
1

ABSTRACT

Caches have long been a mechanism for speeding memory
access and are popular in embedded hardware architectures
from microcontrollers to core-based ASIC designs. However,
caches are considered ill-suited for embedded real-time sys-
tems because they provide a probabilistic performance boost—
a cache may or may not contain the desired data at any given
moment. Analysis that guarantees when an item will or will
not be in the cache has proven difficult, so many real-time sys-
tems simply disable caching and schedule tasks based on
worst-case memory access time.

Yet there are several cache organizations that provide the
benefit of caching without the real-time drawbacks of hard-
ware-managed caches. These are software-managed caches,
and several different examples can be found, from DSP-style
on-chip RAM to academic designs.

This paper compares the operation and organization of
caches as found in general-purpose processors, microcontrol-
lers, and DSPs; it also discusses designs for embedded real-
time systems.

1 INTRODUCTION

It has long been recognized that, for good performance, appli-
cations require fast access to their data and instructions.
Accordingly, general-purpose processors have offered caches
to speed up computations in general-purpose applications.
Caches hold only a small fraction of a program’s total data or
instructions, but they are designed to retain the most important
items, so that at any given moment it is likely the cache holds
the desired item. Cache designs work on a relatively simple
principle—at any given moment, a program is likely to access
data that it has accessed in the recent past, or data that is
nearby data that it has accessed in the recent past—and this
allows one to build correspondingly simple hardware control-
lers that achieve significant performance boosts for general-
purpose applications. However, caching has been found to be
detrimental to real-time applications, and as a result, real-time
applications often disable all hardware caches on the proces-
sor.

Why is this so? The emphasis in general-purpose systems
is typically speed, which is related to theaverage-case behav-
ior of a system. In contrast, real-time designers are concerned
with the accuracy and reliability of a system, which are related
to theworst-case behavior of a system. When a real-time sys-
tem is controlling critical equipment, execution time must lie
within predesigned constraints, without fail. Variability in exe-
cution time is completely unacceptable when the function is a
critical component, such as in the flight control system of an
airplane or the antilock brake system of an automobile.

The problem with using traditional hardware-managed
caches in real-time systems is that they provide a probabilistic
performance boost; a cache may or may not contain the
desired data at any given time. If the data is present in the
cache, access is very fast. If the data isnot present in the cache,
access is very slow. Typically, the first time a memory item is
requested, it is not in the cache. Further accesses to the item
are likely to find the data in the cache, therefore access will be
fast. However, later memory requests to other locations might
displace this item from the cache. Analysis that guarantees
when a particular item will or will not be in the cache has
proven difficult, so many real-time systems simply disable
caching to enable schedulability analysis based on worst-case
execution time.

One solution is to pin down lines in the cache, for hardware
systems that support it. System software can load data and
instructions into the cache and instruct the cache to disable
their replacement. The chief disadvantage of this approach is
that it is not amenable to dynamic reorganization; once data
and instructions have been pinned, it is often more overhead
than it is worth to reorganize the cache contents. What is
needed is a flexible, low-overhead mechanism that allows data
and instructions to be pinned, and that also allows the contents
of the cache to change quickly, under the supervision of the
operating system.

2 TRADITIONAL CACHES

A cache is a device used to speed up accesses to storage
devices, including tape drives, disk drives, and memory. It
works on the principle oflocality of reference, the tendency of

Cache Design for Embedded Real-Time Systems
Bruce Jacob
Electrical & Computer Engineering Department
University of Maryland at College Park

blj@eng.umd.edu
http://www.ee.umd.edu/~blj/

Presented at the Embedded Systems Conference, Summer 1999. Danvers MA, June 30, 1999.

2

applications to reference a predictably small amount of data
within a given window of time. A storage device is built of a
technology that has a certain access time and a certain cost,
where faster technologies have a lower access time and typi-
cally cost more per storage unit than slower technologies. A
cache for a given storage device is built from a technology that
is faster than that of the storage device in question and only
needs to be large enough to hold the application’s working
set—the set of instructions and data items the application is
currently using to perform its computations—to be effective
[2]. Most of the application accesses will be satisfied out of the
cache, and so most of the time the overall access time will be
that of the cache: far faster than the larger storage device.

