Cache Design for Embedded Real-Time Systems

Bruce Jacob

Electrical & Computer Engineering Department
University of Maryland at College Park

blji@eng.umd.edu
http://mww.ee.umd.edu/~blj/

ABSTRACT Why is this so? The emphasis in general-purpose systems
is typically speed, which is related to tnerage-casebeha-

Caches ha long been a mechanism for speeding memorjor of a system. In contrast, real-time designers are concerned
access and are popular in embedded heneh@rchitectures with the accuracand reliability of a system, which are related
from microcontrollers to core-based ASIC designsvéder, to theworst-casebehaior of a system. When a real-time sys-
caches are considered ill-suited for embedded real-time sy®m is controlling critical equipmentxecution time must lie
tems because the@rovide a probabilistic performance boost— within predesigned constraints, withoail fVariability in exe-
a cache may or may not contain the desired datayagieen cution time is completely unacceptable when the function is a
moment. Analysis that guarantees when an item will or wiltritical component, such as in the flight control system of an
not be in the cache has pen dificult, so maw real-time sys- airplane or the antilock bralsystem of an automobile.
tems simply disable caching and schedule tasks based on The problem with using traditional hardme-managed
worst-case memory access time. caches in real-time systems is thaytheovide a probabilistic

Yet there are seral cache ganizations that pride the performance boost; a cache may or may not contain the
benefit of caching without the real-time wimcks of hard- desired data at gngiven time. If the data is present in the
ware-managed caches. These are soffMnanaged caches, cache, access igny fast. If the data isot present in the cache,
and seeral diferent &les can be found, from DSP-style access isery slav. Typically, the first time a memory item is
on-chip RAM to academic designs. requested, it is not in the cache. Further accesses to the item

This paper compares the operation angamization of are likely to find the data in the cache, therefore access will be
caches as found in general-purpose processors, microcontrfast. Hevever, later memory requests to other locations might
lers, and DSPs; it also discusses designs for embedded redibplace this item from the cache. Analysis that guarantees

time systems. when a particular item will or will not be in the cache has
proven dificult, so mag real-time systems simply disable
1 INTRODUCTION caching to enable schedulability analysis based mstwase

execution time.
It has long been recognized that, for good performance, appli- One solution is to pin a lines in the cache, for hardve
cations require ast access to their data and instructionssystems that support it. System safitev can load data and
Accordingly general-purpose processorséhafered caches instructions into the cache and instruct the cache to disable
to speed up computations in general-purpose applicationtheir replacement. The chief disatitage of this approach is
Caches hold only a small fraction of a progiaiotal data or that it is not amenable to dynamic igamization; once data
instructions, bt they are designed to retain the most importantand instructions he been pinned, it is often morgeohead
items, so that at grgiven moment it is ligly the cache holds than it is vorth to reoganize the cache contents. What is
the desired item. Cache designerkvon a relatiely simple needed is a fléble, lov-overhead mechanism that aite data
principle—at ag given moment, a program is dily to access and instructions to be pinned, and that alsawallihe contents
data that it has accessed in the recent past, or data thabighe cache to change quicklynder the supervision of the
nearby data that it has accessed in the recent past—and thiEerating system.
allows one to hild correspondingly simple haréwne control-
lers that achie significant performance boosts for general-2 TRADITIONAL CACHES
purpose applications. M@ver, caching has been found to be
detrimental to real-time applications, and as a result, real-tim& cache is a déce used to speed up accesses to storage
applications often disable all hardkg caches on the proces- devices, including tape dres, disk drues, and memonit
sor works on the principle dbcality of refeence the tendencof

Presented at the Embedded Systems Conference, Summer 1999. Danvers MA, June 30, 1999.

Cache Tags Cache Data (Cache Lines)
Entry O tag data
Entry 1 tag data
Entry 2 tag data
Entry 3 tag data
Entry 4 tag data
Entry 5 tag data
Entry 6 tag data
Entry 7 tag data

Figure 1. Basic cache structure. A cache is composed of two main parts; the cache tags and the cache data; each data entry is termed a
cache line or cache block. The tag entries identify the contents of their corresponding data entries.

