
Procee
1530-0
Abstract

The use of large instruction windows coupled with aggressive out-of-
order and prefetching capabilities has provided significant
improvements in processor performance. In this paper, we quantify
the effects of increased out-of-order aggressiveness on a processor’s
memory ordering/consistency model as well as an application’s cache
behavior. We observe that increasing reorder buffer sizes cause less
than one third of issued memory instructions to be executed in actual
program order. We show that increasing the reorder buffer size from
80 to 512 entries results in an increase in the frequency of memory
traps by a factor of six and an increase in total execution overhead by
10–40%. Additionally, we observe that the reordering of memory
instructions increases the L1 data cache accesses by 10–60% and the
L1 data cache misses by 10–20%.

These findings reveal that increased out-of-order capability can
waste energy in two ways. First, re-fetching and re-executing
instructions flushed due to traps require the fetch, map, and execution
units to dissipate energy on work that has already been done before.
Second, an increase in the number of cache accesses and cache
misses needlessly dissipates energy. Both these side effects can be
related to the reordering of memory instructions. Thus, to avoid
wasting both energy and performance, we propose a virtual load/
store queue (VLSQ) within the existing physical load/store queue. The
VLSQ reduces the reordering of memory instructions by limiting the
number of memory instructions visible to the select and issue logic.
We show that VLSQs can reduce trap overhead, cache accesses, and
cache misses by as much as 45%, 50%, and 15% respectively when
compared to traditional load/store queues. We observe that these
reductions yield net power savings of 10–50% with degradation in
performance by 1–5%.

1. Introduction

The instruction window or reorder buffer (ROB) is categorized as one
of the most important design parameters in modern high performance
processors. Previous studies have shown that increasing the size of
reorder buffers, issue queues, and load/store queues can lead to
increased performance [4, 13, 16, 18, 20]; consequently, much
research has looked at the feasibility of increasing the size of these
hardware data structures without negatively impacting clock cycle
time [5, 11, 13]. However, when one considers “real” effects due to
the reordering of memory instructions, the potential performance
gains largely disappear.

By varying the aggressiveness of an out-of-order core in terms of
reorder buffer sizes, issue queues, load/store queues, and renaming

registers, the study in this paper brings to light two potential pitfalls of
aggressive out-of-order mechanisms present in real systems that
many previous simulation-based studies have not addressed.

• Increasing out-of-order capability conflicts with a processor’s
memory consistency and ordering model by requiring the
processor to take frequent expensive replay traps, i.e. flushing
the pipeline and re-executing a window of instructions.

• Increasing out-of-order capability can destroy cache locality,
thereby causing an application to suffer from a higher number of
cache misses than a less aggressive out-of-order mechanism.

This paper shows that even though aggressive out-of-order
mechanisms enhance performance, the reordering of memory
instructions can cause significant overhead in the system, i.e. the very
mechanisms commonly used to improve performance can cause
sources of performance degradation in the system. Using the network
communication concept of windowing, we define a virtual window in
the existing load/store queue. The window acts as a virtual load/store
queue (VLSQ) and limits the number of available memory
instructions at the select and issue logic. We vary the size of the
window statically and observe that small VLSQs reduce the
frequency of replay traps, cache accesses, and cache misses and
provide net power savings with minimal degradation in performance.

1.1. The problem

Due to the increasing processor-memory gap, the long latencies
associated with memory requires an abundance of independent
instructions to overlap busy work with work that takes a while to do.
The most popular mechanism to achieve this is to provide the
instruction scheduler with a gigantic window of instructions to
schedule from. Larger instruction windows and aggressive instruction
schedulers provide the processor with a large number of instructions
deep into an application’s instruction stream. Selecting and issuing to
execute such distant independent instructions inherently causes an
application’s instructions to be reordered. Though the reordering of
ALU instructions poses minimal effects on program execution, the
reordering of memory instructions can affect program execution in
two distinct ways:

• Increased Replay Traps: The reordering of memory
instructions can create a variety of hazards that can affect the
correct execution of an application. For example, when using
load speculation [17, 19], if it is later determined that the
speculated load utilizes the same effective address as an older
but unresolved store, then the load causes a fault, and the
processor must replay the faulting load instruction. This is

Using Virtual Load/Store Queues (VLSQs) to Reduce the
Negative Effects of Reordered Memory Instructions

Aamer Jaleel and Bruce Jacob
Dept. of Electrical & Computer Engineering

University of Maryland, College Park
{ajaleel,blj}@eng.umd.edu
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
known as a “replay trap.” A replay trap can either be handled by
flushing the pipeline and restarting execution at the faulting
instruction or re-executing only the faulting instruction and all of
its direct and indirect dependent instructions. Clearly, the re-
execute method is more favorable than the pipeline flush
method; however, the complexity in logic required to determine
and re-execute an entire dependence chain of the faulting
instruction is relatively expensive and can become even more so
with increased reorder buffer sizes [19]. Thus, modern systems
typically use the pipeline-flush method of handling traps, and, as
the frequency of traps increases, significant performance and
energy can be wasted in re-fetching and re-executing those
instructions flushed.

• Increased Cache Misses: Executing memory instructions
speculatively or in an order different from actual program order
can negatively impact an application’s cache locality. For
example, a load instruction issued out-of-order can evict data
required by both older and future memory instructions that are
waiting to be issued. When the older or future memory
instruction later executes and misses in the data cache, energy is
needlessly wasted in re-fetching and re-filling the recently
evicted data cache line. Even more, if the out-of-order load turns
out to be only speculative, energy is unnecessarily dissipated by
accessing the data cache and evicting a data cache line in the
event of a cache miss. Thus, with the increase in out-of-order
capability, an increase in the frequency of conflict misses due to
speculative or non-speculative memory instructions can result in
unnecessary wastage of energy.

Figure 1 illustrates both these pitfalls as they scale with increased out-
of-order capability. By increasing the reorder buffer size from 80 to
512 entries, we observe that 25–60% of total execution time is lost
due to the occurrence of replay traps. We also observe that increasing
the reorder buffer size from 80 to 512 also negatively impacts an
application’s cache locality by increasing the number of L1 cache
misses by 5–30%. To clarify, a “cache miss” is one that misses both in
the data cache and the miss status holding registers (MSHRs) [12].
From Figure 1, we observe that, while the negative effects of out-of-

order execution existed for only a small fraction of the time with
small reorder buffers, eliminating other sources of stalls by increasing
the out-of-order capability exposes these negative effects to represent
significant overhead. Since recent research and industry trends are
focusing on increasing out-of-order capability [4, 5, 11, 13, 16, 18, 20,
24], with the results from Figure 1 in mind, we believe it is imperative
that the frequency of traps and the number of cache misses be reduced
so that future high performance processors can realize the full
potential of more complex out-of-order designs.

