
Buffer-On-Board Memory System

Elliott Cooper-Balis, Paul Rosenfeld, Bruce Jacob
University of Maryland

{ecc17,prosenf1,blj}@umd.edu

Abstract

The design and implementation of the commodity mem-
ory architecture has resulted in significant performance and
capacity limitations. To circumvent these limitations, de-
signers and vendors have begun to place intermediate logic
between the CPU and DRAM. This additional logic has two
functions: to control the DRAM and to communicate with
the CPU over a fast and narrow bus. The benefit provided
by this logic is a reduction in pin-out to the memory sys-
tem and increased signal integrity to the DRAM, allowing
faster clock rates while maintaining capacity. The problem
is that the few vendors utilizing this design have the same
general approach, yet the implementations vary greatly in
their non-trivial details.

A hardware verified simulation suite is developed to ac-
curately model and evaluate the behavior of this buffer-on-
board memory system. A study of this design space is used
to determine optimal use of the resources involved. This
includes DRAM and bus organization, queue storage, and
mapping schemes. Various constraints based on implemen-
tation costs are placed on simulated configurations to con-
firm that these optimizations apply to viable systems. Fi-
nally, full system simulations are performed to better un-
derstand how this memory system interacts with an oper-
ating system executing an application with the goal of un-
covering behaviors not present in simple limit-case simula-
tions. When applying insights gleaned from these simula-
tions, optimal performance can be achieved while still con-
sidering outside constraints (i.e., pin-out, power, and fabri-
cation costs).

1. Introduction

The modern memory system has remained essentially
the same for almost 15 years. Design decisions made in
the past, when the disparity between the CPU and memory
clock were not considered to be an issue, are now prevent-
ing the memory from providing the capacity and bandwidth
that today’s systems and applications demand. Modifica-

tions must be made to prevent the memory hierarchy from
becoming an even greater bottleneck, further impeding per-
formance gains in modern systems.

To support some level of memory system customiza-
tion and expandability, commodity DRAM is purchased
on a PCB called a dual in-line memory module (DIMM).
Each DIMM uses physical contact (i.e., pins that plug into
a motherboard slot) to provide electrical connectivity with
the rest of the system. This physical contact is sufficient for
electrical signals that operate at low speeds (<100MHz),
but as the memory clock has increased to maintain pace
with the CPU, this solution is proving to be less than ideal.
The signal integrity at these physical contacts is greatly de-
graded as the memory clock is increased due to signal re-
flection and cross-talk. This issue is exacerbated as more
DIMMs are placed in a channel and the further a particu-
lar DIMM is located from the memory controller’s signal
drivers [14, 12, 23].

As a result of these issues, when manufacturers increase
the memory clock, they must reduce the number of DIMMs
allowed in a channel to avoid extraneous costs of mitigating
these signal integrity issues. This severely limits the total
capacity supported in a system. For example, the original
DDR SDRAM standard allowed four DIMMs in a chan-
nel, while DDR2 doubled speeds and reduced the number
of DIMMs to two, and the higher-speed DDR3 variants
(i.e., DDR3-1600) only allow a single DIMM of depth [12].
While it is possible to place higher capacity DIMMs in the
channel, the overall rate of increase in capacity of a DIMM
has slowed due to the difficulties in decreasing the size of a
DRAM cell’s capacitors. At the same time, the cost of these
high-capacity DIMMs does not scale linearly with their ca-
pacity; instead, the cost per gigabyte is significantly greater.

The FB-DIMM memory system was originally intro-
duced to solve these issues. Each FB-DIMM uses standard
DDRx DRAM devices and has additional logic called the
advanced memory buffer (AMB). The AMB allows each
memory channel to operate on a fast and narrow bus by
interpreting a new packetized protocol and issuing DRAM
specific commands to the DRAM devices. Unfortunately,
the high speed I/O on each AMB resulted in unacceptable



levels of heat and power dissipation [14, 2]. The inclusion
of the AMB also resulted in more expensive DIMMs rela-
tive to similar capacity DDRx DIMMs. These issues ulti-
mately led to the failure of the standard.

To fill the void left by FB-DIMM, vendors such as In-
tel, AMD, and IBM have devised new architectures to try
and resolve the memory capacity and bandwidth issues. Al-
though similar, this new architecture makes key changes
which prevent the issues that plagued FB-DIMM: while
each memory channel still operates on a fast, narrow bus, it
contains a single logic chip as opposed to one logic chip per
FB-DIMM. This allows the new architecture to use of ex-
isting low-cost DIMMs, prevents excessive power and heat
in the logic, and reduces high variance in latency.

While this buffer-on-board memory system has already
been implemented in a small number of high-end servers,
the problem exists that each of these implementations dif-
fers in non-trivial details. The contribution of the present
work is an examination of this new design space to deter-
mine optimal use of the resources involved and performance
enhancing strategies. This includes proper bus configura-
tions for various types of DRAM, necessary queue depths
to reach peak DRAM efficiency, and address mappings to
ensure an even request spread and to reduce resource con-
flicts.

2. Modern Memory Systems

Over the past five years, there have been numerous ef-
forts to devise a next-generation memory system. While
many ideas have been proposed, no clear solution has been
widely adopted.