Address to look up:
} CBD3
TAG Size of data entry
Cache Tags Cache Data (Cache Lines)
No match -e— AB53 data
No match —a— B73D data
No match -e— 9458 data
MATCH --—— CBD3 data

No match o | 9A74 data
No match -«— A834 data
No match a— FFEE data
No match -«— D940 data

Cache line is read out:

‘ data

Figure 2. Fully associative lookup mechanism. This organization is also called a CAM, for content-addressable memory. It is similar to a
database in that any entry that has the same tag as the lookup address matches, no matter where it is in the cache. This organization reduces
cache contention but the lookup can be expenseive, since the tag of every entry is matched against the lookup address. Once the line is read
out, the lower bits of the address that were not used in the tag match determine what portion of the cache line is to be sent out to the requestor.

applications to reference a predictably small amount of datentries in the cache, one per data ertherefore eery tag
within a given windav of time. A storage ddce is lilt of a entry identifies the contents in its associated data entry
technology that has a certain access time and a certain cost, Virtually all hardvare caches operate thiayy one indees
where aster technologies Y& a laver access time and typi- the cache using the appropriate method (a cache ahrebe

cally cost more per storage unit tharmao technologies. A mapped set-associativieor fully associativg and the associ-
cache for a gen storage dece is lilt from a technology that ated tag entry indicates what datum is stored in the cache at
is faster than that of the storagevide in question and only that data entryif the tagmatdes i.e. if it corresponds to the
needs to be lge enough to hold the applicatisnvorking requested datum, the datum in the data entry is read out. Fig-
set—the set of instructions and data items the application isres 2 and 3 illustrate twdifferent types of cache lookup pro-
currently using to perform its computations—to bieaive cedure: fully associat and direct-mapped.

[2]. Most of the application accesses will be satisfied out of the Figure 2 demonstratesfally associativelookup. In this
cache, and so most of the time tiverall access time will be organization, the cache is essentially a small hardvdata-

that of the cacheaf faster than the lger storage déce. base. A datum can be placednahere in the cache; the tag
field identifies the data contents. A search checks the tag of
2.1 Basic Cache Mechanics every datum stored in the cache. lyyame of the tags matches

the tag of the requested address, it adoe hit: the cache
A cache is usually composed ofaarts; theeache dataand contains the requested data.
the cadhe tags The basic structure is illustrated in Figure 1. Figure 3 illustrates direct-mappedookup. In this ggani-
Since a cache is typically smaller than an entire address spazation, a gien datum can only reside in one entry of the cache,
there is a possibility that wiparticular requested datum is not usually determined by a subset of the dasuaddress bits.
in the cache. Therefore there must be some mechanism Though the most common indis the lav-order bits of the tag
determine whether girparticular datum is present in the cachefield, other indging schemesxést that use a diérent set of
or not. The tags fill this purpose; the tags are a listabfl v bits or hash the address to compute anxineie bearing no

Address to look up:
\ CBD3 \
TAG Index Size of data entry
Cache Tags Cache Data (Cache Lines)
AB58 data
B731 data
945A data
NO MATCH CBDB data
9A74 data
A835 data
FFE6 data
D94F data

Figure 3. Direct-mapped lookup mechanism. Unlike a fully-associative organization, a particular item can only be found in one entry in the
cache, if it is in the cache at all. For instance, in this cache of eight entries, the bottom three bits of the tag in the first entry must be 000, the
bottom three bits of the tag in the second entry must be 001, the bottom three bits of the tag in the third entry must be 010, etc. Since they will
always match, these bits are not explicitly present in the cache tags—this saves space in the cache for more useful data. The bits determine
which entry in the cache will be checked. The direct-mapped organization makes the lookup faster, but cache contention is higher than in a fully
associative cache. If the tag matches and the line is read out, the lower bits of the address that were not used in the tag match determine what
portion of the cache line is to be sent out to the requestor.