1.2. Proposed solution

A trivial mechanism for reducing the reordering of memory
instructions is to use a smaller load/store queue. However, efficient
use of all entries in a large reorder buffer directly depends on the size
of the load/store queue. This is because the load/store queue not only
supports simultaneous searches to find memory dependencies to
adhere to memory consistency models, but it also maintains all in-
flight memory instructions in program order. In the event that the
load/store queue becomes full and a new load/store instruction is
fetched, the fetch stage will need to stall until a memory instruction
commits and frees space in the load/store queue. Since memory
instructions constitute on average one third of a program’s total
instructions [14], attempting to use a load/store queue that is any less
than one third the size of a reorder buffer can under-utilize the reorder
buffer.

We are interested in providing a solution that maintains large
reorder buffers and load/store queues yet provides the benefits of
smaller load/store queues. Rather than physically reducing the size of
the load/store queue, we define a virtual window within the existing
load/store queue. The virtual window acts as a virtual load/store
queue (VLSQ) and is maintained using virtual head and virtual tail
pointers that point into the existing load/store queue. To reduce the
reordering of memory instructions, during instruction scheduling, the
select and issue logic ensures that only memory instructions residing
within the VLSQ are selected to be issued. Thus, by varying the size

Figure 1: Negative Effects of Increased Out-of-Order Aggressiveness. Increasing the out-of-order capability of a processor can cause (a)
10–60% of total execution time recovering from replay traps (b) and a 10–20% increase in an applications cache misses.

80 Entry ROB
128 Entry ROB
256 Entry ROB
512 Entry ROB

(a)% Total Execution Time Spent in Handling Traps (b)% Increase in L1 Cache Misses

%
 T

ot
al

 E
xe

cu
tio

n
Ti

m
e

%
 In

cr
ea

se
 in

 L
1

C
ac

he
 M

is
se

s

Compared to 80-Entry ROB

applu art
mgrid swim gcc

gzip
mcf

twolf
FAvg

IAvg
0

10

20

30

40

50

60

70

applu art
mgrid swim gcc

gzip
mcf

twolf
FAvg

IAvg
0

10

20

30

40
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
of the VLSQ, one can throttle the degree by which memory
instructions are issued out-of-order.

1.3. Results

We show that VLSQs reduce the reordering of memory instructions,
the frequency of traps, and the needless amount of cache accesses and
cache misses. As a result, VLSQs eliminate the unnecessary overhead
in re-fetching, re-mapping, and re-executing instructions by reducing
the frequency of traps by a factor of two to 30; this yields a reduction
in total trap overhead by as much as 45%. By reducing the amount of
duplicated work, VLSQs reduce the average power dissipated in the
fetch, map/rename, and execution units by 10–50%. Furthermore,
VLSQs also reduce the number of L1 data cache accesses by 10–60%
and the L1 data cache misses by 5–15%. These reductions translate
into power savings of 10–50% and 5–30% in the L1 and L2 cache
respectively. The reduction in power in each of the different
components translates into 10–50% net power savings with
performance degradation of 1–5%.

2. Background

2.1. Reordering of memory instructions

By allowing a processor to exploit instruction level parallelism (ILP)
via large instruction windows, both ALU and memory instructions
are executed out of program order. Since register renaming maintains
the dependencies of ALU instructions, out-of-order issue of ALU
instructions poses no threat to functional correctness. On the other
hand, since memory dependencies are resolved only after issuing to
execute, out-of-order issue of memory instructions can pose threats to
functional correctness, especially if two memory instructions issued
out-of-order access the same memory location. In such a scenario, the
processor may need to initiate a replay trap. A replay trap occurs
when the processor must roll back the state to force accesses to a
particular memory location in order, or to handle different-sized
accesses to the same memory location. Replay traps do not require
any software support (e.g. interrupt handlers in the operating system);
they merely require re-execution of instructions starting from the
instruction that caused the replay trap. Figure 2 illustrates the different
types of replay traps. Numbers in parentheses signify the order in
which instructions are issued to execute, and numbers in italics
signify actual program order.

• Load-Store Replay: A load-store replay trap occurs when a
newer load instruction is issued before all prior store addresses

are resolved. In the event that the processor detects a newer load
executing out-of-order with respect to an older store that it
depends upon, a load-store trap is initiated. This is required so
that the newer load acquires data from the store rather than stale
data from the cache. For example, in Figure 2(a), if memory
instruction number three (a load) executes before the store
instruction (both of which access the same memory location A),
then the value loaded from the data cache will be incorrect.
Microprocessors that use load speculation must handle this
replay trap to ensure functional correctness, e.g. Alpha,
POWER4, Itanium. [1, 2, 14, 22]

• Wrong Size Replay: A wrong-size replay trap occurs when the
data for a newer load is partially in the store queue and partially
in the data cache. In Figure 2(b), the second load instruction in
the program requires reading a half word (two bytes) starting at
memory location A; however a prior store writes one byte to the
same memory location. When the processor detects this, the load
must be re-executed after the older store instruction drains its
data from the store queue into the data cache. Note that this
replay trap can occur even if memory instructions are issued in
program order [1, 2, 22]. As a result, all high performance
microprocessors must be able to detect and overcome this
hazard.

• Load-Load Replay: A load-load replay trap is initiated when
two loads to the same memory address are issued out-of-order.
In a uniprocessor environment this poses no problems; however,
in the case of a multiprocessor environment, out-of-order issue
of loads can cause subtle memory consistency problems. For
example, in Figure 2(c), if two loads to the same address are
issued out-of-order, and a different processor changes the value
between the execution of these two loads, then the newer load
instruction may obtain the older value, and the older load may
obtain a newer value. The load-load ordering problem can either
be handled in hardware or explicitly by the software
programmer. In the software approach, if a relaxed memory
consistency model is supported, processors provide a memory
barrier instruction that allows the programmer to enforce
ordering among memory instructions wherever needed.
However, extensive use of memory barriers can negatively hurt
performance [18]. Thus, hardware support, via replay traps, is
provided by some processors to guarantee load-load ordering to
the same address, (e.g., Alpha[1, 2], POWER4[22], and MIPS
R10000[3]).

2. ST BYTE A (3)

3. LD BYTE A (2)

1. LD BYTE A (1)

4. LD BYTE B (4)

2. ST BYTE A (2)

3. LD HALF A (3)

1. LD BYTE A (1)

4. LD BYTE B (4) 2. ST BYTE A (2)

3. LD BYTE A (1)1. LD BYTE A (4)

4. LD BYTE B (3)

P2P1

Figure 2: Classification of Replay Traps. The figure illustrates the different types of replay traps that can occur in both uniprocessor and
multiprocessor environments. (a) Load-Store Replay (b) Wrong Size Replay (c) Load-Load Replay (d) Load-Miss Load Replay. In the examples,
due to a replay trap, re-execution starts from the shaded instruction. Numbers in parenthesis show program execution order and numbers in
italics show actual program order.

