON-TRANSPARENT addressing
EXPLICITLY MANAGED contents

TRANSPARENT addressing
TRANSPARENTLY MANAGED contents

Figure 1: Transparent caches versus tagless SRAMs.

TAGLESS SRAM TRADITIONAL CACHE
(hardware-managed)

CACHE

MAIN
MEMORY

Move from
memory space
to “cache” space
creates a new,
equivalent data
object, not a
mere copy of
the original.

Address space
includes both
“cache” and
primary memory
(and memory-
mapped I/O)

MAIN
MEMORY

Address space
includes only
primary memory
(and memory-
mapped I/O)

The cache “covers”
the entire address
space: any datum
in the space
may be
cached

CACHE

Copying
from memory
to cache creates a
subordinate copy of
the datum that is
kept consistent with
the datum still in
memory. Hardware
ensures consistency.

HARDWARE
manages this
movement of
data

SOFTWARE
manages this
movement of
data

Traditional Caches Tagless SRAMs

UNIFORM
ADDRESS

SPACE

NON-UNIFORM
ADDRESS

SPACE

I-CACHE

D-CACHE

SRAM0

SRAM1

DRAM

IBUF

Figure 2: Traditional caches in a uniform space versus tagless SRAMs in a non-uniform space.

3

bus [Rambus 1998a], and Direct Rambus [Rambus 1998b]. These
architectures are improvements over the traditional DRAM architec-
ture; some are newer than others, and the newest members of the set
reduce bandwidth overhead by a factor of four compared to the old-
est members [Cuppu et al. 1999, Cuppu et al. 2001].

We look at the performance side of the trade-off between reducing
the size of the on-chip SRAM array and increasing the bandwidth to
the off-chip DRAM array. We find that a small associative on-chip
cache can approach and even beat the performance of a large tagless
SRAM, and one can meet SRAM performance with as little as 64
total bytes of storage provided one uses an appropriate management
policy. Moreover, the performance levels are possible without enor-
mous increases in off- chip memory bandwidth.

2. EXPERIMENTAL SET-UP & RESULTS

For our baseline DSP architecture, we model a Texas Instruments
TMS320C6000 signal processor. This is an 8-wide VLIW design
that both provides a good compiler target and enables single-cycle
throughput for multiply-accumulate operations. The DSP core is a
load/store architecture and has two load/store units, identified as
belonging to side ‘1’ or side ‘2’ of a 2-way clustered design (the
load-store units are called .D1 and .D2 in ’C6000 terminology).
Because it is a load/store architecture, all logic and arithmetic opera-
tions are performed through the register file. We use the data-mem-
ory system of the ’C6201 processor. The data-memory side is a
64KB tagless SRAM organized as pseudo-dual-ported with eight
independent banks. For this study, we model the instruction memory
as perfect. The off-chip memory bus for the baseline DSP is a
400MB/s bus, 32 bits wide, roughly equal to half a PC100 channel.

For our range of traditional cache models, we look at sizes of 256
bytes (one fourth kilobyte) up to 8 Kbytes, with block sizes ranging
from 4 bytes to 32 bytes. The caches are pseudo-multiported, using 4
independent banks. The caches are 4-way set associative.

For an alternative on-chip memory structure we chose a small
fully associative cache (2 blocks) with block sizes ranging from 4
bytes to 512 bytes. The organization differs from a traditional cache

in its replacement policy: The cache blocks are divided into two par-
titions, where each partition is dedicated to holding data requested by
either the A-side or B-side load/store unit. Though a load/store unit
can read from any block, it can only write into half the cache. The
write policy is write-allocate/fetch-on-write-miss. We ran the off-
chip bus at 400, 800, 1200, and 1600 MB/s.

The benchmarks are taken from the UTDSP benchmark suite (see
http://www.eecg.toronto.edu/~corinna/DSP/) and include both DSP
kernels (e.g. fast Fourier transform, FIR and IIR filters, matrix multi-
ply, etc.) and DSP applications (e.g. linear predictive coding, image
compression, an implementation of the G.721 modem protocol, etc.).
They are compiled for our DSP simulator using the Texas Instru-
ments’ C6000 C compiler, which has been shown to produce code
for the C6000 that (according to studies from TI) performs within
90% of hand-written assembly code.

Figure 3 shows the performance results for the traditional cache
organizations, using an 800MB/s memory bus, which performs up to
20% better than a 400MB/s bus. The baseline performance of the
SRAM model is also given, and the benchmarks are presented as
averages for the “applications” as well as the “kernels” in the bench-
mark suite. The 800 MB/s bus (as opposed to the SRAM model’s
400 MB/s bus) accounts for part of the reason that the traditional
cache “beats” the tagless SRAM design on the Application bench-
marks. The rest of the reason is that the data footprint of many appli-
cations is just large enough to exceed the 64K data-side SRAM.
Because the compiler statically assigns data to either SRAM or
DRAM, the SRAM model does not take advantage of moments of
significant temporal locality, the way that a traditional cache does.
The graphs show that a modest-sized cache can approach and even
beat the performance of the SRAM model.