2.1 Basic Cache Mechanics

A cache is usually composed of two parts; thecache data and
the cache tags. The basic structure is illustrated in Figure 1.
Since a cache is typically smaller than an entire address space,
there is a possibility that any particular requested datum is not
in the cache. Therefore there must be some mechanism to
determine whether any particular datum is present in the cache
or not. The tags fill this purpose; the tags are a list of valid

entries in the cache, one per data entry. Therefore every tag
entry identifies the contents in its associated data entry.

Virtually all hardware caches operate this way; one indexes
the cache using the appropriate method (a cache can bedirect-
mapped, set-associative, or fully associative), and the associ-
ated tag entry indicates what datum is stored in the cache at
that data entry. If the tagmatches, i.e. if it corresponds to the
requested datum, the datum in the data entry is read out. Fig-
ures 2 and 3 illustrate two different types of cache lookup pro-
cedure: fully associative and direct-mapped.

Figure 2 demonstrates afully associative lookup. In this
organization, the cache is essentially a small hardware data-
base. A datum can be placed anywhere in the cache; the tag
field identifies the data contents. A search checks the tag of
every datum stored in the cache. If any one of the tags matches
the tag of the requested address, it is acache hit: the cache
contains the requested data.

Figure 3 illustrates adirect-mapped lookup. In this organi-
zation, a given datum can only reside in one entry of the cache,
usually determined by a subset of the datum’s address bits.
Though the most common index is the low-order bits of the tag
field, other indexing schemes exist that use a different set of
bits or hash the address to compute an index value bearing no

Cache Tags Cache Data (Cache Lines)

tag

tag

tag

tag

tag

tag

tag

tag

data

data

data

data

data

data

data

data

Entry 4

Entry 5

Entry 6

Entry 7

Entry 0

Entry 1

Entry 2

Entry 3

Figure 1. Basic cache structure. A cache is composed of two main parts; the cache tags and the cache data; each data entry is termed a
cache line or cache block. The tag entries identify the contents of their corresponding data entries.

Cache Tags Cache Data (Cache Lines)

9A74

A834

FFEE

D940

AB53

B73D

9458

CBD3

data

data

data

data

data

data

data

data

Figure 2. Fully associative lookup mechanism. This organization is also called a CAM, for content-addressable memory. It is similar to a
database in that any entry that has the same tag as the lookup address matches, no matter where it is in the cache. This organization reduces
cache contention but the lookup can be expenseive, since the tag of every entry is matched against the lookup address. Once the line is read
out, the lower bits of the address that were not used in the tag match determine what portion of the cache line is to be sent out to the requestor.

CBD3

Address to look up:

MATCH

Size of data entry

data

Cache line is read out:

TAG

No match

No match

No match

No match

No match

No match

No match

3

obvious correspondence to the original address. Whereas in
the associative scheme there aren tag matches, wheren is the
number of cache lines, in this scheme there is only one tag
match because the requested datum can only be found at one
location: it is either there or nowhere in the cache.

The benefit of a direct-mapped cache is that it is extremely
quick to search, since there can only be one place that any par-
ticular datum can be found. However, this introduces the possi-
bility that several different data might need to reside in the
cache at the same place, causing what is known ascontention
for the desired data entry. This results in poor performance, as
entries in the cache are frequently replaced. The problem is
solved by a fully associative cache, which allows any datum to
reside in any data entry in the cache. The advantage is that this
reduces contention as much as is possible, but the disadvantage
is that every single tag must be checked against the data one is
looking for. If they can be checked in a short amount of time,
for example all in parallel, the design works well. A set asso-
ciative cache lies in between the two in the design continuum
and often reaps the benefits of both designs—fast lookup and
lower contention.

2.2 Virtual Memory Primer

Before we get into different virtual/physical organizations of
caches, we must first definevirtual addresses. Most general-
purpose systems support the abstraction ofvirtual memory, a
mechanism that provides a mapping from a perceived address
space (perceived by the running application) to the physical
memory system [1, 7]. The addresses that a running process
uses are relative to this perceived address space and bear no
correspondence to where the data actually reside in main
memory. They are thus calledvirtual addresses.