3. LD BYTE A (3)

2. ST BYTE A (2)1. +LD BYTE A (1)

4. LD BYTE B (4)

P2P1

+Memory Instruction Misses in Data Cache

(a) (b) (c) (d)
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
• Load-miss Load Replay: A load-miss load replay trap is
initiated when two loads to the same memory address are issued,
and the first load misses in the data cache and already has a miss
information/status holding register (MSHR) allocated to it
(Figure 2(d)). An MSHR keeps track of an outstanding memory
request to a single cache line [12]. It is used to “merge” multiple
requests to the same cache line by keeping track of all
destination registers waiting for data from memory. When the
data arrives from memory, the MSHR fills all the outstanding
destination registers that were waiting for the same cache line.
Like the load-load replay trap, subtle memory consistency
problems can occur if there is an intervening store from a
different processor between two loads to the same memory
address. In such a scenario, the MSHR provides the second load
instruction with stale data. Thus, to avoid this source of memory
inconsistency, the processor waits until the data for the first load
is loaded into the destination register and flags the newer load
instruction with a replay trap. Note that this replay trap can occur
even though memory instructions are issued in program order,
(e.g., Alpha[1, 2]).

Irrespective of the type of replay trap, the hardware mechanism
currently used to handle a replay trap is identical to those involved in
handling branch mispredicts. When an instruction executes and
causes a replay trap, the fact is noted in the reorder buffer entry. While
committing instructions, if the processor detects that the memory
instruction caused a replay trap, the pipeline is flushed, and execution
is restarted from the faulting memory instruction. We show that, while
these replay traps occur only a fraction of the time with small reorder
buffers, increasing out-of-order capability exposes them to be a
significant and increasing drain on performance.

2.2. Related work

It is widely believed that a processor’s out-of-order efficiency
depends almost solely on the number of instructions it views at a
given time, i.e. the reorder buffer/instruction window size. The more
instructions an out-of-order core views and the wider the issue widths,
the more an out-of-order core can exploit an application’s instruction

level parallelism (ILP). Furthermore, aggressive techniques such as
load speculation and data-value prediction allow the instruction
scheduler to be less strict, thereby exploiting even more ILP.

It is also known that larger instruction windows conflict with
increasing clock speeds. A good deal of recent effort is aimed at
designing efficient and fast issue/selection logic that allows for larger
instruction-window sizes while still maintaining high clock speeds.
Henry et al. proposed an alternate binary tree circuit implementation
for the wakeup logic [11]; Onder et al. proposed explicit wake-up lists
associated with executing instructions [16]; Lebeck et al. tackle the
instruction window size by proposing an alternate waiting instruction
buffer (WIB) [13]; and Akkary et al. propose a checkpoint and
recovery mechanism to recover from branch mispredicts with larger
instruction window sizes [4].

Since larger instruction windows expose aggressive out-of-order
processors to more load/store communications, Park et al. propose
techniques to scale the load/store queue size using segmentation [18].
Furthermore, to allow for load speculation, Calder et al. tackle the
false memory-aliasing problem and propose four different
mechanisms for load speculation. Loads predicted not to alias older
stores are issued speculatively. If the load is mispredicted, instructions
are squashed and re-executed [19].

3. Virtual load/store queues (VLSQs)

To maintain large reorder buffer and issue queue sizes yet reduce the
reordering of memory instructions, we propose a virtual load/store
queue (VLSQ) using the concept of windowing [21]. Windowing is a
commonly used technique for implementing flow control while
transferring data over networks. With typical network
communication, a sender normally transmits data packets, and the
receiver acknowledges (acks) them. The window size determines the
maximum number of data packets that can be sent without waiting for
an ack. Once an ack is received for the oldest packet in the sender’s
queue, the window is extended by sliding the window down to allow
the transmission of additional packets in the queue.

We use the windowing concept to reduce the reordering of
memory instructions. We introduce a virtual window into the existing

Figure 3: Virtual Load/Store Queue (VLSQ): A mechanism to reduce the reordering of memory instructions. (a) The figure illustrates the
traditional implementation of a load-store queue. (b) Using VLSQs, only memory instructions that lie within the virtual head and virtual tail pointers
are issued to execute. Other memory instructions must wait till they lie within the virtual window before they can be issued to execute.

LD/ST 1

LD/ST 2

LD/ST 4

.

LD/ST 5

LD/ST 0

LD/ST 3

LSQ Tail

LSQ Head

Virtual Head

Virtual Tail

.

LD/ST N-1

LD/ST N

LD/ST 1

LD/ST 2

LD/ST 4

.

LD/ST 5

LD/ST 0

LD/ST 3

.

LD/ST N-1

LD/ST N
LSQ Tail

LSQ Head

Virtual
Window
Size=Inf

Virtual
Window
Size=4

(a) Traditional Load/Store Queue (b) Virtual Load/Store Queue

Issued
Instructions
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
load/store queue. The length of the window determines the number of
memory instructions available to the select and issue logic. The
virtual window essentially acts as a virtual load/store queue (VLSQ).
The VLSQ is maintained using two additional pointers into the
existing load/store queue: virtual head and virtual tail; virtual head
always points to the oldest non-issued memory instruction and virtual
tail points to the end of the VLSQ. The difference between virtual
head and virtual tail is Wsize, the size of the virtual window. During
instruction scheduling, the select and issue logic ensures that only
memory instructions residing within the VLSQ are issued to execute.
The virtual head and virtual tail pointers are changed only when the
memory instruction at the virtual head is issued.

Figure 3(a) illustrates a traditional load/store queue with head
pointer at index 0 and the tail pointer at index N. The shaded load/
store queue entries indicate instructions that have already been issued.
With a traditional load/store queue, the issue logic can schedule any
memory instruction (between 2 and N) whose operands are ready.
Figure 3(b) illustrates an example of a VLSQ with Wsize = 4. The
virtual head pointer points to the first non-issued memory instruction,
i.e. memory instruction 2. With a 4-entry VLSQ, the issue logic can
only schedule memory instructions 2, 3, 4, or 5. If none of the
instructions in the VLSQ have their operands ready, the issue logic
stalls the issue of memory operations. When memory instruction two
is issued, the virtual window slides down until the virtual head
pointer reaches the first non-issued memory instruction.