For alternative cache models, we look at two different organiza-
tions, illustrated in Figure 4. The first is the very simple organization
described above (two blocks, each one dedicated to a different
load/store unit); the second adds a single-block victim cache to each
of the blocks in the first organization—in this organization, each vic-
tim-cache block holds only victims taken from its associated cache
block. Note that in all organizations, cache reads may be satisfied out

Figure 3: Performance of traditional cache organizations.

25
6

by
te

s

51
2

by
te

s

1K
 b

yte
s

2K
 b

yte
s

4K
 b

yte
s

8K
 b

yte
s

Cache Size

0

1

2

C
P

I

 UTDSP Kernels (average)

25
6

by
te

s

51
2

by
te

s

1K
 b

yte
s

2K
 b

yte
s

4K
 b

yte
s

8K
 b

yte
s

Cache Size

0

1

2

C
P

I

 UTDSP Applications (average)
4 bytes
8 bytes
16 bytes
32 bytes

4

of any block in the cache: The tying of a block to a particular
load/store unit is simply used in the replacement policy; it does not
affect the cache lookup mechanism. Any load/store unit can read a
value from any block in the cache, which makes the cache effectively
fully associative—this is why we look only at small numbers of
blocks in the cache.

Figure 5 gives the performance of the “simple” organization. Per-
formance does not really approach that of the SRAM model, though
it is surprisingly not far off, given the very small amount of storage
being used.

The last study looks at the slightly more advanced victim-cache
organization. Figure 6 gives the performance. The graphs show that
the organization does significantly better than the “simple” organiza-
tion and in fact approaches and, in some cases beats, the performance
of the SRAM model. For the same amount of on-chip storage
(designs up to 512 total bytes of memory), it can even beat the per-
formance of the traditional cache model.

In general, though the traditional cache performs better than all
other schemes on some benchmarks and at larger sizes (8 Kbytes),
the “victim-cache” buffer organization can approach the same per-
formance as these other models while using significantly less on-chip

storage: The best organization, with 64-byte buffers, uses a total of
256 bytes of storage. However, to approach the performance of the
better schemes, it does require a significantly higher bandwidth to
main memory. This represents a trade-off that a DSP system engineer
would need to make: System cost in higher DRAM bandwidth ver-
sus CPU cost of a larger DSP core (more on-chip storage).

3. CONCLUSIONS

We look at several different traditional cache organizations and varia-
tions thereupon to be used in the new breed of DSPs that use a trans-
parent memory model. We find that relatively small amounts of on-
chip storage are required to approach and, in some cases, exceed the
performance of a DSP’s non-uniform memory model that makes
extensive use of tagless SRAMs.

We also investigate an alternative cache organization in which a
small number of large cache blocks are used, and we find that it pre-
sents an interesting trade-off between chip costs, in the form of on-
chip storage, and system costs, in the form of memory bandwidth.
Like the traditional cache organization, the alternative cache organi-
zation approaches and, in some cases, exceeds the performance of

Figure 4: Slightly non-traditional cache organizations modeled in this study.

Each load/store unit can read from any block in the cache, but it can only write to
the primary block that is assigned to it. Similarly, load misses only fill the cache block assigned to a load/store unit. The victim-cache organization adds two blocks to
the cache that are only filled by blocks replaced from the corresponding primary blocks.

cache block 1 (tag + data)

cache block 0 (tag + data)

victim block 1 (tag + data)

victim block 0 (tag + data)

cache block 1 (tag + data)

cache block 0 (tag + data)

Port 0

Port 1

Port 0

Port 1

(a) Simple organization (b) Victim-cache organization

LDST A

LDST B

LDST A

LDST B

Figure 5: Performance of “simple” organization.