The most ubiquitous form of memory in use today is the
JEDEC standardized double data-rate (DDR) synchronous
DRAM. For the past 15 years, this has been the dominant
form of commodity memory, eventually breaking into mo-
bile and supercomputing markets due to an overwhelming
abundance of parts. The widespread success is attributed to
the standardization of the device packaging, pin-out, and
operating protocol. The current generation (DDR3) can
support transfer rates of up to a theoretical 12.8GB/s while
operating at 1600Mbit/s [5].

The DDR SDRAM memory system operates on a 64-bit
data bus that contains one or more ranks. A rank of memory
is a group of DRAM devices that operate in synchrony by
receiving and handling the same requests, at the same time.
The memory controller, now typically located on the CPU
die, issues DRAM-specific commands to the devices to re-
trieve and write data. This includes commands to sense data
out of the DRAM array, read or write data, or refresh the
bits in the array to prevent data loss from capacitive leak-
age. When reading or writing data out of the device, data is
driven on both rising and falling edges of the memory clock,

which is where the double data rate nomenclature arises.
The latest DDR SDRAM standard is the Load Reducing-

DIMM (LR-DIMM) [15]. Similar to the Registered-DIMM
(RDIMM) which buffers the control and address lines be-
fore reaching the DRAM devices, LR-DIMM places buffers
on all of the signals between the CPU and DRAM devices.
This includes the entire data bus, along with the control and
address lines. These buffers help maintain signal integrity
and circumvent some of the issues which result when in-
creasing the memory clock. The end result is a system
which can maintain acceptable capacity while still being
able to provide the bandwidth modern systems require.

The FB-DIMM memory standard was introduced in
2004 with the intention of alleviating the problems with the
current design. Each FB-DIMM uses the same DRAM de-
vices as a DDR SDRAM DIMM, but operates on a faster,
narrow bus. This was made possible by the inclusion of a
small controller on each DIMM called the advanced mem-
ory buffer (AMB). The AMB interprets the packetized pro-
tocol that is now used over the narrow bus. It allows a much
higher capacity (up to 768 GB per system) and significantly
higher bandwidth per pin due to the increased clock rate.

An FB-DIMM memory channel operates on two sepa-
rate logical buses: the northbound channel and the south-
bound channel [14]. These channels are different widths to
account for the disparity between reads and writes, with the
northbound channel (going toward the CPU) consisting of
14 data lanes and the southbound channel (going away from
the CPU) consisting of 10 data lanes [4]. To account for
such narrow buses, requests and responses are encapsulated
in packets which are called frames. As these frames are sent
on their respective channels, the AMB on each DIMM inter-
prets the contents to determine proper routing or to generate
standard DRAM commands for local DRAM devices.

Unfortunately, an unforeseen consequence of the archi-
tecture’s point-to-point nature and the use of high speed
I/O in each AMB caused unacceptable levels of heat and
power dissipation. Under heavy load, a fully populated FB-
DIMM channel requires over 100W to operate [3], on par
with CPUs at the time. The AMB also increased the mone-
tary cost of each DIMM; some FB-DIMM modules cost al-
most twice that of a similar capacity DDRx DIMM. Lastly,
request latency was worse than DDRx systems as a result of
serializing and interpreting frames in each AMB. Because
of these issues, adoption of the standard slowed, and FB-
DIMM was eventually removed from all major technology
roadmaps. While no clear successor to FB-DIMM has been
proposed, major vendors have taken it upon themselves to
find solutions to the capacity and bandwidth issues.

IBM [6, 25], Intel [21], and AMD [19] have all proposed
or implemented a similar memory architecture to fill the
void that was left when FB-DIMM was abandoned. Like
FB-DIMM, these new architectures place logic between the

2



DRAM and the CPU that is responsible for both control-
ling the DRAM and communicating with the CPU over a
relatively faster and narrow bus. Representations of each of
these architectures and key specifics can be seen in Figure
1.

While each of these memory systems has the same ap-
proach to solving the issues described above, they are
vastly different in specific details. This includes the width
and speed of the narrow buses now used in each channel,
the number of ranks of memory per channel, the type of
DRAM, and the total number of channels per processor or
core. For example, IBM’s Power 795 memory system has
eight logically-separate memory channels each composed
of 8 data lanes for requests and 16 data lanes for responses.
These buses are used to communicate with an “advanced
buffer chip” [6], each of which are attached to only a sin-
gle rank of DDR3-1066 DRAM. On the other hand, Intel’s
Scalable Memory Interface (SMI) uses buses which are 9
and 12 data lanes for requests and responses, respectively.
The logic chip, called the Scalable Memory Buffer (SMB),
is responsible for controlling two separate DDR3 channels
(of various speeds), each with two ranks. Lastly, AMD’s
G3 Memory Extender (G3MX) was designed to use a bus
of 13 data lanes for requests and 20 data lanes for responses
with four ranks of DDR3 attached to each G3MX but was
canceled in 2008 [18].

Clearly, these systems are vastly different while still try-
ing to accomplish the same goal with the same approach.
The discrepancies in these designs dictate the necessity for
a design space examination with the goal of providing opti-
mal use of all resources involved. Before this can be done,
a generalized view of the architecture must be defined.

3. Buffer-On-Board Memory System

The buffer-on-board (BOB) memory systems seen in
Figure 1 can be seen as specific implementations of the
generalized model seen in Figure 2. This model consists of
multiple DRAM channels populated with commodity LR-
, R-, or U-DIMMs. Each of these BOB Channels could
be considered identical to a regular, JEDEC-standardized
memory system. The control and data bus, operating proto-
col, and timing constraints are the same ones used in a nor-
mal memory system. These channels are each controlled by
a simple controller which is the intermediate logic located
between the DRAM and the main, on-die memory con-
troller. The simple controller is also responsible receiving
requests and returning data back to the main memory con-
troller (as opposed to the DRAM communicating directly to
the main memory controller).