The benefits of using a VLSQ are two-fold. First, a VLSQ
reduces the reordering of memory instructions without affecting
instruction fetch bandwidth or the execution of ALU instructions. By
reducing the reordering of memory instructions, VLSQs can reduce
the number of replay traps and cache misses. Second, a VLSQ can
also reduce the total number of memory instructions executed
speculatively. The benefits of reducing speculative memory
instructions are: (a) fewer memory disambiguation related load/store
queue searches and (b) fewer cache accesses. A reduction in the
number of speculative memory instructions issued and a reduction in
replay traps caused due to the reordering of memory instructions can
lead to significant power and energy savings in the data caches and
fetch, map, and execution hardware.

However, a downside associated with using VLSQs is a reduction
in the amount of ILP available for memory instructions. Applications
that are heavily dependent on the quick execution of memory
instructions can suffer from a degradation in performance due to the
delayed issue of memory instructions to the memory system. Such
memory-instruction dependent (or memory intensive) applications
may require a larger VLSQ than those applications that are memory-
instruction independent, i.e. those that are compute intensive.

In this paper, we explore the windowing concept by statically
varying the size of the VLSQ. We profile applications with different

virtual window sizes to determine an optimal VLSQ size. However, a
dynamic approach of varying the size of the VLSQ based on
application run time events such as replay traps and cache misses is
also possible and is part of our ongoing work.

4. Experimental methodology

4.1. Simulation parameters

For this study, we use a validated execution driven Alpha 21264
simulator: sim-alpha [8, 15]. The simulator models a 64KB two-way
set associative L1 instruction cache with a single cycle hit latency,
64KB two-way set associative L1 data cache with a 3-cycle hit
latency and a 2MB (unified) four-way set associative L2 cache with a
15-cycle hit latency. The caches have a 64-byte line size and also 8
MSHRs per cache. The simulator also models 128-entry fully
associative instruction and data TLBs. The simulator also models a
4,096-entry branch target buffer (BTB), and a 2,048-line hybrid
gshare-bimodal branch predictor. The simulator uses as its standard
back-end DRAM system a detailed DRAM memory and bus model
that was developed at the University of Maryland, College Park [6, 7].
For this study we use its 1.3 GB/s DDR SDRAM model. The
simulator also models a stride prefetcher with a 256-entry 2-way set
associative stride table and eight 8-entry stream buffers. The
simulator allows for aggressive out-of-order techniques such as load
speculation and also detects the replay traps mentioned in Section 2.1.
Furthermore, the simulator also maintains a 1024-entry store-wait
data structure to avoid recurring store-replay traps. If a load
instruction causes a store-load replay trap, the fact is noted by
indexing into the store-wait table using the load’s PC. At fetch time, if
the processor detects that the PC of the load is set in the store-wait
table, the load instruction is not issued until all prior store address are
resolved. The store-wait table is cleared unconditionally every 16,384
cycles [1, 2].

We vary out-of-order capability by changing the ROB size, issue
and load/store queue size, as shown in Table 1. We use four floating
point (applu, art, mgrid, and swim) and four integer (gcc, gzip, mcf,
and twolf) benchmarks from the SPEC 2000 suite [10]. The
benchmarks were acquired from the SimpleScalar developers [23]
and were warmed up by fast-forwarding the first 2 billion
instructions. Data was gathered over the next 500 million instructions.
The benchmarks operate on their reference input sets.

As mentioned earlier, we statically vary the size of the VLSQ to
analyze the effect of different VLSQ sizes with increasing out-of-
order capability. A VLSQ of size 1 implies in-order issue of both
loads and stores. A VLSQ of size infinity (Inf) is a traditional
processor with a VLSQ size equal to the appropriate physical load/
store queue size shown in Table 1.

Table 1: Processor Configurations

Configuration
Name

ROB
Size

Issue Width
INT/FP

IssueQ Size
INT/FP

Functional Units
INT ALU/INT MULT/FP ALU/FP MULT

LQ/SQ
Size

Alpha-80 80 8/4 Way 20/15 4/4/1/1 32/32

Alpha-128 128 8/4 Way 40/30 4/4/1/1 64/64

Alpha-256 256 8/4 Way 80/60 4/4/1/1 128/128

Alpha-512 512 8/4 Way 160/120 4/4/1/1 256/256
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
5. Effects of increased OoO aggressiveness

5.1. Replay traps

When the reorder buffer is increased from 80 to 512 entries, less than
one-third of the total number of memory instructions issued are issued
in actual program order. In some benchmarks such as mgrid and
swim, less than 10% are issued in actual program order. We observe
that the rest of the memory instructions are either issued early or late
due to functional unity latency, cache miss latency, or memory
latency. This significant degree of reordering suggests that replay
traps can (and we show that they do) become a tremendous source of
performance and energy overhead with increasing out-of-order
capability. To illustrate this, Figure 4 shows the total number of
instructions executed between traps (trap frequency) and the percent
of total execution time lost in replay traps. Execution time lost is
found by tracking the difference in cycles between when an
instruction was originally fetched and when the instruction is re-
fetched due to a replay trap. The data is averaged for all eight
benchmarks. The x-axis shows the different Alpha configurations
(Alpha-80, Alpha-128, Alpha-256 and Alpha-512), and the different
VLSQ sizes (Inf-1). We remind the reader that an “infinite” VLSQ is
equivalent to the traditional implementation of a load/store queue.

In Figure 4(a), considering only the traditional implementation of
a load/store queue, i.e. only the bars labeled Inf, we observe that
replay traps become an important source of performance overhead
and wastage of energy with increased out-of-order capability.
Increasing the ROB size from 80 to 512 entries decreases the average
number of instructions executed between traps by a factor of 6,
meaning that increasing the out-of-order capability can cause an
increase in trap frequency by 600%. For benchmarks like mgrid and
swim, we observe an increase in trap frequency by factors of 50 or
more. As mentioned earlier in the paper, the mechanisms for handling
replay traps requires the pipeline to be flushed and instructions to be
re-fetched and re-executed from the faulting instruction.

It is intuitive that the overhead in performance and energy for
flushing and re-fetching an entire window of instructions can become
extremely high due to the amount of work that needs to be redone.
For example, if at the time of a replay trap the reorder buffer is a
100% full, on an 8-wide processor with a 512-entry ROB, it will take
64 cycles plus memory latency, functional unit latency, and
dependency stalls to restore the state of the reorder buffer to what it
was before the trap. Our studies show that, on average, increasing the
out-of-order capability increases the total number of instructions
flushed by a factor of two to 300. From Figure 4(b), we observe that
the increase in trap frequency translates into 20–65% of total
execution time lost due to replay traps. These results reveal that even
though a processor can extract maximum possible ILP, too much
reordering of memory instructions can cause the processor to spend
an enormous amount of time (and energy) duplicating work that had
already been done before.

