Software-Managed Caches: Architectural Support
for Real-Time Embedded Systems

Bruce Jacob

Electrical Engineering Department
University of Maryland, College Park
Email: blj@eng.umd.edu

The problem with traditional caches

It has long been recognized that, for good performance, applications regtiaedess to their

data and instructions. Accordinglyeneral-purpose processorsénaffered caches to speed up
computations in general-purpose applications. Caches hold only a small fraction of a grogram’
total data or instructionsubthey are designed to retain the most important items, so thay at an
given moment it is likly the cache holds the desired item. Cache desigrisam a relatiely

simple principle—at angiven moment, a program is éky to access data that it has accessed in
the recent past, or data that is nearby data that it has accessed in the recent past—and this allo
one to lild correspondingly simple har@ne controllers that achie significant performance
boosts for general-purpose applicationswieeer, hardware-managed caching has been found to
be detrimental to real-time applications, and as a result, real-time applications often digable an
hardware caches on the processor

Why is this so? The emphasis in general-purpose systems is typically speed, which is related to
theaverage-case behaior of a system. In contrast, real-time designers are concerned with the
accurayg and reliability of a system, which are related towhest-case behaior of a system.

When a real-time system is controlling critical equipmexgcation time must lie within

predesigned constraints, withoatlf Variability in execution time is completely unacceptable

when the function is a critical component, such as in the flight control system of an airplane or the
antilock brale system of an automobile.

The problem with using traditional hareve-managed caches in real-time systems is that the
provide a probabilistic performance boost; a cache may or may not contain the desired gata at an
given time. If the data is present in the cache, accessyidast. If the data isot present in the

cache, access i®w slav. Typically, the first time a memory item is requested, it is not in the
cache. Further accesses to the item aedylito find the data in the cache, therefore access will be
fast. Hovever, later memory requests to other locations might displace this item from the cache.
Analysis that guarantees when a particular item will or will not be in the cache kas pro

difficult, so maw real-time systems simply disable caching to enable schedulability analysis
based on wrst-casexecution time.

One solution is to pin den lines in the cache, for hardve systems that support it. System
software can load data and instructions into the cache and instruct the cache to disable their
replacement. The chief disaaiwtage of this approach is that it is not amenable to dynamic
reoiganization; once data and instructiongénbeen pinned, it is often moreeshead than it is
worth to reoganize the cache contents. What is needed isialée low-overhead mechanism
that allavs data and instructions to be pinned, and that alsesatlee contents of the cache to
change quicklyunder the supervision of the operating system. So#iwnanaged caches allo
such behwaor, as thg determine cacheability based on the reference address.

Real-Time System Real-Time System Real-Time System

DATA

\
§\\C>E\§ CODE
N

DATA

CODE

(a) Execution (b) Execution with (c) Execution with
without cache hardware-managed cache software-managed cache
|:| Guaranteed slow access-time m Statistically fast access-time |:| Guaranteed fast access-time

Figure 1. The use of software-managed caches in a real-time system.

Software-managed caches

Software-managed caches all@an operating system to determine on a cacheline-by-cacheline
basis whether or not to cache data, and are espe@aligble in real-time systemsoiFexample,
initialization code of a real-time processuwid never be cached, while the periodic body of the

code would alvays be cached. Since initialization code oxlgaeites once, the loss in

performance by not caching the code is amortized a long gecution time. The periodic loop,
however, is cached, and results in significantly increased performance during the xatirgan,

since an ROS managing the cache can guarantee that the code remains cached for the lifetime of
the process.

Figurel illustrates this type of selee#i caching. Figuré(a) depicts a typical real-time system
that runs without caches; access isvsio every location in the systesiaddress space.

Figurel(b) shavs the efiect of adding a hardave-managed cache; in the steady-state, each item
in the address space has a statisticalihkbod of currently dsting in the cache—it may or may
not be in the cache atyagiven point in time. Figuré&(c) shavs the efiect of adding a softare-
managed cache; the soétve determines what can and cannot be cached, therefore thersoftw
can ensure (if so desired) that certain portions of the address spacwayi &k cached. As
compared to a traditional hardve-managed cache, timing analysis is as simple as in the non-
cached case, because accessyspecific memory is consistent, eithavays in cache, or ner

in cache. Compared to a processor with no cache, selected data accesses and insteactiens e
10-100 timesdster

Work in software-managed caches

At the Unversity of Maryland, we are deloping hardwre and softare models for softare-
managed caches, as well as compiler techniquegtwieng their capabilities. & more details
on the hardware design, see:
Bruce L Jacob and Trevor N Mudge. “Software-managed address translation.” Proc. Third International Symposium
on High Performance Computer Architecture (HPCA-3), pp. 156-167. San Antonio TX, February 1997.

Bruce L Jacob and Trevor N Mudge. “A look at several memory management units, TLB-refill mechanisms, and page
table organizations.” Proc. Eighth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-8), pp. 295-306. San Jose CA, October 1998.