Communication between the simple controller and the
CPU occurs over a link bus which is narrower and faster
than the DRAM bus which communicates with the DIMMs.

Figure 2. The BOB memory system architec-
ture

Unlike the DRAM bus, which has separate control and data
signals, the lanes which comprise a link bus are for general
purpose communication. The full–duplex link bus is com-
prised of request (towards the DRAM) and response (to-
wards the CPU) data lanes which may be different widths
and operate at some speed faster than the DRAM.

Request packets sent over a link bus must contain the ad-
dress, the request type, and the data if the request is a write.
Upon receiving a request packet, the simple controller must
translate the contents into a series of DRAM specific com-
mands (i.e., ACTIVATE, READ, WRITE, etc.) which are
issued to the ranks attached to the DRAM bus. A command
queue is responsible for storing requests in need of schedul-
ing. Once data has been received from the DRAM data bus,
the read return queue is responsible for storing data before
it can be serialized and sent on the response link bus. Each
response packet will contain data as well as the address of
the initial request for identification purposes. This is nec-
essary due to requests being scheduled out of order both
within the BOB controller and simple controller, and may
be completed at different times. The total size of these pack-
ets is important for the generalized model as it determines
the amount of time it takes a request or response packet to
travel on the link bus.

The main BOB controller which resides on the CPU die
is another essential aspect of the architecture. Aside from
the typical functionality of a memory controller, such as ad-
dress mapping and returning data to the cache, the BOB
controller is also responsible for packetizing requests and
interpreting response packets sent to and from the simple
controllers over the narrow link bus. Since the link bus
is narrower than the DRAM bus, requests and responses
must be encapsulated within a packet which is sent over the

3



(a) IBM Power 795 memory system (b) Intel SMI/SMB memory system (c) AMD G3MX memory system

Figure 1. Example buffer-on-board memory systems

link bus during multiple clock cycles. This is accomplished
with a serialize-deserialize (SerDes) interface and associ-
ated buffer for the request and response path of each link
bus. Communication with the cache and CPU is executed
over ports, which are logically separate, full-duplex lanes.
A cross-bar switch ensures that a request from any port is
capable of being sent to any link bus.

4. BOB Simulation Suite

To properly evaluate this new architecture, a simula-
tion suite is developed with a strong focus on hardware
verification and comprehensive, detailed system modeling.
Two separate simulators are used in this suite: a BOB
memory system simulator developed by the authors and
MARSSx86 [16], a multi-core x86 simulator developed
at SUNY-Binghamton. Together, they create an accurate
model of a processor which boots an operating system,
launches an application, and interacts with the cache and
memory system.

The BOB memory system model is a cycle-based simu-
lator written in C++ that encapsulates the main BOB con-
troller, each BOB channel, and their associated link bus and
simple controller. Each of the major logical portions of the
design have a corresponding software object and associated
parameters that give total control over all aspects of the sys-
tem’s configuration and behavior. Some simple examples
include the type of DIMMs and number of ranks within an
individual BOB channel, the total number of BOB chan-
nels, queue depths, or speed and width of each link bus.
The BOB simulator may be run in one of two modes – a
stand-alone mode where requests from a parameterizable,
random address generator or trace file are issued directly to

the memory system or a full-system simulation mode where
the BOB simulator receives requests from MARSSx86.

MARSSx86 merges the highly detailed, out-of-order x86
pipeline models from PTLSim [24] with the QEMU emula-
tor [8]. MARSSx86 augments the original PTLSim models
with multi-core simulation capability and a malleable co-
herent cache hierarchy. The ability to simulate multi-core
environments is critical since multithreaded workloads are
quickly becoming the rule rather than the exception. Addi-
tionally, it is hard to imagine a single threaded application
being able to take full advantage of the tremendous band-
width provided by the BOB memory system. MARSSx86
also provides full system simulation, which allows the sim-
ulator to capture the effects of virtual memory and kernel
interaction. The CPU models are highly configurable and
make it relatively easy to add a memory system simulator.
It is possible to change the internals of the CPU or behavior
of caches to take advantage of new features (for example,
replacing a traditional memory bus with a number of ports).

Another important aspect of the framework is its abil-
ity to validate its behavior against that of actual hardware.
Since the DIMMs used in a BOB memory system utilize
the same DRAM devices as those in a commodity system,
this portion of the simulator is validated in the same man-
ner as DRAMSim2 [17]. Micron Technology publicly pro-
vides Verilog HDL models for each of the DRAM devices
that it produces. These models determine whether or not a
timing constraint has been violated based on a series of in-
puts from a hardware behavioral simulator like ModelSim.
During a BOB simulation, each DRAM channel produces
a bus trace file which is used in conjunction with Model-
Sim and these Micron HDL models to ensure the timing of
both commands and data are cycle accurate at the DRAM

4



level. The BOB simulator uses a DDR3-1066 device
(MT41J512M4-187E), a DDR3-1333 device (MT41J1G4-
15E), and a DDR3-1600 device (MT41J256M4-125E), yet
any JEDEC standard device will work. For further details
on this verification process see [17].