obvious correspondence to the original address. Whereas in Virtual memory is one of theveinterfaces through which
the associate scheme there angtag matches, whereis the the architecture and system scfte directly interact. It as
number of cache lines, in this scheme there is only one tatgpreloped to automate the mement of program code and
match because the requested datum can only be found at alaa between main memory and secondary storageetdhgi
location: it is either there or mdere in the cache. appearance of a single dar store. This greatly simplified the
The benefit of a direct-mapped cache is that ittiemely job of the programmeiparticularly when program code and
quick to search, since there can only be one place haban data &ceeded the size of main memadme basic idea pred
ticular datum can be found. ever, this introduces the possi- readily adaptable to additional requirements including address
bility that several diferent data might need to reside in thespace protection, the@cution of processes only partially resi-
cache at the same place, causing what issRrascontention dent in memoryand a useiriendly programming paradigm in
for the desired data entrihis results in poor performance, aswhich a process may assume thatwns all aailable hard-
entries in the cache are frequently replaced. The problem vgare resources, including memory resourcg®te the stor-
solved by a fully associate cache, which alles ary datumto age capabilities of the machine. Consequegwittiial memory
reside in ay data entry in the cache. The adiage is that this has become widely used and most modern processees ha
reduces contention as much as is possibtehle disadantage hardware memory-mangement unitstMMUS) to support it
is that @ery single tag must be chexkaginst the data one is [6]. The MMU component that does the actual translation is
looking for. If they can be chedd in a short amount of time, called theranslation lookasideuffer (TLB).
for example all in parallel, the desigrovks well. A set asso- Dynamic memory management has recently made the tran-
ciative cache lies in between theotin the design continuum sition from general-purpose systems to embedded systems, in
and often reaps the benefits of both desigasttbokup and part to fcilitate the rapid delopment of embedded applica-

lower contention. tions. It is playing an increasingly significant role in embedded
systems as more designersetaddantage of la-overhead
2.2 Virtual Memory Primer embedded operating systems thavigt® virtual memory (for

example, WWihdows CE or Inferno), and as more designers
Before we get into diérent virtual/plysical oganizations of choose object-oriented sotive platforms in which run-time
caches, we must first defingtual addessesMost general- garbage collection is pesive (for example, Surs Jaa \ir-
purpose systems support the abstractiovirafal memorya tual Machine). It is interesting to note that National Semicon-
mechanism that pvides a mapping from a perced address ductor recently abandoned veeal vyears’ wrth of
space (perceéd by the running application) to theygltal development on their Pentium-class embedded progessor
memory system [1, 7]. The addresses that a running procdasgely due to customer dissatistion with the processer’
uses are relate to this perceed address space and bear ndack of a memory-management unit [12].
correspondence to where the data actually reside in main Virtual memory and dynamic memory management in
memory They are thus calledirtual addresses. general, is becoming increasingly important to embedded sys-

Virtual Address -
‘ Virtual Address

Virtual Page Number Page Offset _
Virtual Page Number ‘ Page Offset ‘

Cache Index

TLB

CACHE

‘ Virtual Page Number ‘

Physical Address ¢
Page Frame Number ‘ Page Offset ‘ Tag: Virtual Page Number 14—1

Cache Index ‘ Cache Data ‘

Figure 5. A physically indexed, virtually tagged cache
CACHE organization.

‘ Page Frame Number ‘

‘ Tag: Page Frame Number 14—1
Y

‘ Cache Data ‘

cache uses the same namespace\asgahmemoryit can
be entirely controlled by hardwe, and the operating

- - - - system need not concern itself with managing the cache.
e o nysically indexed, physically tagged cache The disadantage is that address translation is in the critical
path. This becomes a problem as clock speeds increase.
Application data sets are increasing with increasing
memory sizes, and ger TLBs are needed to map the
larger data sets. Lger TLBs are required, and it is both
difficult and &pensve to malk a lage TLB fast. The
physically indexed, plysically tagged @anization is
illustrated in Figure 4.

tems todayThe reason that virtual memory is an issue in cache
design is because maambedded OSes are supporting it, and
the eistence of virtual addresses increases the choices for
cache gganization.

2.3 Physical and Virtual Cache Organizations Physically indexed, virtually tagged. The cache is inced
by its ptysical addressut the tag contains the virtual
There are a number of fiifent cache ganizations that a address. This is traditionally considered an odd

microarchitecture designer can choose from, depending on combination, as the tag is read out as a result ofiimgle
how the cache is inded and what kind of information it uses the cache; if the pisical address isvailable at the start of
for the tags. The cache is a small database, and the address othe procedure (implying that address translation has been

the datum, either pisical or virtual, is a datus’correspond- performed), then whnot use the pfsical address as a tag?
ing databasedy. Most data and instruction caches are direct- If a single plysical page is being shared aotdifferent
mapped or set-associgi Full associatity is typically virtual addresses, then there will be contention for the