Clearly, we observe the necessity for reducing the degree by
which memory instructions are issued out-of-order. With this in mind,
Figure 4(a) also shows that the use of VLSQs can reduce the
frequency of traps between instructions by a factor of two to 30. This
correlates with a reduction in the total number of instructions flushed
by 50–200% and a reduction in total execution time lost by 10–45%
as shown in Figure 4(b). From the figure, we observe that maximum
benefits come from smaller VLSQs, clearly correlating the reordering
of memory instructions to trap frequency and overhead. Thus, we
conclude that the use of VLSQs can reduce the frequency of replay
traps and this can translate into savings in energy that would
otherwise be needlessly spent in re-fetching and re-executing
instructions flushed.

5.2. Cache behavior

Figure 5 shows the cache behavior in terms of change in L1 cache
accesses and L1 cache misses averaged over all eight benchmarks.
The data is graphed as a percent change in cache accesses or misses
normalized to the Alpha-80 configuration with a full-size (“infinite”)

 2
.1

7
e
+

0
3

 2
.1

6
e
+

0
3

 2
.2

4
e

+
0
3

 2

.4
3
e

+
0

3

 2

.9
9

e
+

0
3

 4

.5
8

e
+

0
3

 1

.5
1
e

+
0
4

 1

.2
3
e

+
0
3

 1
.2

4
e

+
0

3

 1

.3
8

e
+

0
3

 1

.8
8
e

+
0

3

 2

.6
e
+

0
3

 4
.3

2
e
+

0
3

 1
.4

4
e
+

0
4

 5
0

9

 1
.2

e
+

0
3

 1
.3

9
e

+
0

3

 1

.8
4
e

+
0

3

 2
.6

e
+

0
3

 4

.3
7

e
+

0
3

 1

.4
5
e

+
0

4

 4

2
8

 1
.1

2
e
+

0
3

 1
.3

9
e

+
0
3

 1

.8
7
e

+
0
3

 2
.6

2
e
+

0
3

 4
.3

6
e
+

0
3

 1

.4
2
e

+
0
4

In
f

6
4

3
2

1
6 8 4 1

In
f

6
4

3
2

1
6 8 4 1

In
f

6
4

3
2

1
6 8 4 1

In
f

6
4

3
2

1
6 8 4 1100

1000

10000

1e+05

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 10

10

20

30

40

50

60

70

of

 In
st

ru
ct

io
ns

 /
T

ra
p

%
 o

f T
ot

al
 E

xe
cu

tio
n

Ti
m

e

(a) Trap Frequency: Average # of Instructions (b) Total Execution Time Lost In Handling Traps
Alpha-80 Alpha-128 Alpha-256 Alpha-512 Alpha-80 Alpha-128 Alpha-256 Alpha-512

Figure 4: Effect of VLSQs on Replay Traps. The figure shows that VLSQs reduce (a) the frequency of traps by a factor of two to 30 and (b) the
total execution time lost in traps by 10–45%.

Executed Between Traps
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
VLSQ. From the figure, considering only traditional load/store
queues, we observe that increasing the out-of-order capability
increases the total number of cache accesses by 10–60% and the total
number of cache misses by 10–20%. We observe a direct correlation
between reduced VLSQ sizes and a reduced number of cache
accesses and misses. We observe that smaller VLSQs can reduce the
total number of cache accesses by 5–60% and the total number of
cache misses by 5–15%. These findings reveal that VLSQs can also
aid in reducing the unnecessary wastage of energy in the data cache.

5.3. Power

With increased trap frequency, the components of a processor that are
exercised heavily are the fetch, map, and execution units. In a similar
manner, increases in cache accesses and misses appropriately require
the respective caches to access and fill the required data. Figure 6
shows the savings in average power consumed, normalized to the
traditional load/store queue for each of the following components:

0

10

20

30

In
f

6
4

3
2

1
6 8 4 1

In
f

6
4

3
2

1
6 8 4 1

In
f

6
4

3
2

1
6 8 4 1

In
f

6
4

3
2

1
6 8 4 1

Alpha-80 Alpha-128 Alpha-256 Alpha-512

(a) Normalized L1 Cache Accesses

%
 C

ha
ng

e
in

 L
1

C
ac

he
 M

is
se

s

Figure 5: Effect of VLSQs on Cache Behavior. VLSQs reduce (a) the number of L1 cache accesses by 5-60% and (b) the number of L1 cache
misses by 5-15%.

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1-10

0

10

20

30

40

50

60

(b) Normalized L1 Cache Misses

%
 C

ha
ng

e
in

 L
1

C
ac

he
 A

cc
es

se
s

Alpha-80 Alpha-128 Alpha-256 Alpha-512

Figure 6: Average Power Savings Using VLSQs. By reducing the reordering of memory instructions, VLSQs eliminate the needless amount of
energy dissipated in re-fetching and re-executing instructions, and speculative cache accesses. This translates into power savings of 5-50% in
the fetch and rename hardware, 10-40% in the execution hardware, and 5-50% in the caches.

VLSQ 64 VLSQ 32 VLSQ 16 VLSQ 8 VLSQ 4 VLSQ 1
0

10

20

30

40

50

60

VLSQ 64 VLSQ 32 VLSQ 16 VLSQ 8 VLSQ 4 VLSQ 1
0

10

20

30

40

50

60

80 Entry Rob
128 Entry Rob
256 Entry Rob
512 Entry Rob

(FETCH) (MAP / RENAME)

(L1 CACHE) (L2 CACHE)

(EXECUTE)

%
 C

ha
ng

e
w

rt
 In

fin
ite

 L
S

Q

%
 C

ha
ng

e
w

rt
 In

fin
ite

 L
S

Q

%
 C

ha
ng

e
w

rt
 In

fin
ite

 L
S

Q

VLSQ 64 VLSQ 32 VLSQ 16 VLSQ 8 VLSQ 4 VLSQ 1
0

10

20

30

40

50

60

VLSQ 64 VLSQ 32 VLSQ 16 VLSQ 8 VLSQ 4 VLSQ 1
0

10

20

30

40

50

60

VLSQ 64 VLSQ 32 VLSQ 16 VLSQ 8 VLSQ 4 VLSQ 1
0

10

20

30

40

50

60
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
fetch hardware, mapping hardware, execution hardware, L1 cache
and L2 cache.

With the use of VLSQs, we observe a reduction in trap frequency
by a factor of two to 30 and a reduction in the total number of
instructions flushed by 50–200%, all of which translates into a total
reduction in replay trap overhead by 10–45%. This means that the
fetch, map, and execute units spend less energy duplicating work that
had already been done before. From the figure, we observe that a
reduction in the total number of instructions flushed translates into
average power savings ranging from 5–50% in the fetch and rename
unit, and 10–40% in the execution unit. Such substantial savings in
power are important especially since the total power of all hardware
associated with the fetch, map, and execute units contribute to
roughly half (46%) of an Alpha 21264’s total power consumption [9].