Virtual memory is one of the few interfaces through which
the architecture and system software directly interact. It was
developed to automate the movement of program code and
data between main memory and secondary storage to give the
appearance of a single large store. This greatly simplified the
job of the programmer, particularly when program code and
data exceeded the size of main memory. The basic idea proved
readily adaptable to additional requirements including address
space protection, the execution of processes only partially resi-
dent in memory, and a user-friendly programming paradigm in
which a process may assume that it owns all available hard-
ware resources, including memory resources beyond the stor-
age capabilities of the machine. Consequently, virtual memory
has become widely used and most modern processors have
hardware memory-management units (MMUs) to support it
[6]. The MMU component that does the actual translation is
called thetranslation lookaside buffer (TLB).

Dynamic memory management has recently made the tran-
sition from general-purpose systems to embedded systems, in
part to facilitate the rapid development of embedded applica-
tions. It is playing an increasingly significant role in embedded
systems as more designers take advantage of low-overhead
embedded operating systems that provide virtual memory (for
example, Windows CE or Inferno), and as more designers
choose object-oriented software platforms in which run-time
garbage collection is pervasive (for example, Sun’s Java Vir-
tual Machine). It is interesting to note that National Semicon-
ductor recently abandoned several years’ worth of
development on their Pentium-class embedded processor,
largely due to customer dissatisfaction with the processor’s
lack of a memory-management unit [12].

Virtual memory, and dynamic memory management in
general, is becoming increasingly important to embedded sys-

Cache Tags Cache Data (Cache Lines)

9A74

A835

FFE6

D94F

AB58

B731

945A

CBDB

data

data

data

data

data

data

data

data

Figure 3. Direct-mapped lookup mechanism. Unlike a fully-associative organization, a particular item can only be found in one entry in the
cache, if it is in the cache at all. For instance, in this cache of eight entries, the bottom three bits of the tag in the first entry must be 000, the
bottom three bits of the tag in the second entry must be 001, the bottom three bits of the tag in the third entry must be 010, etc. Since they will
always match, these bits are not explicitly present in the cache tags—this saves space in the cache for more useful data. The bits determine
which entry in the cache will be checked. The direct-mapped organization makes the lookup faster, but cache contention is higher than in a fully
associative cache. If the tag matches and the line is read out, the lower bits of the address that were not used in the tag match determine what
portion of the cache line is to be sent out to the requestor.

CBD3

Address to look up:

NO MATCH

Size of data entryTAG Index

4

tems today. The reason that virtual memory is an issue in cache
design is because many embedded OSes are supporting it, and
the existence of virtual addresses increases the choices for
cache organization.

2.3 Physical and Virtual Cache Organizations

There are a number of different cache organizations that a
microarchitecture designer can choose from, depending on
how the cache is indexed and what kind of information it uses
for the tags. The cache is a small database, and the address of
the datum, either physical or virtual, is a datum’s correspond-
ing database key. Most data and instruction caches are direct-
mapped or set-associative. Full associativity is typically
reserved for specialized cache structures such as translation
lookaside buffers or special-purpose memories. In direct-
mapped and set-associative caches, a portion of the key is used
to index into the cache to choose a data set—a cache line. If
the cache is direct-mapped there is only one cache line at a
given index; in set-associative caches there are more than one
cache lines. All of the corresponding tag entries (one for a
direct-mapped cache, or more than one for a set-associative
cache) are read out, and if one of the tags matches the key, the
appropriate cache line is read out.

Since the key can be a virtual address or a physical address
we have four choices for cache organizations:

Physically indexed, physically tagged. The cache is
indexed and tagged by its physical address, therefore the
virtual address must be translated before the cache can be
accessed. The advantage of the design is that since the

cache uses the same namespace as physical memory, it can
be entirely controlled by hardware, and the operating
system need not concern itself with managing the cache.
The disadvantage is that address translation is in the critical
path. This becomes a problem as clock speeds increase.
Application data sets are increasing with increasing
memory sizes, and larger TLBs are needed to map the
larger data sets. Larger TLBs are required, and it is both
difficult and expensive to make a large TLB fast. The
physically indexed, physically tagged organization is
illustrated in Figure 4.