5. Simulation Results

When evaluating the characteristics and behavior of this
new architecture, we performed two experiments: a limit-
case simulation where a random address stream is issued
into a BOB memory system whenever resources permit
(i.e., as fast as possible) and a full system simulation where
an operating system is booted on an x86 processor and ap-
plications are executed. The limit-case study is useful for
identifying the achievable maximum sustained bandwidth
and the behavior of the system under heavy stress. Many
server and HPC applications generate address streams that
have little locality (temporal or spatial) and appear random.
In contrast, a full system simulation gives a much more
detailed picture of the new memory system’s interaction
with the cache and processor, operating system, and appli-
cations. For benchmarks, we used the NAS parallel bench-
marks, the PARSEC benchmark suite [9], and STREAM. We
emphasized multi-threaded applications to demonstrate the
types of workloads this memory architecture is likely to en-
counter. For design tradeoffs we included implementation
costs such as total pin count, power dissipation, and physi-
cal space (or total DIMM count).

5.1. Limit-Case Simulations

For the limit-case simulations, the BOB simulator is run
in a stand-alone mode where memory transactions are is-
sued from a generated request stream that can be tailored to
issue at a specific frequency or read-write ratio. For these
simulations, requests are issued as soon as resources are
available and with a mix of 2/3 reads and 1/3 writes.

5.1.1. Simple Controller & DRAM Efficiency

Commodity memory system design has been examined
and analyzed extensively [10, 14, 22, 11]. Since each BOB
channel uses commodity DIMMs, operates using the same
data and command bus, and requires the same operating
protocol and timing constraints, it stands to reason that the
previous insights, optimizations and analysis targeting com-
modity systems should apply here as well; simulations con-
firm this. For example, optimal rank depth for each DRAM
channel is between two and four for all speed-grades. One
rank does not provide enough parallelism and more than
four ranks results in a drop in DRAM bus efficiency as the
bus must be idled more frequently. The peak efficiency

achieved by the DRAM bus in each BOB channel is also
verified by manufacturers results [1] and prior research [20].
Address mapping is also an essential factor in the resulting
DRAM efficiency [22] but is explored later under the full-
system simulation.

The simple controller must also have features that differ-
entiate it from a commodity memory controller as a result of
serializing communication on the link bus. The read return
queue within each simple controller is responsible for stor-
ing requested data before it is packetized and transferred out
on the response link bus back to the main BOB controller. If
this queue is full, no further read or write commands will be
issued to the DRAM until there is space within this queue.
This is necessary to guarantee data will not be lost when it
is returned from the DRAM devices.

The rate at which items are removed from this queue is
determined by both the width and speed of the response link
bus. A parameter sweep is performed on both the depth of
the read return queue and the configuration of the response
link bus to detail the impact these decisions have on the
achievable efficiency of different speeds of DRAM. The re-
sults can be seen in can be seen in Figure 3. Even though
the response link bus is a factor in some cases, in order to
reach peak DRAM efficiency, a read return queue must have
at least enough capacity for four responses packets. With a
depth of four, the response link bus is the determining factor
in whether or not the DRAM reaches this peak efficiently;
this is discussed below.

5.1.2. Link Bus Configuration

The efficiency of each DRAM channel is inherently
linked with the overall performance of a BOB memory sys-
tem. Therefore, optimal system configurations are ones in
which the request link bus and response link bus do not neg-
atively impact the DRAM efficiency. The width and speed
of these buses should be configured such that request and
response packets can be sent at a rate that does not stall the
DRAM, either due to a lack of available requests issuable
to the DRAM or due to an inability to clear the read return
queue quickly enough.

An accepted rule-of-thumb is that a typical request
stream will have a read-to-write request ratio of approxi-
mately 2-to-1. Implemented systems have accounted for
this fact by weighting response paths more than requests
paths. This can be seen starting from the FB-DIMM stan-
dard, which had the northbound bus (for responses) 40%
larger than the southbound bus (for requests) [4]. The new
architectures detailed above adopt this convention as well
with Intel’s SMI response bus 33% larger [7] than the re-
quest bus, and IBM’s Power7 system whose response bus is
twice as wide as the request bus [6].

Limit-case simulations are performed with eight DRAM
channels attached to various request and response link bus

5



0% 

20% 

40% 

60% 

80% 

100% 

8 12 16 24 32 

D
R

A
M

 B
u

s 
Ef

fi
ci

e
n

cy
 

Response Link Data Lanes (6.4 Gbit/s) 

Impact Of Response Width & Return Queue Depth 

1 

2 

4 

8 

Read Return 
Queue Depth 

(a) DDR3-1066

D
R

A
M

 B
u

s 
Ef

fi
ci

e
n

cy
 

0% 

20% 

40% 

60% 

80% 

100% 

8 12 16 24 32 

D
R

A
M

 B
u

s 
Ef

fi
ci

e
n

cy
 

Response Link Data Lanes (6.4 Gbit/s) 

Impact of Response Width & Return Queue Depth 

1 

2 

4 

8 

Read Return 
Queue Depth 

(b) DDR3-1333

0% 

20% 

40% 

60% 

80% 

100% 

8 12 16 24 32 

D
R

A
M

 B
u

s 
Ef

fi
ci

e
n

cy
 

Response Link Data Lanes (6.4 Gbit/s) 

Impact of Response Width & Return Queue Depth 

1 

2 

4 

8 

Read Return 
Queue Depth 

(c) DDR3-1600

Figure 3. Impact of read return queue depth and response bus width on DRAM bus efficiency

configurations. The results can be seen in Figure 4. The
simulation results show a clear peak bandwidth where ad-
ditional link width or speed has no impact on the overall
performance. When each DRAM channel is capable of
reaching peak efficiency, this peak bandwidth is simply a
product of the achievable bandwidth and the total number of
DRAM channels. To prevent the request and response link
bus from having a negative impact on DRAM performance,
each must be capable of meeting bandwidth requirements
dictated by the DRAM and request stream.