Additionally, we observe that the use of VLSQs reduces the
average power consumed in the L1 cache by 10–50% and in the L2
cache by 5–30%. Again, we observe that these savings in the caches
are substantial since the caches contribute about 15% of an Alpha
21264’s total chip power [9].

5.4. Performance

Figures 1, 4 and 5 revealed that increasing the aggressiveness of the
out-of-order core in general increased the number of replay traps and
cache misses. We know that such trends normally hurt performance;
the question, however, is: Does the increase in out-of-order capability
overcome these hurdles to provide net performance improvements?
Figure 7(a) shows the performance graphs with the different
benchmarks and ROB sizes on the x-axis and cycles per instruction
(CPI) on the y-axis. CPI is classified into stall cycles where memory
instructions couldn’t retire due to memory latency (black), stall cycles
where instructions couldn’t retire because they either had not been
issued or had not yet finished execution due to ALU latency (medium
grey), and stall overhead cycles due to recovering from branch
mispredicts and replay traps (light grey). The ALU and memory
components of CPI are computed by measuring the number of cycles
the retire stage stalls because it couldn’t retire an ALU or memory
instruction. The overhead portion was computed by taking the
difference between the total number of cycles and the sum of the

Figure 7: (a) Base CPIs Vs. Out-of-Order Capability (b)(c) Effect of VLSQs on Processor Performance.

C
yc

le
s

P
er

 In
st

ru
ct

io
n

(C
P

I)

Memory
ALU
Other

Alpha-80 Alpha-128 Alpha-256 Alpha-512 Alpha-80 Alpha-128 Alpha-256 Alpha-512

(b) Group I Applications (c) Group II Applications

C
yc

le
s

P
er

 In
st

ru
ct

io
n

(C
P

I)

applu art mgrid swim gcc gzip mcf twolf

0

0.5

1

1.5
4.

724.
55

4.
5
4.

49

80 12
8

25
6

51
2

80 12
8

25
6

51
2

80 12
8

25
6

51
2

80 12
8

25
6

51
2

80 12
8

25
6

51
2

80 12
8

25
6

51
2

80 12
8

25
6

51
2

80 12
8

25
6

51
2

(a) Base CPIs For All Applications Used

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 10

0.5

1

1.5

2

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 1

In
f

64 32 16 8 4 10

0.5

1

1.5

2

2.5

3

dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
ALU and memory instruction stall cycles in the retire stage. Note that,
due to overlaps between memory and ALU stall cycles, the overhead
portion of CPI is not the same as the total execution time lost in replay
traps.

From Figure 7(a), we observe that for four benchmarks, increased
out-of-order capability overcame the sources of performance
degradation to provide 30–40% improvement in performance. We
observe that for such benchmarks the bulk of the performance
improvements is achieved by scheduling memory instructions early,
thus hiding/overlapping memory latency with useful work. This is
evident due to the fact that the memory stall portion of CPI (black)
decreases with increased out-of-order capability. On the other hand,
we observe that applications such as mgrid, gcc, and twolf suffer from
a performance degradation with reorder buffer sizes of 256 or more.
For such applications we observe one or more of the three
components of CPI increasing. An increase in the memory portion
can be correlated to the increase in cache misses and replay traps,
while the increase in the other two portions of CPI can be correlated
with an increase in replay traps.

Figure 7(b) and 7(c) show the results of varying the VLSQ size as
the average CPI for all benchmarks, categorized as Group I and
Group II sets. The benchmarks included in Group I are: mgrid, swim,
gcc, gzip; and the benchmarks included in Group II are: applu, art,
mcf and twolf. Group I applications show no remarkable change in
performance with reduced VLSQ sizes. This is because the Group I
applications are memory-instruction independent, that is they are
rather compute-intensive. We infer this from the fact that the memory
stall portion of CPI (black) does not vary with decreased VLSQ size.
Therefore, for such applications, we can gain maximum power
savings of 15–50% by issuing all memory instructions in actual
program order (as shown in Figure 6).

On the other hand, for the Group II benchmarks, we observe two
different behaviors with smaller VLSQs. First, the memory latency
portion of CPI increases. This behavior can be expected because the
use of a VLSQ reduces the reordering of memory instructions at the
expense of memory ILP. This is apparent because reducing the size of
the VLSQ causes an increase in the memory stall portion (black) of
CPI. Thus, for applications that are memory-instruction dependent (or
memory intensive), we observe a 15–30% degradation in
performance with decreased VLSQs. However, for such benchmarks
we observe that VLSQ sizes of 16 and 32 are within 2–5% of the
traditional load/store queue. This indicates that VLSQ sizes of 16 or
32 are optimal and can lead to power savings of 10–22% (as shown in
Figure 6).

Second, for the Group II benchmarks, we observe that issuing of
memory instructions in program order (VLSQ of size 1) can cause a
factor of 2 increase in overhead portions when compared to the
traditional load/store queue. We relate this to an increase in the
occurrence of replay traps. As mentioned in Section 2.1, replay traps
can still occur even though memory instructions are issued in
program order. Besides the load-miss-load and wrong-size replay
traps, we observe that a load-store replay trap can also occur with the
in order issue of memory instructions. For example, a load-store
replay trap occurs if a store and its memory-dependent load are
simultaneously issued to execute in the same cycle. Since the load and
store compute their effective addresses at the same time, store-to-load
forwarding cannot occur in the same cycle. Thus, the load instruction
must be replayed. A replay trap can become expensive if the reorder
buffer is full, and this scenario is very likely when combining

decreased VLSQ sizes and memory intensive benchmarks. This is
because of the latencies associated with the delayed issue of load
instructions to the cache and memory subsystem. Thus, in the event of
a replay trap the overhead of re-fetching and re-executing an entire
window of instructions can become expensive, especially with larger
reorder buffer sizes.

Finally, from Figure 7(b) and 7(c), we also observe that out-of-
order processors need only a window of 16 or 32 memory instructions
to select and issue from. We observe that selecting and issuing to
execute memory instructions outside of a window of 32 instructions
can unnecessarily waste time and energy recovering from replay traps
as well as unnecessary data cache accesses and misses.