Physically indexed, virtually tagged. The cache is indexed
by its physical address but the tag contains the virtual
address. This is traditionally considered an odd
combination, as the tag is read out as a result of indexing
the cache; if the physical address is available at the start of
the procedure (implying that address translation has been
performed), then why not use the physical address as a tag?
If a single physical page is being shared at two different
virtual addresses, then there will be contention for the
cache line, since both arrangements cannot be satisfied at
the same time. However, if the cache is the size of a virtual
page, or if the size of thecache column (the cache size
divided by its associativity: the span of the cache index) is
no more than a virtual page, the cache is effectively
indexed by both the virtual and physical address since the
page offset is identical in the virtual and physical address.
This organization is pictured in Figure 5. The advantage of
the physically indexed, virtually tagged cache organization
is that, in addition to the speed advantage of moving
address translation off the critical path, like the physically-
indexed/physically-tagged organization, the operating
system need not perform explicit cache management.

Virtually indexed, physically tagged. The cache is indexed
by the virtual address, which is available immediately since
it needs no translation, and the cache is tagged by the

TLB

Virtual Page Number

ASID

Page Offset

Page Frame Number

Tag: Page Frame Number

Cache Data

Figure 4. A physically indexed, physically tagged cache
organization.

Virtual Address

CACHE

Cache Index

Page Frame Number Page Offset

Physical Address

Figure 5. A physically indexed, virtually tagged cache
organization.

CACHE

Virtual Page Number Page Offset

Virtual Page Number

Cache Index

Tag: Virtual Page Number

Cache Data

Virtual Address

5

physical address which does require translation. Since the
tag compare happens after indexing the cache, the
translation of the virtual address can happen at the same
time as the cache index; it can be done in parallel. Though
address translation is necessary, it is not in the critical path.
The advantages of the scheme are a much faster access
time than a physically indexed cache, and a reduced need
for management as compared to a virtually indexed,
virtually tagged cache—though management is still
necessary, as opposed to physically indexed caches. The
virtually indexed, physically tagged cache organization is
illustrated in Figure 6.

Virtually indexed, virtually tagged. The cache is indexed
and tagged by the virtual address. The advantage of this
design is that address translation is not needed anywhere in
the process. A translation lookaside buffer is not needed,
and if one is used, it only needs to be accessed when a
requested datum is not in the cache. On such a cache miss,
the virtual address must be translated to load the datum
from physical memory. A TLB would speed up the
translation if the mapping were found in the TLB. Since
the TLB is not in the critical path, it could be very large;
though this would imply a slow access time, a larger TLB
would hold much more mapping information, and its slow
access time could be offset by its infrequency of access.
The virtually indexed, virtually tagged cache organization
is illustrated in Figure 7.

There are, of course, many more components to the choice of
cache organization. For instance, the cache can be set associa-
tive, which looks like several direct-mapped caches all
searched in parallel, and the degree of associativity is a design
choice: higher associativity approaches the hit rate of a fully
associative design, but slows the processor. The size of the
cache line is a design choice: larger line sizes tend to yield bet-

ter hit rates, but only up to a point [11]. There are also proto-
cols for how write misses are handled [9] and mechanisms
such as victim caches that attempt to identify important data
items that are thrown out prematurely [8]. For the sake of this
paper, these are all beyond the scope of our discussion.

2.4 The Advantage of Caching

The benefit of caches is that they hold data close to the proces-
sor, and the closer the data, the faster its access. Caches take
advantage of locality in two ways:

• When an item is referenced, it is brought into the cache.
Therefore, if the item is referenced again in the near future,
it is likely still within the cache, and its access will be fast.
This exploitstemporal locality—the tendency of a program
to reuse data in the near future.

• When an item is referenced, the surrounding data is also
brought into the cache: a cache line or cache block is
usually larger than a single datum. Therefore, if the
program uses data near the original datum, the data is likely
already in the cache. This exploitsspatial locality—the
tendency of a program to reference items that are nearby
those it has used in the recent past.

In general, data tends to be found in the cache: items are rarely
displaced immediately, and thus a program can easily get good
performance in cases like tight loops that re-reference instruc-
tions and data.