resered for specialized cache structures such as translation cache line, since both arrangements cannot be satisfied at
lookaside hffers or special-purpose memories. In direct- the same time. Heever, if the cache is the size of a virtual
mapped and set-assooiatcaches, a portion of theykis used page, or if the size of tteahe columr(the cache size

to indec into the cache to choose a data set—a cache line. If divided by its associafity: the span of the cache indes

the cache is direct-mapped there is only one cache line at a no more than a virtual page, the cachefectely

given indeg; in set-associaté caches there are more than one indexed by both the virtual and péical address since the
cache lines. All of the corresponding tag entries (one for a page dfset is identical in the virtual and ydical address.
direct-mapped cache, or more than one for a set-asgeciati This oganization is pictured in Figure 5. The adtage of

cache) are read out, and if one of the tags matchesythiad the plysically indexed, virtually tagged cachegamnization

appropriate cache line is read out. is that, in addition to the speed adtage of mang
Since the &y can be a virtual address or g/gial address address translationfdahe critical path, lik the plgsically-

we have four choices for cachegamnizations: indexed/ptysically-tagged aganization, the operating

Physically indexed, physically tagged. The cache is system need not performicit cache management.

indexed and tagged by its pbical address, therefore the Virtually indexed, physically tagged. The cache is inded
virtual address must be translated before the cache can be by the virtual address, which igadlable immediately since
accessed. The aahtage of the design is that since the it needs no translation, and the cache is tagged by the

Virtual Address Virtual Address

‘ Virtual Page Number Page Offset Virtual Page Number ‘ Page Offset
EASID Cache Index Cache Index

CACHE

B CACHE ‘

Virtual Page Number ‘

¢ ‘ Tag: Virtual Page Number 14—1

‘ Page Frame Number ‘ ‘

‘ Tag: Page Frame Number F

Cache Data ‘

Figure 7. A virtually indexed, virtually tagged cache
organization.

‘ Cache Data

Figure 6. A virtually indexed, physically tagged cache . .
or%anization. Y Py y1aag ter hit rates, bt only up to a point [11]. There are also proto-

cols for hav write misses are handled [9] and mechanisms

physical address which does require translation. Since thesuch as victim caches that attempt to identify important data

- items that are thwn out prematurely [8]. ¢f the sak& of this
tag compare happens after ikiig the cache, the apey these are all lyend the scope of our discussion
translation of the virtual address can happen at the same paper P '
time as the cache inkdt can be done in parallel. Though
address translation is necessirg not in the critical path.
The adantages of the scheme are a mashefr access
time than a pysically indexed cache, and a reduced need
for management as compared to a virtually xede
virtually tagged cache—though management is still
necessaryas opposed to phically indexed caches. The - When an item is referenced, it is brought into the cache.
virtually indexed, plysically tagged cacheganization is Therefore, if the item is referencedaayin the near future,
illustrated in Figures. it is likely still within the cache, and its access will &stf
This eploitstempoal locality—the tendengof a program
to reuse data in the near future.

2.4 The Advantage of Caching

The benefit of caches is thatyheld data close to the proces-
sor, and the closer the data, tlaster its access. Cachesetak
adwantage of locality in tey ways:

Virtually indexed, virtually tagged. The cache is inced
and tagged by the virtual address. Theaathge of this
design is that address translation is not neededheme in -~ « When an item is referenced, the surrounding data is also
the process. A translation lookasidgfér is not needed, brought into the cache: a cache line or cache block is
and if one is used, it only needs to be accessed when a usually lager than a single datum. Therefore, if the
requested datum is not in the cache. On such a cache miss, program uses data near the original datum, the datalis lik
the virtual address must be translated to load the datum already in the cache. Thigmoits spatial locality—the
from physical memoryA TLB would speed up the tendenyg of a program to reference items that are nearby
translation if the mapping were found in the TLB. Since those it has used in the recent past.
the TLB is not in the critical path, it could bery lage;
though this weuld imply a slev access time, a Iger TLB
would hold much more mapping information, and itsvslo
access time could befgét by its infrequencof access.
The virtually indeed, virtually tagged cachegamization
is illustrated in Figure 7.

In general, data tends to be found in the cache: items are rarely
displaced immediatelynd thus a program can easily get good
performance in cases dikight loops that re-reference instruc-
tions and data.