6. Conclusions and future work

Large instruction windows coupled with out-of-order execution has
been the widely proposed technique to tolerate the long latencies
associated with data cache misses and cross-chip communication.
The study in this paper shows two pitfalls of aggressive out-of-order
mechanisms. First, increased out-of-order capability conflicts with the
memory-ordering requirements of a processor, resulting in frequent
traps to maintain correct state. Second, out-of-order execution of
memory instructions destroys an application’s cache locality, causing
it to suffer from a higher number of cache misses than a less
aggressive out-of-order mechanism. We observe that both these side
effects of out-of-order execution are due to the reordering of memory
instructions. We observe that increasing the reorder buffer size from
80 to 512 entries increases the trap frequency by a factor of six or
more. The increased trap frequency translates into an application
spending 25–60% of total execution time recovering from traps.
Furthermore, we observe that increasing the out-of-order capability
increases the average L1 data cache accesses by 10–60% and the
average L1 data cache misses by 10–20%. These results show that the
very mechanisms commonly used to improve performance cause
sources of performance degradation in the system.

We show that the use of virtual load/store queues (VLSQs)
reduces the reordering of memory instructions, the frequency of traps,
and the needless amount of cache accesses and cache misses. As a
result, a VLSQ eliminates the unnecessary overhead in re-fetching,
re-mapping, and re-executing instructions by reducing the frequency
of traps by a factor of two to 30 and also reducing the total trap
overhead by as much as 45%. By reducing the amount of duplicated
work, VLSQs reduce the average power dissipated in the fetch, map/
rename, and execution units by 20–50%. Furthermore, VLSQs also
reduce the number of L1 data cache accesses and misses by 5–60%
and 5–15% respectively. Both these savings translate into power
savings of 10–50% and 5–30% in the L1 and L2 cache respectively.
The reductions in power dissipation in each of the different
components translates to 5–50% net power savings with performance
degradation of 1–5%.

We are currently exploring the dynamic approach of windowing.
Rather than statically restricting the size of the VLSQ (which requires
profiling), it is possible to dynamically increase or decrease the size of
the VLSQ based on application runtime events such as replay traps
and cache misses. Unlike the static approach, the dynamic approach
of windowing can allow for applications to exploit memory ILP
during application phases where replay traps and cache misses occur
infrequently.
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

Procee
1530-0
7. Acknowledgements

The initial phase of this study, specifically the effects of out-of-order
execution on cache performance, occurred while Aamer Jaleel was
interning at the Compaq Western Research Labs, Palo Alto,
California. The authors are grateful to Norm Jouppi, Partha
Ranganathan, and Keith Farkas for their initial thoughts and
guidance. The authors would also like to thank Raj Desikan, Donald
Yeung, Brinda Ganesh, Sadagopan Srinivasan, Bharath Iyer, Heather
Hanson, and the anonymous reviewers for their valuable support and
feedback.

The work of Aamer Jaleel was supported in part by NSF
CAREER Award CCR-9983618, NSF grant EIA-9806645, and NSF
grant EIA-0000439. The work of Bruce Jacob was supported in part
by NSF CAREER Award CCR-9983618, NSF grant EIA-9806645,
NSF grant EIA-0000439, DOD MURI award AFOSR-
F496200110374, the Laboratory of Physical Sciences in College Park
MD, the National Institute of Standards and Technology, and Cray
Inc.

8. References

[1] Compaq Computer Corporation. “Alpha 21264 Microprocessor
Hardware Reference Manual.” June 1999.

[2] Compaq Computer Corporation. “Compiler Writer’s Guide for
the Alpha 21264” June 1999.

[3] Silicon Graphics, Inc. MIPS R10000 Microprocessor User’s
Manual version 2.0, October 1996.

[4] H. Akkary, R. Rajwar, and S. T. Srinivasan. “Checkpointing
Processing and Recovery: Towards Scalable Large Instruction
Window Processors.” In Proc. 36th International Symposium on
Microarchitecture, December 2003.

[5] M. D. Brown, J. Stark, and Y. N. Patt. “Select-Free Instruction
Scheduling Logic.” In Proc. 34th International Symposium on
Microarchitecture, December 2001.

[6] V. Cuppu and B. Jacob. “A Performance Comparison of
contemporary DRAM architectures.” In Proc. 26th International
Symposium on Computer Architecture (ISCA'99). Atlanta GA,
May 1999.

[7] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “High-
Performance DRAMs in Workstation Environments.” IEEE
Transactions on Computers, 50(11):1133-1153, November
2001.

[8] R. Desikan, D. Burger, and S. Keckler. “Sim-alpha: a Validated,
Execution-Driven Alpha 21264 Simulator.” Tech Report TR-01-
23, University of Texas at Austin.

[9] M. K. Gowan, L. L. Biro, D. B. Jackson. “Power Considerations
in the Design of the Alpha 21264 Microprocessor.” In Design
Automation Conference (DAC’98). San Francisco, CA, June
1998.

[10] J. L. Henning. “SPEC CPU2000: Measuring CPU Performance
in the New Millenium.” IEEE Computer, 33(7):28-35, July 2000.

[11] D. Henry, B. Kuszmaul, G. Loh, and R. Sami. “Circuits for wide-
window superscalar processors.” In Proc. 27th Annual
International Symposium on Computer Architecture (ISCA’00),
Vancouver BC, June 2000.

[12] D. Kroft. “Lockup-Free Instruction Fetch/Prefetch Cache
Organization.” In Proc. 8th International Symposium on
Computer Architecture (ISCA'81). Minneapolis MN, May 1981

[13] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg.
“A Large, Fast Instruction Window for Tolerating Cache
Misses.” In Proc. 29th Annual International Symposium on
Computer Architecture (ISCA’02), Anchorage, Alaska, May
2002.

[14] T. Lyon, E. Delano, C. McNairy and D. Mulla. “Data Cache
Design Considerations for the Itanium 2 Processor.” In IEEE
International Conference on Computer Design (ICCD),
Freiburg, Germany, September 2002.

[15] R. Natarajan, H. Hanson, S.W. Keckler, C.R. Moore, and D.
Burger. “Microprocessor Pipeline Energy Analysis.” In Proc.
IEEE International Symposium on Low Power Electronics and
Design (ISLPED), pp. 282-287, Seoul, Korea, August, 2003.

[16] S. Onder and R. Gupta. “Instruction Wake-Up in Wide Issue
Superscalars.” In Proc. ACM/IEEE Conference on Parallel
Architectures and Compilation

[17] S. Onder and R. Gupta. “Dynamic Memory Disambiguation in
the Presence of Out-of-Order Store Issuing.” In Proc. 32nd
International Symposium on Microarchitecture, 1999.

[18] I. Park, C. L. Ooi and T. N. Vijaykumar. “Reducing Design
Complexity of the Load/Store Queue.” In Proc. 36th
International Symposium on Microarchitecture, San Diego, CA,
December 2003.

[19] G. Reinman and B. Calder. “A Comparative Survey of Load
Speculation Architecture”. In Journal of Instruction Level
Parallelism 1 (JILP). pp. 1-39, 2000.