UTDSP Applications (average) UTDSP Kernels (average)

4
by

te
s

8
by

te
s

16
 b

yte
s

32
 b

yte
s

64
 b

yte
s

12
8

by
te

s

25
6

by
te

s

51
2

by
te

s

SRAM

(4
00

M
B/S

ec
)

Cache Block Width

0

2

4

6

8

10

12

14

C
yc

le
s

pe
r

In
st

ru
ct

io
n

0

20

40

A
vg

 L
at

en
cy

 (
C

yc
le

s)

4
by

te
s

8
by

te
s

16
 b

yte
s

32
 b

yte
s

64
 b

yte
s

12
8

by
te

s

25
6

by
te

s

51
2

by
te

s

SRAM

(4
00

M
B/S

ec
)

Cache Block Width

0

2

4

6

8

10

12

14

16

18

C
yc

le
s

pe
r

In
st

ru
ct

io
n

0

20

40

A
vg

 L
at

en
cy

 (
C

yc
le

s)

CPI 400 MB/sec
CPI 800 MB/s
CPI 1200 MB/s
CPI 1600 MB/s

Avg Latency 400 MB/s
Avg Latency 800 MB/s
Avg Latency 1200 MB/s
Avg Latency 1600 MB/s

5

the DSP using large tagless SRAMs. In general, if one is willing to
pay for more bandwidth, one can get away with significantly less on-
chip storage and reach the same levels of performance. That one can
approach the performance of the traditional DSP memory organiza-
tion with such a simple structure is likely due to the fact that many
DSP applications stream data, obviating large cache structures and
making stream buffers more attractive.

ACKNOWLEDGMENTS

We thank Corinna Lee for the use of her UTDSP benchmark suite
(see http://www.eecg.toronto.edu/~corinna/DSP/), a large collection
of DSP programs ranging from small kernels to full-blown signal-
processing applications.

The work of Sadagopan Srinivasan was supported in part by NSF
CAREER Award CCR-9983618 and NSF grant EIA-0000439. The
work of Vinodh Cuppu was supported in part by NSF CAREER
Award CCR-9983618. The work of Bruce Jacob was supported in
part by NSF CAREER Award CCR-9983618, NSF grant EIA-
9806645, NSF grant EIA-0000439, DOD award AFOSR-
F496200110374, and by Compaq and IBM.

REFERENCES

V. Cuppu, B. Jacob, B. Davis, and T m. Mudge. “A performance
comparison of contemporary DRAM architectures.” In

Proc. 26th

Annual International Symposium on Computer Architecture
(ISCA-26)

, Atlanta GA, May 1999, pp. 222–233.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “High performance
DRAMs in workstation environments.”

IEEE Transactions on
Computers

, vol. 50 no. 11. November 2001. (TC Special Issue on
High-Performance Memory Systems)

ESDRAM. Enhanced SDRAM 1M x 16. Enhanced Memory
Systems, Inc.,
http://www.edram.com/products/datasheets/16M_esdram0298a.p
df, 1998.

P. Lapsley, J. Bier, A. Shoham, and E. A. Lee. DSP Processor
Fundamentals. Berkeley Design Technology, Inc., 1994.

Rambus. 16/18Mbit & 64/72Mbit Concurrent RDRAM Data Sheet.
Rambus, http://www.rambus.com/docs/Cnctds.pdf, 1998.

Rambus. Direct RDRAM 64/72-Mbit Data Sheet. Rambus,
http://www.rambus.com/docs/64dDDS.pdf, 1998.

Texas Instruments.

TMS320C6000 peripherals reference guide

, TI
Inc., http://www-s.ti.com/sc/psheets/spru190d/spru190d.pdf.

J. Turley. 1997. “TI’s

new ’C6x DSP screams at 1,600 MIPS.”
Microprocessor

 Report, 11(2):14–18.

O. Wolf and J. Bier. 1998. “StarCore launches first architecture:
Lucent and Motorola disclose new VLIW-based approach.”

Microprocessor Report

, 12(14):22–55.

Figure 6: Performance of the “victim-cache” organization.

4
by

te
s

8
by

te
s

16
 b

yte
s

32
 b

yte
s

64
 b

yte
s

12
8

by
te

s

25
6

by
te

s

51
2

by
te

s

SRAM

(4
00

M
B/S

ec
)

Cache Block Width

0

1

2

3

4

5

C
yc

le
s

pe
r

In
st

ru
ct

io
n

0

10

20

30

40

A
vg

 L
at

en
cy

 (
C

yc
le

s)

4
by

te
s

8
by

te
s

16
 b

yte
s

32
 b

yte
s

64
 b

yte
s

12
8

by
te

s

25
6

by
te

s

51
2

by
te

s

SRAM

(4
00

M
B/S

ec
)

Cache Block Width

0

1

2

3

4

5

C
yc

le
s

pe
r

In
st

ru
ct

io
n

0

10

20

30

40

A
vg

 L
at

en
cy

 (
C

yc
le

s)

 CPI 400 MB/sec
CPI 800 MB/s
CPI 1200 MB/s
CPI 1600 MB/s

Avg Latency 400 MB/s
Avg Latency 800 MB/s
Avg Latency 1200 MB/s
Avg Latency 1600 MB/s

UTDSP Applications (average) UTDSP Kernels (average)