These requirements have several factors. First, the
achievable DRAM bandwidth determined by the speed
grade and the expected efficiency of that device is clearly
an important factor in how each link bus should be con-
figured. Second, like FB-DIMM [13], the read-write ratio
has a significant impact on the utilization of each link bus.
Lastly, because the link buses are responsible for transmit-
ting packets and packet overhead as well as data, this must
be accounted for as well. Incorporating all of these factors
together results in Equations 1 & 2; these equations dictate
the bandwidth required by each link bus to prevent them
from negatively impacting the efficiency of each channel. In
Figure 4, link bus configurations which have a bandwidth
equal to or greater to the values dictated by these equations
are capable of achieving the peak possible bandwidth for
the simulated system.

The unidirectional nature of each link bus causes sen-
sitivity to the read-write request mix similar to that seen
in FB-DIMM [13]. While weighting the response link bus
more than the request link bus might be ideal for many ap-
plication request streams, performance will be significantly
different as soon as the request mix changes. Figure 5
shows the impact of different read-write request ratios on
weighted and unweighted link bus configurations during
limit-case simulations. Intuitively, when the request mix is
weighted in the same fashion as the link buses, the DRAM
can reach peak efficiency. Unfortunately, this behavior is an
unavoidable side-effect of serializing the communication on
unidirectional buses and a decision should be made based
on the most likely workload the memory system will see.

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0 10 20 30 40 50 60 70 80 90 100 

D
R

A
M

 B
u

s 
Ef

fi
ci

e
n

cy
 

% Reads In Request Stream 

Impact of Read-Write Ratio on DRAM Efficiency 

4 / 12 

8 / 8 

12 / 4 

Link Bus Width 
(Req/Resp) 

Figure 5. Impact of read-write ratio on differ-
ent weighted link bus configurations

5.1.3. Multi-Channel Optimization

If the link bus configurations provide bandwidth that can
not be fully utilized by a single logical channel of DRAM,
it is possible for multiple logically independent channels of
DRAM to share the same link bus and simple controller
without negatively impacting performance. This will reduce
costs such as pin-out, logic fabrication, and physical space.
The pin-out of the CPU can be reduced for an equivalent
number of DRAM channels since fewer link buses would be
required. This will also reduce the number of simple con-
trollers, which will reduce fabrication costs and the physical
space necessary to place them on the motherboard. While
reducing these costs, it is important to note that complexity
of the simple controller will increase at the same time. The
pin-out of the simple controller must be increased to sup-
port multiple DRAM channels and the logic within must
be replicated for each of the logically independent channels
(which will in turn increase the power requirements of each
controller). An example of this optimization can be seen
in Intel’s SMI/SMB architecture – each SMB supports two
separate channels of DDR3.

The link bus bandwidth requirements defined by Equa-

6



BWRequest = (BWDRAM × Efficiency) ×
[
%Writes ×

(
1 +

WritePacketSize

RequestSize

)
+ %Reads ×

ReadPacketSize

RequestSize

]
(1)

BWResponse = (BWDRAM × Efficiency) ×
[
%Reads ×

(
1 +

ResponsePacketSize

RequestSize

)]
(2)

4 

8 

12 

16 

24 

0 

10 

20 

30 

40 

50 

60 

70 

4 
8 

12 
16 

24 Response Link 
Bus Width 

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

) 

Request Link Bus Width 

Impact of Request and Response Link Bus 
8 Channels of DDR3-1066 

4 

8 

12 

16 

24 

0 

10 

20 

30 

40 

50 

60 

70 

4 
8 

12 
16 

24 Response Link 
Bus Width 

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

) 

Request Link Bus Width 

Impact of Request and Response Link Bus 
8 Channels of DDR3-1333 

4 

8 

12 

16 

24 

0 

10 

20 

30 

40 

50 

60 

70 

4 
8 

12 
16 

24 Response Link 
Bus Width 

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

) 

Request Link Bus Width 

Impact of Request and Response Link Bus 
8 Channels of DDR3-1600 

Figure 4. Sustained bandwidth of eight BOB channels using various link bus configurations

tions 1 & 2 can be modified to account for this optimization:

BWRequest
′

= (NumDRAMChannels) × BWRequest (3)

BWResponse
′
= (NumDRAMChannels) × BWResponse (4)

The number of DRAM channels which can be supported
by a single simple controller and link bus is determined by
the available bandwidth of the request and response link
bus. If this available bandwidth meets the bandwidth com-
puted in Equations 3 & 4, performance will not be neg-
atively impacted. Figure 6 shows the sustained aggregate
bandwidth of 8 DDR3-1333 channels as the number of
DRAM channels per simple controller is increased. With
two DRAM channels sharing a link bus and simple con-
troller, there is minimal performance impact. This configu-
ration uses half the number of simple controllers and CPU
pins, which significantly reduces system costs. The lack of
available bandwidth of each link bus becomes an issue once
four DRAM channels share the same simple controller and
respective link bus. Using Equations 3 & 4, four DRAM
channels of DDR3-1333 need 24.4 GB/s response band-
width and 13.7 GB/s request bandwidth in order to oper-
ate at maximum efficiency (70%); this makes it difficult for
DRAM channels in a 4-to-1 configuration to reach peak ef-
ficiency. Once eight DRAM channels are sharing a single
simple controller, the response link bus is utilized over 99%
of the time, causing performance to drop significantly.