[20] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
“Branch Prediction, Instruction-Window Size, and Cache Size:
Performance Tradeoffs and Simulation Techniques.” IEEE
Transactions on Computers, 48(11):1260-1281, November
1999.

[21] A. S. Tanenbaum. Computer Networks. Third Edition.
[22] J.M. Tendler, J.S. Dodson, J.S. Fields, H.Le Jr., and B. Sinharoy.

“Power4 System Microarchitecture.” IBM Journal of Research
and Development, 45(1), October 2002.

[23] C. T. Weaver. Pre-compiled SPEC2000 Alpha Binaries.
Available: http://www.simplescalar.org

[24] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. “Speculation
Techniques for Improving Load Related Instruction Scheduling”.
In Proc. 26th International Symposium on Computer
Architecture (ISCA'99). Atlanta GA, May 1999
dings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
897/05 $20.00 © 2005 IEEE

	Abstract
	Using Virtual Load/Store Queues (VLSQs) to Reduce the
	Negative Effects of Reordered Memory Instructions
	Aamer Jaleel and Bruce Jacob
	Dept. of Electrical & Computer Engineering
	University of Maryland, College Park
	{ajaleel,blj}@eng.umd.edu
	1. Introduction
	1.1. The problem
	Figure 1: Negative Effects of Increased Out-of-Order Aggressiveness

	1.2. Proposed solution
	1.3. Results

	2. Background
	2.1. Reordering of memory instructions
	Figure 2: Classification of Replay Traps

	2.2. Related work

	3. Virtual load/store queues (VLSQs)
	Figure 3: Virtual Load/Store Queue (VLSQ): A mechanism to reduce the reordering of memory instructions

	4. Experimental methodology
	4.1. Simulation parameters
	Table 1: Processor Configurations

	5. Effects of increased OoO aggressiveness
	5.1. Replay traps
	Figure 4: Effect of VLSQs on Replay Traps

	5.2. Cache behavior
	Figure 5: Effect of VLSQs on Cache Behavior

	5.3. Power
	Figure 6: Average Power Savings Using VLSQs

	5.4. Performance
	Figure 7: (a) Base CPIs Vs. Out-of-Order Capability (b)(c) Effect of VLSQs on Processor Performance

	6. Conclusions and future work
	7. Acknowledgements
	8. References
	[1] Compaq Computer Corporation. “Alpha 21264 Microprocessor Hardware Reference Manual.” June 1999.
	[2] Compaq Computer Corporation. “Compiler Writer’s Guide for the Alpha 21264” June 1999.
	[3] Silicon Graphics, Inc. MIPS R10000 Microprocessor User’s Manual version 2.0, October 1996.
	[4] H. Akkary, R. Rajwar, and S. T. Srinivasan. “Checkpointing Processing and Recovery: Towards Scalable Large Instruction Window Processors.” In Proc. 36th International Symposium on Microarchitecture, December 2003.
	[5] M. D. Brown, J. Stark, and Y. N. Patt. “Select-Free Instruction Scheduling Logic.” In Proc. 34th International Symposium on Microarchitecture, December 2001.
	[6] V. Cuppu and B. Jacob. “A Performance Comparison of contemporary DRAM architectures.” In Proc. 26th International Symposium on Computer Architecture (ISCA'99). Atlanta GA, May 1999.
	[7] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “High- Performance DRAMs in Workstation Environments.” IEEE Transactions on Computers, 50(11):1133-1153, November 2001.
	[8] R. Desikan, D. Burger, and S. Keckler. “Sim-alpha: a Validated, Execution-Driven Alpha 21264 Simulator.” Tech Report TR-01- 23, University of Texas at Austin.
	[9] M. K. Gowan, L. L. Biro, D. B. Jackson. “Power Considerations in the Design of the Alpha 21264 Microprocessor.” In Design Automation Conference (DAC’98). San Francisco, CA, June 1998.
	[10] J. L. Henning. “SPEC CPU2000: Measuring CPU Performance in the New Millenium.” IEEE Computer, 33(7):28-35, July 2000.
	[11] D. Henry, B. Kuszmaul, G. Loh, and R. Sami. “Circuits for wide- window superscalar processors.” In Proc. 27th Annual International Symposium on Computer Architecture (ISCA’00), Vancouver BC, June 2000.
	[12] D. Kroft. “Lockup-Free Instruction Fetch/Prefetch Cache Organization.” In Proc. 8th International Symposium on Computer Architecture (ISCA'81). Minneapolis MN, May 1981
	[13] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. “A Large, Fast Instruction Window for Tolerating Cache Misses.” In Proc. 29th Annual International Symposium on Computer Architecture (ISCA’02), Anchorage, Alaska, May 2002.
	[14] T. Lyon, E. Delano, C. McNairy and D. Mulla. “Data Cache Design Considerations for the Itanium 2 Processor.” In IEEE International Conference on Computer Design (ICCD), Freiburg, Germany, September 2002.
	[15] R. Natarajan, H. Hanson, S.W. Keckler, C.R. Moore, and D. Burger. “Microprocessor Pipeline Energy Analysis.” In Proc. IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 282-287, Seoul, Korea, August, 2003.
	[16] S. Onder and R. Gupta. “Instruction Wake-Up in Wide Issue Superscalars.” In Proc. ACM/IEEE Conference on Parallel Architectures and Compilation
	[17] S. Onder and R. Gupta. “Dynamic Memory Disambiguation in the Presence of Out-of-Order Store Issuing.” In Proc. 32nd International Symposium on Microarchitecture, 1999.
	[18] I. Park, C. L. Ooi and T. N. Vijaykumar. “Reducing Design Complexity of the Load/Store Queue.” In Proc. 36th International Symposium on Microarchitecture, San Diego, CA, December 2003.
	[19] G. Reinman and B. Calder. “A Comparative Survey of Load Speculation Architecture”. In Journal of Instruction Level Parallelism 1 (JILP). pp. 1-39, 2000.
	[20] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. “Branch Prediction, Instruction-Window Size, and Cache Size: Performance Tradeoffs and Simulation Techniques.” IEEE Transactions on Computers, 48(11):1260-1281, November 1999.
	[21] A. S. Tanenbaum. Computer Networks. Third Edition.
	[22] J.M. Tendler, J.S. Dodson, J.S. Fields, H.Le Jr., and B. Sinharoy. “Power4 System Microarchitecture.” IBM Journal of Research and Development, 45(1), October 2002.
	[23] C. T. Weaver. Pre-compiled SPEC2000 Alpha Binaries. Available: http://www.simplescalar.org
	[24] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. “Speculation Techniques for Improving Load Related Instruction Scheduling”. In Proc. 26th International Symposium on Computer Architecture (ISCA'99). Atlanta GA, May 1999