2.5 The Disadvantage of Caching

There are, of course, mamore components to the choice of

cache aganization. r instance, the cache can be set associaFhe problem with this arrangement is that, in the steady-state,
tive, which looks like seeral direct-mapped caches all the cache is full of important data, ands arference to an
searched in parallel, and thegdee of associafity is a design object that is not already in the cache displaces something that
choice: higher associdily approaches the hit rate of a fully has been referenced in the past and is therefore important.
associatie design, bt slovs the processoiThe size of the Because thexecution path in a typical program is based partly
cache line is a design choiceger line sizes tend to yield bet- on the input data, it is di€ult to predict &actly which instruc-

MAX
DRAM f=an. .
P 1Tk -
Devices L
_+ " Off-Chip ROM
‘ ’ -~ . .
ROM Device
Interfaces 'SRAMl
PROCESS Wi
BRI T
et . /’//
SRAML ’ 23Pe @ | sramo
RAMO fememmm==- deweean 1 -
0 SRAMO
PROCESS ADDRESS SPACE PROCESSOR Off-Chip DRAM

Figure 8. DSP-style SRAM in a distinct namespace separate from main memory.

tions a program willxecute in thedr future. Similarlya pro- ing the code is amortizeder a long gecution time. The peri-
grams data reference pattern is based in part on the dataic loop, havever, is cached, and results in significantly
values; thus it is difcult to predict gactly which data the pro- increased performance during the entixecetion, since an
gram will touch in thedr future. Because of this inherent lack RTOS managing the cache can guarantee that the code remains
of predictability it is virtually impossible to tell welong aty cached for the lifetime of the process.
given datum will last in the cache before it is displaced by
some other datum—the end result is that iteiy\dificult to 3.1 SRAM in a Separate Namespace
predict what the steady-state cache contents will be, and there-
fore it is \ery difficult to predict the futurexecution time of Figure 8 illustrates this ganization: &ecuting softvare sees a
ary given instruction or collection of instructions. This lack of namespace that spansesal distinct storage types. The soft-
precision is inimical to real-time systems, which require absoware is thus completelynare of the storage typesadlable
lute confidence in thexecution times of their operations—it is and can madk intelligent choices (both statically and dynami-
no wonder that manof these systemsecute without caches. cally) about where each function or data object should reside
for maximum performance. In this particular memory map,
3 SOFTWARE-MANAGED ORGANIZATIONS there are tw on-chip SRAM arrays, found in then@egion of
the address space. At the top of the address space is the DRAM
There are tw primary cache ganizations that lend them- array which in this &le is located 6thip. In the middle
seles to real-time processing. The first is the kind usddyin of the memory map are theuvilees and the @M array Sup-
ital signal pocessas (DSPs)10]. DSPs typically use on-chip pose, that the memory areasénghe follaving sizes and cor-
SRAMs that form a separate hamespace from main memomgspond to the folleing ranges in the address space:
Instructions and data only appear in these memories if soft-

ware eplicit moves them there. Address Range Size Storage Device
Another oganization is thesoftwae-manged virtual OX0000—OXOFEE 4 KBytes SRAM-0

cache that has been discussed in the academic literature for gy1000-0x1EEF 4 KBytes SRAM-1

high-performance systems [4, 5] and has recently made the o,o000_0x3rer 8 KBytes invalid

transition to real-time embedded systems [3]. Ox4000—O0X5FEE 8 KBytes ROM
Software-managed cacheganizations allev the softvare OX6000—OXEFEE 4 KBytes invalid

to determine,\n on a cacheline-by-cacheline basis, whether ,7000-0x77rE 2 KBytes Device interfaces

or not to cache instructions and dataythee especiallyalu- OX7800-O0X7FEE 2 KBytes invalid

able in real-time systemsofFexample, initialization code of a OXB000—OXEEFE 32 KBytes RAM

real-time process ould never be cached, while the periodic
body of the code auld alvays be cached. Since initialization Then if the system designeamts a certain function that is ini-
code only gecutes once, the loss in performance by not cachially held in FOM to be located instead in thery bejinning

of the SRAM-1 array (as in the pieus example gven in rom nmal | oc() function is the only that @uld require the
which initialization code is mer cached it the periodic loop software to specify a ggon within the storage diee, for olvi-

of the main program iswahys cached), the sofane could per- ous reasons.

form the follawing operation: This memory-allocation intexte would hae the desired
effect of allaving a process to maldevice-specific optimiza-
tions, lut it would also hide from the process the particulars of
how big each rgion is, where in the address space it is located,
etc. It would also protect the virtual address spaces of pro-
cesses from each other