5.1.4. Cost Constrained Simulations

When implementing an actual system, costs such as the
required CPU pin-out, power, physical space, and the mone-
tary cost of the DIMMs are all important aspects that need to
be considered. So far simulations have not taken these con-
straints into account, instead aiming for a general overview

of the system’s behavior by exploring the design space out-
side of what might actually be feasible. To ensure that
the insights gained from these simulations actually apply
to real–world situations, constraints should be placed on
various dimensions of the design space. For example, one
constraint could be the total number of CPU pins allotted
to communicate with the memory system. The total num-
ber of CPU pins is a significant portion of the fabrication
cost, so optimal use of the ones available is critical. A fixed
number of pins can be configured as link buses in numer-
ous ways, from a few wide buses to numerous narrow ones.
Another example constraint could be a maximum number of
DIMMs allowed in a single system, either due to physical
space, monetary, or power limitations.

Intel’s SMB is used to determine some of the other costs
involved with this architecture. In an Intel-based system,
the SMB dissipates 7 watts idle and up to 14 watts under
load [7]. Within the simulator, these values are used to de-
termine system power. Each simple controller consumes 7
watts of background power and an additional 3.5 watts for
each DRAM channel it controls (i.e., a simple controller
which controls four DRAM channels will consume 7 watts
background power and 14 watts for the channels it oper-
ates, totaling 21 watts under load). The pin-out of the SMB
is also used to determine the appropriate number of pins re-
quired to control a channel of DRAM. Of the 655 pins on
each SMB package, 147 are used to control a single chan-
nel of DRAM. Therefore, when determining the pin cost
of a simple controller in the simulator, a multiple of 147 is
used depending on the number of DRAM channels.

Further limit-case simulations are performed with out-
side constraints placed on aspects of the BOB system. In
this system, eight DRAM channels, each with four ranks
(32 DIMMs making 256 GB total) are allowed while the

7



8 

12 

16 

0 

10 

20 

30 

40 

50 

60 

8 12 16 
Response Link 

Bus Width 

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

) 

Request Link Bus Width 

2 DRAM Channels Per Simple Controller 
8 Channels of DDR3-1333 

(a) 2-to-1 Ratio

8 

12 

16 

0 

10 

20 

30 

40 

50 

60 

8 12 16 
Response Link 

Bus Width 
Su

st
ai

n
e

d
 B

an
d

w
id

th
 (

G
B

/s
) 

Request Link Bus Width 

4 DRAM Channels Per Simple Controller 
8 Channels of DDR3-1333 

(b) 4-to-1 Ratio

8 

12 

16 

0 

10 

20 

30 

40 

50 

60 

8 12 16 
Response Link 

Bus Width 

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

) 

Request Link Bus Width 

8 DRAM Channels Per Simple Controller 
8 Channels of DDR3-1333 

(c) 8-to-1 Ratio

Figure 6. Sustained bandwidth during limit-case simulations of eight DDR3-1333 channels with vary-
ing degrees of multi-channel utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

90 110 130 150 170

G
B

/s
/C

P
U

 P
in

Memory System Power (W)

Bandwidth/CPU Pin vs. Memory System Power

A

B

C

D

E

F

G

H

I

J

K

L

Pareto FrontierG

D

I

Figure 7. Pareto frontier analysis plot of con-
figurations in Table 1

CPU has up to 128 pins which can be used for data lanes
to comprise various link buses; these lanes are operated at
3.2 GHz (6.4 Gb/s). The theoretical peak of this system
is 85.333 GB/s (eight channels of DDR3-1333 whose the-
oretical peak bandwidth is 10.666 GB/s each). Even with
these constraints, there are still numerous ways to configure
a BOB memory system. Some of these possibilities (Table
1) are simulated and the and results can be seen in Figure
7. Note : Y-Axis in Figure 7 is inverted.

To perform a fair Pareto frontier analysis, relevant costs
must be incorporated into the data. To do this, the sustained
bandwidth is normalized against the total number of CPU
pins that are utilized, since some configurations do not uti-
lize all 128 pins. The color of each data point corresponds
with the relative complexity of the simple controller, where

the black points are configurations where the simple con-
troller requires 588 pins (for four DRAM channels), the
gray points require 294 pins, and the white points require
147. It is clear from Figure 7 that some configurations of
the available resources (DRAM and pins) are more desir-
able than others. The Pareto frontier analysis dictates that
configurations D, G, and I are Pareto equivalent and the
most optimal for the parameters tested. Since the simple
controller complexity is not accounted for in this analysis,
there is still a decision to be made about which configura-
tion is best suited for a particular situation. If raw perfor-
mance or a less complex simple controller is more desirable,
then G is better suited, yet if system power consumption
is a concern, D and I are more ideal. This analysis also
clearly shows the downside to configurations where a sim-
ple controller drives only a single channel of DRAM (white
points). In this situation, the power dissipation from having
8 separate simple controllers far exceeds that of the other
configurations with no benefit in performance.

