
1.0 Introduction

The world is moving quickly to distributed systems, but the models from which systems are derived are often inappro-
priate. Many example systems and de facto standards are based on academic proofs-of-concept or commercial LAN-
oriented products, both of which tend toward closed, tightly integrated implementations. These systems are not appro-
priate models when low-level service requests frequently cross administrative and organizational boundaries. They
require that the client know too much static information about the server providing the service. This is often difficult to
impossible to satisfy in a wide-area environment.

For example, most RPC systems, including OSF’s DCE, Sun RPC, and Mach’s system call interface [Foundation91,
Microsystems, Draves89] require an RPC interface description language (IDL) file for the creation of a clientstub
before a client application may talk to a server. All communication with the server is through the stub: the stub handles
the network connection as well as the marshalling and demarshalling of the data packets. In addition, the client must
know how to reach the specific server: DCE requires the client know the principal id of the server (its authentication id),
or a shared secret between the two (a location in the CDS namespace where the server can place binding information).
Sun’s RPC mechanism requires a service provider to be on the same host as its portmapper; this arrangement compels
every host to offer the same set of services, or a client to know beforehand what host to contact. These mechanisms are
fine when the system in question spans a few machines administrated by one individual, but when clients expect to con-
nect to servers on millions of machines, the model falls apart. For example, it is impossible to search for, discover, and
bind to services for which one has no IDL file or server/host name.

This paper presents the Distributed Services Environment, a middleware protocol for transparent service lookup and
invocation in a wide-area network, based on a successful commercial telecommunications product. Both systems are
the design and development work of the author.

The Telecom Services Architecture is a platform for commercial telecommunications applications, such as voicemail,

The use of distributed objects and dynamic interfaces
in a wide-area transaction environment

Bruce L Jacob
Advanced Computer Architecture Lab, EECS Department, University of Michigan, Ann Arbor, MI 48109-2122
blj@umich.edu

Abstract. Distributed systems are in transition from LAN-based closed designs such as academic proof-of-the-
ory architectures and application-specific commercial products, towards WAN-based environments where ser-
vice requests cross administrative boundaries increasingly often. In such an environment, it is necessary for a
client to bind to a server, either directly or indirectly, by the service name alone. It is unrealistic to expect that a
client have knowledge about a particular serverbefore attempting to invoke a service, as in DCE, the Open Soft-
ware Foundation’s Remote Procedure Call (RPC) package. This requirement is an artifact of closed-system RPC
architectures, where the identities of the machines involved are knowna priori.

This paper presents a CORBA-compliant middleware protocol for transparent service lookup and invocation in
a wide-area network. Key to the protocol are an intermediary directory object that maps service names to objects
that provide the services, and the concept of adynamic interface, whereby a client gains the ability to interact
with a server at the time of binding, rather than at compile time. Together, they allow clients to bind to servers
using only service names, and to bind to services for which the clients have no IDL file. These abilities will
become necessities in a wide-area transaction environment.

Keywords: middleware, distributed systems, persistent objects, dynamic service interfaces, transparent method
invocation, network services

SIGCOMM '95 Workshop on Middleware: Cambridge Massachusetts, August 1995



2

fax store & forward, automated paging, call connection, bulletin board services, and automated attendants (computer-
ized receptionists). The system is a combination of specialized hardware and generalized software that handles a sus-
tained call rate of more than 7 calls per second with bursts up to 40 calls per second; it is thus capable of handling over
25,000 busy-hour calls.

The software system design is independent of the hardware system. It is not designed specifically for telecommunica-
tions applications, but is a highly adaptable software platform for general distributed real-time applications. It consists
of many cooperating persistent objects or agents. A centralized scheduler object takes requests from client objects and
distributes them to server objects, much in the fashion of a job board. Client objects interface with the telephony hard-
ware and register their services (object methods) with the scheduler so that services may be invoked transparently.

The Distributed Services Environment is an extension of this design. The analogy of a shopping mall can be used; cli-
ents need not know what servers offer the desired service, nor do they need to know the specifics of the interface, i.e.
they do not need a copy of an IDL file to interact with a server. They need only know the address of a nearby ‘mall
directory,’ which in response to a service inquiry will return a list of appropriate servers and descriptions of their
offered services. The particulars of the exchange between client and chosen server are handled at the time of service
invocation, throughdynamic interfaces, as opposed to static interfaces such as those specified in an IDL file. The Envi-
ronment is CORBA-compliant [Group93]; the details are beyond the scope of this abstract.

2.0 The Telecom Services Architecture

The hardware portion of the Telecom Services Architecture is pictured in Fig.1a. It consists of a host-controlled digital
telephone switch whose T1 lines are connected to application processing nodes that communicate with each other via
Ethernet. The digital switch multiplexes T1 lines and is host-controlled (each T1 line carries 24 digital time-multi-
plexed individual phone lines, see [Tanenbaum89]). The processing nodes are composed of a CPU (iX86), memory,
one or more SCSI disks, and telephone interface hardware.