2.5 The Disadvantage of Caching

The problem with this arrangement is that, in the steady-state,
the cache is full of important data, and any reference to an
object that is not already in the cache displaces something that
has been referenced in the past and is therefore important.
Because the execution path in a typical program is based partly
on the input data, it is difficult to predict exactly which instruc-

CACHE
TLB

Virtual Page Number

ASID

Page Offset

Page Frame Number

Cache Index

Tag: Page Frame Number

Cache Data

Figure 6. A virtually indexed, physically tagged cache
organization.

Virtual Address

Figure 7. A virtually indexed, virtually tagged cache
organization.

CACHE

Virtual Page Number Page Offset

Virtual Page Number

Cache Index

Tag: Virtual Page Number

Cache Data

Virtual Address

6

tions a program will execute in the far future. Similarly, a pro-
gram’s data reference pattern is based in part on the data
values; thus it is difficult to predict exactly which data the pro-
gram will touch in the far future. Because of this inherent lack
of predictability, it is virtually impossible to tell how long any
given datum will last in the cache before it is displaced by
some other datum—the end result is that it is very difficult to
predict what the steady-state cache contents will be, and there-
fore it is very difficult to predict the future execution time of
any given instruction or collection of instructions. This lack of
precision is inimical to real-time systems, which require abso-
lute confidence in the execution times of their operations—it is
no wonder that many of these systems execute without caches.

3 SOFTWARE-MANAGED ORGANIZATIONS

There are two primary cache organizations that lend them-
selves to real-time processing. The first is the kind used indig-
ital signal processors (DSPs) [10]. DSPs typically use on-chip
SRAMs that form a separate namespace from main memory.
Instructions and data only appear in these memories if soft-
ware explicit moves them there.

Another organization is thesoftware-managed virtual
cache that has been discussed in the academic literature for
high-performance systems [4, 5] and has recently made the
transition to real-time embedded systems [3].

Software-managed cache organizations allow the software
to determine, even on a cacheline-by-cacheline basis, whether
or not to cache instructions and data; they are especially valu-
able in real-time systems. For example, initialization code of a
real-time process would never be cached, while the periodic
body of the code would always be cached. Since initialization
code only executes once, the loss in performance by not cach-

ing the code is amortized over a long execution time. The peri-
odic loop, however, is cached, and results in significantly
increased performance during the entire execution, since an
RTOS managing the cache can guarantee that the code remains
cached for the lifetime of the process.

3.1 SRAM in a Separate Namespace

Figure 8 illustrates this organization: executing software sees a
namespace that spans several distinct storage types. The soft-
ware is thus completely aware of the storage types available
and can make intelligent choices (both statically and dynami-
cally) about where each function or data object should reside
for maximum performance. In this particular memory map,
there are two on-chip SRAM arrays, found in the low region of
the address space. At the top of the address space is the DRAM
array, which in this example is located off-chip. In the middle
of the memory map are the devices and the ROM array. Sup-
pose, that the memory areas have the following sizes and cor-
respond to the following ranges in the address space:

Then if the system designer wants a certain function that is ini-
tially held in ROM to be located instead in the very beginning

Address Range Size Storage Device

0x0000–0x0FFF 4 KBytes SRAM-0

0x1000–0x1FFF 4 KBytes SRAM-1

0x2000–0x3FFF 8 KBytes invalid

0x4000–0x5FFF 8 KBytes ROM

0x6000–0x6FFF 4 KBytes invalid

0x7000–0x77FF 2 KBytes Device interfaces

0x7800–0x7FFF 2 KBytes invalid

0x8000–0xFFFF 32 KBytes RAM

Figure 8. DSP-style SRAM in a distinct namespace separate from main memory.

PROCESS

PROCESS ADDRESS SPACE

0

MAX

SRAM0

SRAM1

ROM

DRAM

Off-Chip DRAMPROCESSOR

SRAM1

SRAM0

Device

DSP
CORE

Devices
Off-Chip ROM

Interfaces

7

of the SRAM-1 array (as in the previous example given in
which initialization code is never cached but the periodic loop
of the main program is always cached), the software could per-
form the following operation:

void function();

char *from = function; /* in range 4000-5FFF */

char *to = 0x1000; /* start of SRAM-1 array */

memcpy(to, from, FUNCTION_SIZE);

This would copy FUNCTION_SIZE bytes from the ROM
array to the SRAM-1 array. From that point on, the static value
of function could never be used to call the function. Future
invocations offunction() would have to use the address
0x1000 instead of whereverfunction() is located in ROM,
otherwise those invocations would call the ROM version of the
function, not the cached version.