In conclusion, the limit-case simulations above have pro-
vided the following insights: (1) Optimal rank depth for
each BOB channel is between two and four, similar to com-
modity systems; (2) The read return queue in each simple
controller must have capacity for at least four responses to
prevent the DRAM from stalling, thus reducing efficiency;
(3) The request and response link bus must have adequate
bandwidth dictated by Equations 1 & 2 to ensure DRAM
performance is unhindered; (4) Read-write sensitivity is
shown to have an impact on DRAM efficiency in a manner
similar to FB-DIMM; (5) Implementation costs can be re-
duced by implementing the multi-channel utilization, which
can operate optimally when each link bus adheres to Equa-
tions 3 & 4.

8



Config
Name

Request Bus
Width

Response Bus
Width

DRAM : Simp.
Controller

Simp. Controller
Pin-Out

# Of Simp.
Controller

CPU Data
Lanes

A 8 8 1:1 147 8 128
B 12 12 2:1 294 4 96
C 16 16 2:1 294 4 128
D 16 16 4:1 588 2 64
E 32 32 4:1 588 2 128
F 4 8 1:1 147 8 96
G 8 12 2:1 294 4 80
H 8 16 2:1 294 4 96
I 8 32 4:1 588 2 80
J 12 16 2:1 294 4 112
K 12 32 4:1 588 2 88
L 16 32 4:1 588 2 96

Table 1. Configuration parameters for various tested systems. Optimal configurations highlighted

5.2. Full System Simulations

The BOB configurations which were determined to be
Pareto optimal in Figure 7 are used within full system simu-
lations. MARSSx86 is configured with 8 out-of-order cores
running at 3.2 GHz with 4 MB LLC. The operating system
used is Ubunutu 9.10 with Linux kernel 2.6.31. STREAM
is executed for 10 iterations using a 2 million element array
size. PARSEC benchmarks are executed using “simlarge”
data sets. NAS benchmarks are run using “C”-sized data-
sets. The mcol workload walks a 64 MB matrix row-by-
row. The impact of the memory system on the execution
time of these benchmarks will be visible with a full system
simulation. This is possible because the MARSSx86 CPU
model will stall thread execution when waiting for pending
memory transactions.

5.2.1. Performance & Power Trade-offs

Statistics about the execution of each benchmark can be
seen in Table 2. These values provide a clearer picture of
benefits and drawbacks of each system and are necessary
to account for the achieved performance and execution time
of each benchmark when comparing configurations. Each
BOB configuration achieves the best relative performance
during at least one benchmark, showing that the application
is the ultimate determining factor in the performance of the
memory system.

STREAM and mcol generate the greatest average band-
width among the benchmarks which are executed, yet the
behavior of the memory system during these benchmarks
is drastically different. These benchmarks achieve signif-
icantly different performance from each of the BOB con-
figurations, yet the best performing configuration is differ-
ent. This is due to the request mix generated during the
region of interest; the STREAM benchmark generates a re-
quest stream of 46% reads and 54% writes while the mcol
benchmark issues 99% reads. The relatively balanced re-
quest ratio of STREAM favors the parallelism and relatively

balanced link-bus widths of configuration G, whose execu-
tion time is 2.9% less than D and 49% less than I. I’s perfor-
mance is significantly worse due to the inability of the re-
quest link bus to provide the DRAM channels with requests
at a sufficient rate. Conversely, during mcol, I performs sig-
nificantly better than both D and G; this is a result of the
wide response link bus in I, which can easily handle the
inordinate amount of read requests during this benchmark.
The execution time when using I is 15.6% less than G and
36.6% less than D.

For benchmarks where the memory system is largely
idle, the average bandwidth and execution time are rela-
tively similar; therefore, comparing performance provides
little insight. When the memory system is not heavily uti-
lized, the power dissipation and energy play a much larger
factor in determining the best configuration. For example,
the execution time of fluidanimate differs by less than 6%
across all systems, yet the energy per bit consumed within
configuration G and is 16% greater than D (which has the
least). The increased energy consumption is a result of a
greater number of simple controllers – four, whereas D and
I only have two. A greater number of simple controllers
is a benefit during some memory intensive benchmarks,
but when the memory system is mostly idle, the increased
power consumption becomes a detrimental factor.

5.2.2. Address & Channel Mapping

In a BOB memory system, address mapping occurs in
two separate but equally important places – within the main
BOB controller and within each simple controller. The
mapping that occurs in the BOB controller takes a portion
of the physical address to determine which channel should
receive that request. This process is essential to evenly
spread out requests over all available channels. An imbal-
anced mapping will overload a particular channel and cause
contention on the link buses and subsequently within the
DRAM. The mapping within each simple controller is sim-
ilar to commodity systems and takes portions of the physi-

9



STREAM mcol
Conf. Power (W) GB/s Time(ms) W / GB/s Energy(j) Power (W) GB/s Time(ms) W / GB/s Energy(j)

D 105.7 32.61 117.9 3.24 12.5 94.9 21.33 148.8 4.45 14.1
G 120.5 33.54 114.5 3.59 13.8 114.1 27.13 111.7 4.20 12.8
I 91.4 17.10 224.5 5.34 20.5 104.7 32.34 94.3 3.23 9.9

facesim mg
Conf. Power (W) GB/s Time(ms) W / GB/s Energy(j) Power (W) GB/s Time(ms) W / GB/s Energy(j)

D 78.5 3.06 1419 25.65 124.3 93.1 18.87 3782 4.93 352.5
G 92.5 3.11 1438 29.74 146.0 101.8 18.35 3887 5.55 395.8
I 78.4 2.92 1540 26.84 133.5 92.9 17.13 4162 5.43 377.6

fluidanimate sp
Conf. Power (W) GB/s Time(ms) W / GB/s Energy(j) Power (W) GB/s Time(ms) W / GB/s Energy(j)

D 78.5 3.06 508.4 25.65 40 97 23.27 1380 4.17 133.9
G 92.5 3.11 500 29.74 46.3 111.2 23.43 1367 4.74 151.9
I 78.4 2.92 531.6 26.84 41.7 93 18.86 1698 4.93 157.9

Table 2. Statistics of benchmarks during full system simulation using optimal BOB configurations

Figure 8. Full system simulations running the STREAM benchmark

cal address to determine which resources within the DRAM
channel are used to satisfy a request; this includes the rank,
bank, row, and column.