This would coly FUNCTI ON_SI ZE bytes from the RM For a deterministic TLB mechanism, the operating system
array to the SRAM-1 arrafrom that point on, the statialue software would want to &oid random replacement policies
of f unct i on could n&er be used to call the function. Future and perhaps ka seeral classes of page table entries: those
invocations off uncti on() would hae to use the address that are held in the TLB, those that are heldast fnemory
0x1000 instead of whererf unct i on() is located in ®BM, (SRAM arrays), and those that are held in the DRAM system.
otherwise those Vrocations wuld call the ®M version of the Provided that a program can predict its future memory usage
function, not the cacheaxsion. with a reasonable deese of accuragthe program could assign

Note that this softare-managed cacheganization verks regions of memory to be mapped by page-table entries with
because DSPs typically do not use virtual memory: in the DS&atically-knavn access times.
world, it is not considered a system error tovalépplications
direct access to the memory system. This is perhaps consil2z Software-Managed Virtual Caches
ered an “unsafe” design because @nocess could read or
write the code or data of wrother process in the system. Another vay to gve software control @er the memory system
Whereas that is an important issue in general-purpose timis-to male software responsible for cache-fill and decouple the
sharing systems, it is a non-issue in most embedded systertranslation hardare, such as the MMU and TLB, if thare
However, it appears that the trend is for embedded systems fart of the system. In general-purpose systems, hagdvan-
look increasingly like desktop systems, in which case addressdles cache-fill: if a memory access misses the cache, én&dw
space protectiowill be a future issue. fetches the datum from memory and places it in the cache

One olvious question isiow can this dteme bexdended transparently Note that if the system uses virtual-address
to support addess-space ptection?One solution is to simply translation hardare (a TLB), the hardave must translate the
provide access to the memory arrays via a virtual memorgddress before sending it to main memory
mechanism similar to those used in general-purpose systems: aHowever, one can maksoftware responsible for all cache-
memory-management unit with a translation lookasidteb fill activity by upcallsto the software that happen on cache
The arrangement auld require something a little thfent misses: gery cache missauld interrupt the softare and &c-
from general-purpose systems, fovesal reasons: first, the tor to a handler that fetches the referenced datum and places it
management of the memory systeould become more com- into the cache (transparently to the rest of the soéivIf the
plex because there is more than simply a DRAM arrayoftware determines that a particular datum should not be
involved; second, the management of the TL&iM hare to cached, it fetches the datumt lloes not place it in the cache.
be more deterministic than it is in typical general-purpose sy§0 asoid constant interruptions for access to intentionally
tems (which often use random replacement sfieteetc.). uncached data, a separatgioa of the virtual space auld

For the memory-management ingar€, a DSP-based oper- refer directly to piisical memory—the hardwe must inter-
ating system might ant to preide seeral \ariations on hte pret addresses in thiggien as plsical, non-cached addresses.
functionmal | oc() , each of which allocates to the process dt would send these addresses directly to the DRAM.array
virtual rggion that maps to a separate area of thgsipél This is in Bct similar to the precedinga@mple, in that it
namespace.df example, here is a set of functions that a DSP-also allavs softvare to determine, at either compile time or
based OS couldkport to its processes to pide such access: run-time, to cache or not cache portions of the address space.
This example difers in that it verks with general-purpose
style caches that hold copies of data held in the DRAM sys-
tem; whereas the precedingaenple the caches are disjoint
with the DRAM system.

Figure 9 illustrates this ganization. Figure 9(a) depicts a
Note that the om nal | oc() function does not actually pro- typical real-time system that runs without caches; access is
vide heap space in theOR/ array; it simply allocates agien slow to every location in the systesraddress space. Figure
within the process address space that is mapped ¢gioa e~ 9(b) shaevs the efiect of adding a hardave-managed cache; in
the FOM array All of the functions behee this vay, but the the steady-state, each item in the address space has a statistical

voi d function();

char *from = function; /* in range 4000-5FFF */
char *to = 0x1000; /* start of SRAM1 array */
mencpy(to, from FUNCTI ON_SI ZE);

void *sranD_nal l oc(size_t size);

void *sraml_nal l oc(size_t size);

void *dram nall oc(size_t size);

void *romnalloc(addr_t start, size_t size);