Note that this software-managed cache organization works
because DSPs typically do not use virtual memory: in the DSP
world, it is not considered a system error to allow applications
direct access to the memory system. This is perhaps consid-
ered an “unsafe” design because any process could read or
write the code or data of any other process in the system.
Whereas that is an important issue in general-purpose time-
sharing systems, it is a non-issue in most embedded systems.
However, it appears that the trend is for embedded systems to
look increasingly like desktop systems, in which case address-
space protectionwill be a future issue.

One obvious question ishow can this scheme be extended
to support address-space protection? One solution is to simply
provide access to the memory arrays via a virtual memory
mechanism similar to those used in general-purpose systems: a
memory-management unit with a translation lookaside buffer.
The arrangement would require something a little different
from general-purpose systems, for several reasons: first, the
management of the memory system would become more com-
plex because there is more than simply a DRAM array
involved; second, the management of the TLB would have to
be more deterministic than it is in typical general-purpose sys-
tems (which often use random replacement strategies, etc.).

For the memory-management interface, a DSP-based oper-
ating system might want to provide several variations on hte
functionmalloc(), each of which allocates to the process a
virtual region that maps to a separate area of the physical
namespace. For example, here is a set of functions that a DSP-
based OS could export to its processes to provide such access:

void *sram0_malloc(size_t size);

void *sram1_malloc(size_t size);

void *dram_malloc(size_t size);

void *rom_malloc(addr_t start, size_t size);

Note that therom_malloc() function does not actually pro-
vide heap space in the ROM array; it simply allocates a region
within the process address space that is mapped to a region in
the ROM array. All of the functions behave this way, but the

rom_malloc() function is the only that would require the
software to specify a region within the storage device, for obvi-
ous reasons.

This memory-allocation interface would have the desired
effect of allowing a process to make device-specific optimiza-
tions, but it would also hide from the process the particulars of
how big each region is, where in the address space it is located,
etc. It would also protect the virtual address spaces of pro-
cesses from each other.

For a deterministic TLB mechanism, the operating system
software would want to avoid random replacement policies
and perhaps have several classes of page table entries: those
that are held in the TLB, those that are held in fast memory
(SRAM arrays), and those that are held in the DRAM system.
Provided that a program can predict its future memory usage
with a reasonable degree of accuracy, the program could assign
regions of memory to be mapped by page-table entries with
statically-known access times.

3.2 Software-Managed Virtual Caches

Another way to give software control over the memory system
is to make software responsible for cache-fill and decouple the
translation hardware, such as the MMU and TLB, if they are
part of the system. In general-purpose systems, hardware han-
dles cache-fill: if a memory access misses the cache, hardware
fetches the datum from memory and places it in the cache
transparently. Note that if the system uses virtual-address
translation hardware (a TLB), the hardware must translate the
address before sending it to main memory.

However, one can make software responsible for all cache-
fill activity by upcalls to the software that happen on cache
misses: every cache miss would interrupt the software and vec-
tor to a handler that fetches the referenced datum and places it
into the cache (transparently to the rest of the software). If the
software determines that a particular datum should not be
cached, it fetches the datum but does not place it in the cache.
To avoid constant interruptions for access to intentionally
uncached data, a separate region of the virtual space would
refer directly to physical memory—the hardware must inter-
pret addresses in this region as physical, non-cached addresses.
It would send these addresses directly to the DRAM array.

This is in fact similar to the preceding example, in that it
also allows software to determine, at either compile time or
run-time, to cache or not cache portions of the address space.
This example differs in that it works with general-purpose
style caches that hold copies of data held in the DRAM sys-
tem; whereas the preceding example the caches are disjoint
with the DRAM system.