The software portion of the architecture is pictured in Fig. 1b. Its design is orthogonal to the underlying telecommuni-
cations hardware. The system is based on the concept of distributed objects [Chase92, Jul88]. It is composed of trusted

Ethernet

CLIENT
OBJECTS

...
T1 Lines

T1 Lines
(incoming)

Telephone/Voice
Processing Node

Each T/VPN Contains
48 APPLICATION objects

Telephone/Voice
Processing Node

Control

(a) Hardware Architecture
The architecture is centered around a “dumb” (host-controlled) tele-
phone switch. Each Telephone/Voice Processing Node has 24 dedi-
cated application objects listening to each T1 line (24 phone lines).
When a call comes in, a service request is placed on the scheduler
object’s queue and a dedicated application object picks up the
request from the scheduler. If the call requires specialized services,
such as fax or speech recognition, the application object places an
appropriate request on the scheduler’s queue and the call is routed to
a application object that can handle the request.

(b) Software Architecture
The software architecture allows clients to connect transparently to
server objects, through a well-known server object called the sched-
uler. The object methods are invoked indirectly, identified by the
name of the service the method performs. A client can thus invoke a
service by only knowing the name of the service, important as sys-
tems grow larger.

SCHEDULER
OBJECT

SERVER
OBJECTS

Client interaction
A client requests a
service from the
scheduler, which

places the request
on a queue.

Server interaction
Servers periodically

register their services
with the scheduler

object. If there is a ser-
vice request on the

queue that the server
offers, the request is

handed off.

‘WELL-KNOWN’
SERVER OBJECTS

Clients may also
contact certain serv-
ers directly, instead
of going through the

SCHEDULER

� � � � � � � �
Hardware and Software of the Telecom Services Architecture

PBX

Master Control Node
Contains

SCHEDULER and
PBX CONTROL

objects



3

persistent objects that fall into client and server categories. Well-known servers include a scheduler object, a database
object, a mass storage object that handles the tracking of voice data, and a system event logging object, used for debug-
ging. Clients include the switch control object and the telecommunications application objects, which also behave as
servers when picking up service requests.

All objects are descended from a meta-class that offers a reliable UDP messaging service [Stevens90] as well as remote
entry points into the well-known server objects. Objects do not reference each other’s methods directly, but by the
names of the offered services. This allows service invocations to be handled through an intermediary, so that objects
need not know the identity of the object handling the service request.

To invoke a service, a client creates a service request message containing the identity of the service desired (a descrip-
tive ASCII string) and hands the message to the scheduler object. The scheduler places the request on a timeout queue
similar to the callout table in Unix. Server objects periodically register their services with the scheduler and if a regis-
tered service matches a queued request, that request is transferred to the server object. In the telecommunications prod-
uct, the phone call is re-routed to the telephone switch port on which the server is listening. In theory, the transfer of
control could entail anything.

3.0 The Distributed Services Environment

The Distributed Services Environment is based on the software architecture of the TSA. Client objects need only know
the name of the desired service to connect to a server. The connections are made via an intermediary object similar to
the TSA scheduler object. However, where the connection between client and server is made across the digital switch in
the TSA, the client-server connection in the wide-area environment is a network connection initiated by the client. The
intermediary object is a directory object that accepts a service inquiry and returns a list of appropriate servers and the
services they offer. The client is free to choose among the server objects listed and contact any at will.

When the client object initiates direct contact with a server object, the client does not necessarily know the format or
semantics of the server’s messages. This service template information is given to the client by the server so that the cli-
ent may interpret further messages received from the server. The arrangement constitutes adynamic interface; the only
information that a clientmust know is (1) the format of theServiceTemplate message, and (2) how to use the informa-
tion it contains to interpret further messages.

The protocol is at first glance similar to Sun RPC, wherein a client desiring an RPC service on a particular host contacts
that host’s portmapper, which passes the request to the appropriate server. However, there are three fundamental differ-
ences. First, the scheduler object provides access to servers onany host, not just the host on which the scheduler resides.
This decouples the service from the host providing the service, a concept adopted in distributed file systems long ago,
but slow to reach RPC systems. Second, the request is not handed off to the server directly, but instead the inquiring cli-
ent is returned a list of viable server objects, and can make its own connections. This allows for tighter security than in
Sun RPC, as each server object can handle its own client authentication. Finally, the client need not have a copy of an
IDL file describing a service before contacting a server that handles the service. At invocation time, the client is given a
protocol template by the server to be used in dynamic interpretation of messages. This allows clients to bind to new ser-
vices as they come available, without requiring undue knowledge about the services.

References

[Chase92] Jeffrey S Chase, HenryM Levy, EdwardD Lazowska, and Miche Baker-Harvey. “Lightweight shared objects in a 64-bit
operating system.” Technical Report 92-03-09, University of Washington, March 1992.

[Draves89] RichardP Draves, MichaelB Jones, and MaryR Thompson. “MIG–The Mach Interface Generator.” Technical Report (CMU
unpublished report), Carnegie Mellon University, July 1989. FTP=mach.cs.cmu.edu:/usr/mach/public/doc/unpublished/mig.ps.

[Foundation91] OpenSoftware Foundation.DCE Application Development Guide. 1991.

[Group93] ObjectManagement Group.The Common Object Request Broker: Architecture and Specification. December 1993. OMG
Document Number 93.12.43.

[Jul88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. “Fine-grained mobility in the Emerald system.”ACM
Transactions on Computer Systems, 6(1):109–133, February 1988.

[Microsystems] Sun Microsystems.Sun RPC man pages – rpc, rpcinfo, rpcgen, portmap.

[Stevens90] W Richard Stevens.Unix Network Programming. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

[Tanenbaum89] AndrewS Tanenbaum.Computer Networks. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.