Real-Time System Real-Time System Real-Time System

)

DATA

7%
i)

DATA DATA

(a) Execution without (b) Execution with (c) Execution with
cache hardware-managed cache software-managed cache
D Guaranteed slow access-time Statistically fast access-time D Guaranteed fast access-time

Figure 9. The use of software-managed virtual caches in a real-time system.

likelihood of currently xé@sting in the cache—it may or may system. Hwever, if indeed embedded systemsyimeto look

not be in the cache atyamgiven point in time. Figure 9(c) increasingly lile general-purpose systems, with safswrit-

shaws the eflect of adding a softare-managed cache; the soft- ten by multiple endors, then perhaps this performaneer-o

ware determines what can and cannot be cached, therefore Head is a small price to pay for process protection and

software can ensure (if so desired) that certain portions of theodularity

address space willaays be cached. As compared to a tradi-

tional hardvare-managed cache, timing analysis is as simplREFERENCES

as in the non-cached case, because accesgdpesific mem-

ory is consistent, eithervedys in cache, or mer in cache. [1] P.J. Denning. “Virtual memory.Computing Surveysol. 2,

Compared to a processor with no cache, selected data accessesno. 3, pp. 153-189, September 1970.

and instructions)@cute 10-100 times$ter [2] P.J. Denning. “Working Sets Past and PresdBEE Trans-
Address translation harére can still be used in this actions on Software Engineeringpl. 6, no. 1, pp. 64-84, Jan-

scheme. It can speed up the translation of addresses that miss uary 1980.

the cache, and it can also be used to create a third class[3]f B. L. Jacob. “Software-managed caches: Architectural support

memory access pend cached anduncatied The uncached for real-time embedded systems.”"@ASES98: Workshop on
accesses auld be diided into two sub-classes: those that are Compiler and Architecture Support for Embedded Systems
translated to pfsical addresses by sofive (which has signifi- Washington DC, December 1998.

cant werhead because the operating system must load pagél B.L. Jacob and TN. Mudge. “Software-managed address
table entries from memory to perform the translation), and translation.” InProc. Third International Symposium on High

those that are translated by the TLB. Performance Computer Architecture (HPCA-San Antonio
TX, February 1997, pp. 156-167.
4 CONCLUSIONS [5] B.L.Jacob and TN. Mudge. “A look at several memory-man-
agement units, TLB-refill mechanisms, and page table organi-
This paper describes\vazal softvare-oriented cache manage- zations.” InProc. Eighth Int'l Conf. on Architectural Support
ment schemes that allareal-time systems to makise of on- for Programming Languages and Operating Systems (ASP-

chip SRAM caches. The papervess both DSP-style caches LOS-8) San Jose CA, October 1998, pp. 295-306.

whose name spaces are disjoint with the DRAM system, aril] B. L. Jacob and TN. Mudge. “Virtual memory in contempo-
general-purpose microprocesstyle caches that share the rary microprocessorsiEEE Micro, vol. 18, no. 4, pp. 6075,
same namespace as the DRAM system. July/August 1998.

In both cases, address-space protection igided by a [7] B.L. Jacob and TN. Mudge. “Virtual memory: Issues of im-
virtual memory mechanism. As in general-purpose systems, plementation.IEEE Computervol. 31, no. 6, pp. 33-43, June
implementing a layer of virtual memory and address transla- 1998.
tion adds an amount ofrerhead that wuld be absent if user [8] N.P. Jouppi. “lmproving direct-mapped cache performance by
level processesxecuted directly on top of thewamemory the addition of a small fully-associative cache and prefetch

9]

buffers.” In Proc. 17th Annual International Symposium on [10] P.Lapsley, JBier, A. Shoham, and EA. Lee.DSP Processor

Computer Architecture (ISCA-1May 1990, pp. 364-373. Fundamentals: Architectures and Featur8erkeley Design
N. P. Jouppi. “Cache write policies and performanceProc. Technology, Inc., Berkeley CA, 1994.
20th Annual International Symposium on Computer Architec{11] A. J. Smith. “Cache memoriesComputing Surveywol. 14,
ture (ISCA-20)May 1993, pp. 191-201. no. 3, pp. 473-530, September 1982.

[12] J. Turley. “National kills in-house embedded x86 workii-
croprocessor Repartvol. 12, no. 2, pp. 10, February 1998.