Figure 9 illustrates this organization. Figure 9(a) depicts a
typical real-time system that runs without caches; access is
slow to every location in the system’s address space. Figure
9(b) shows the effect of adding a hardware-managed cache; in
the steady-state, each item in the address space has a statistical

8

likelihood of currently existing in the cache—it may or may
not be in the cache at any given point in time. Figure 9(c)
shows the effect of adding a software-managed cache; the soft-
ware determines what can and cannot be cached, therefore the
software can ensure (if so desired) that certain portions of the
address space will always be cached. As compared to a tradi-
tional hardware-managed cache, timing analysis is as simple
as in the non-cached case, because access to any specific mem-
ory is consistent, either always in cache, or never in cache.
Compared to a processor with no cache, selected data accesses
and instructions execute 10-100 times faster.

Address translation hardware can still be used in this
scheme. It can speed up the translation of addresses that miss
the cache, and it can also be used to create a third class of
memory access beyond cached anduncached. The uncached
accesses would be divided into two sub-classes: those that are
translated to physical addresses by software (which has signifi-
cant overhead because the operating system must load page-
table entries from memory to perform the translation), and
those that are translated by the TLB.

4 CONCLUSIONS

This paper describes several software-oriented cache manage-
ment schemes that allow real-time systems to make use of on-
chip SRAM caches. The paper covers both DSP-style caches
whose name spaces are disjoint with the DRAM system, and
general-purpose microprocessor-style caches that share the
same namespace as the DRAM system.

In both cases, address-space protection is provided by a
virtual memory mechanism. As in general-purpose systems,
implementing a layer of virtual memory and address transla-
tion adds an amount of overhead that would be absent if user-
level processes executed directly on top of the raw memory

system. However, if indeed embedded systems begin to look
increasingly like general-purpose systems, with software writ-
ten by multiple vendors, then perhaps this performance over-
head is a small price to pay for process protection and
modularity.

REFERENCES

[1] P.J. Denning. “Virtual memory.”Computing Surveys, vol. 2,
no. 3, pp. 153–189, September 1970.

[2] P.J. Denning. “Working Sets Past and Present.”IEEE Trans-
actions on Software Engineering, vol. 6, no. 1, pp. 64–84, Jan-
uary 1980.

[3] B. L. Jacob. “Software-managed caches: Architectural support
for real-time embedded systems.” InCASES98: Workshop on
Compiler and Architecture Support for Embedded Systems,
Washington DC, December 1998.

[4] B. L. Jacob and T.N. Mudge. “Software-managed address
translation.” InProc. Third International Symposium on High
Performance Computer Architecture (HPCA-3), San Antonio
TX, February 1997, pp. 156–167.

[5] B. L. Jacob and T.N. Mudge. “A look at several memory-man-
agement units, TLB-refill mechanisms, and page table organi-
zations.” InProc. Eighth Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS-8), San Jose CA, October 1998, pp. 295–306.

[6] B. L. Jacob and T.N. Mudge. “Virtual memory in contempo-
rary microprocessors.”IEEE Micro, vol. 18, no. 4, pp. 60–75,
July/August 1998.

[7] B. L. Jacob and T.N. Mudge. “Virtual memory: Issues of im-
plementation.”IEEE Computer, vol. 31, no. 6, pp. 33–43, June
1998.

[8] N. P. Jouppi. “Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch

Figure 9. The use of software-managed virtual caches in a real-time system.

Guaranteed slow access-time

CODE

Statistically fast access-time Guaranteed fast access-time

DATA

Real-Time System

DATA

Real-Time System

CODE

DATA

Real-Time System

CACHE CACHE

(a) Execution without
cache

(b) Execution with
hardware-managed cache

(c) Execution with
software-managed cache

CODE

9

buffers.” In Proc. 17th Annual International Symposium on
Computer Architecture (ISCA-17), May 1990, pp. 364–373.

[9] N. P. Jouppi. “Cache write policies and performance.” InProc.
20th Annual International Symposium on Computer Architec-
ture (ISCA-20), May 1993, pp. 191–201.

[10] P.Lapsley, J.Bier, A. Shoham, and E.A. Lee.DSP Processor
Fundamentals: Architectures and Features. Berkeley Design
Technology, Inc., Berkeley CA, 1994.

[11] A. J. Smith. “Cache memories.”Computing Surveys, vol. 14,
no. 3, pp. 473–530, September 1982.

[12] J.Turley. “National kills in-house embedded x86 work.”Mi-
croprocessor Report, vol. 12, no. 2, pp. 10, February 1998.