During limit-case simulations, address and channel map-
pings provide little insight due to the random nature of
the address stream. During a full-system simulation this
is no longer the case and these important aspects of a
BOB memory system can be explored. Such behavior
can be seen in Figure 9 where various channel mapping
schemes used during the execution of the PARSEC bench-
mark facesim result in widely different channel utilization.
The request spread has a significant impact on the over-
all execution of the benchmark (Figure 10). The ideal
channel mapping (RW:BK:RK:CLH:CH:CLL:BY) results
in an execution time of 425.9 ms, which is almost half

the runtime relative to the worst channel mapping scheme
(CH:RW:BK:RK:CL:BY), whose execution time was 750.3
ms. The lower the order of the bits that are used to de-
termine the channel address, the better the performance.
This is because lower order bits flip more frequently than
higher order bits and are more likely to evenly spread
out requests across all channels. (Note : CH:Channel,
RK:Rank, BK:Bank, RW:Row, CL:Column, CLH:Column
High, CLL:Column Low, BY:Byte Offset)

With the optimal bits determined for mapping the chan-
nel address, the DRAM mapping can be examined. This
mapping is identical to the address mapping in commodity
memory systems; portions of the physical address are used
to determine which DRAM resources should be used. As
with the channel mapping, the likelihood of a particular bit

10



Figure 10. Various channel mapping during full system simulation of configuration G running facesim

0% 

20% 

40% 

60% 

80% 

100% 

CH:RW:BK:RK:CL:BY RW:CH:BK:RK:CL:BY RW:BK:RK:CH:CL:BY RW:BK:RK:CLH:CH:CLL:BY 

A
m

o
u

n
t 

o
f 

To
ta

l R
e

q
u

e
st

s 

Channel Mapping Scheme 
(Achieved Bandwidth) 

Impact of Channel Mapping on Request Spread 

(2.96 GB/s) (3.12 GB/s) (3.51 GB/s) (5.22 GB/s) 

Figure 9. Request spread over all channels in
G resulting from address mapping schemes
while executing PARSEC facesim.

flipping is a key aspect in how that bit should be used to map
resources. To properly utilize the parallelism within a chan-
nel and DRAM device, bits that flip more frequently should
be used to map resources of greater parallelism within the
system. An example of this can be seen during the execu-
tion of NAS benchmark sp (Figure 11). Address mapping
schemes that map the rank and bank with lower-order bits
(which flip more frequently) achieve greater performance
(up to an average of 25 GB/). The worst performing DRAM
mapping scheme only achieves 34% of the bandwidth of the
most optimal scheme and shows that even when requests
are evenly spread over all channels with an optimal channel
mapping, the DRAM mapping scheme still has a significant

impact on performance.

6 Conclusion

Limitations in the commodity memory system have
forced system designers to implement a new architecture
which allows an increase in both speed and capacity. They
have achieved this by placing intermediate logic between
the CPU and DIMMs, thereby increasing signal integrity.
This architecture has been implemented in HPC and server
systems, yet non-trivial details about each system varies
greatly. A cycle accurate and hardware verified simula-
tor was developed to characterize the behavior of this new
type of memory system and to determine optimal use of
the available resources. This includes necessary queue
depths to reach peak DRAM channel efficiency, proper bus
configurations, and address mappings which utilize all the
parallelism within the system. Cost-constrained simula-
tions also provided evidence of similar performance be-
tween vastly different configurations, proving outside con-
straints can still be considered without sacrificing perfor-
mance. While many issues still face the modern memory
system, the buffer-on-board architecture provides many fea-
tures and benefits that improve a system’s capacity and per-
formance, making it an ideal near-term solution.

References

[1] DDR3 Power Estimates, Affect of Bandwidth, and Compar-

11



Figure 11. DRAM mapping during full system simulation of configuration G running sp

isons to DDR2. Technical report, Micron Technology Inc.,
April 2007.

[2] Low-Power Fully Buffered DIMM. Whitepaper, Netlist Inc.,
51 Discovery, Suite 150, Irvine, CA, 2007.

[3] Netlist FBDIMM preliminary power analysis Training. Tech-
nical report, Netlist, September 2007.

[4] DDR2 SDRAM FBDIMM. Datasheet, Micron Technology,
Inc., 2008.

[5] DDR3 SDRAM Specification. Technical report, Association,
JEDEC Solid State Technology, July 2010.

[6] IBM Power 795 Technical Overview and Introduction.
Datasheet, IBM, September 2010.

[7] Intel 7500 Scalable Memory Buffer. Technical report, Intel,
March 2010.

[8] F. Bellard. QEMU, a fast and portable dynamic translator.
In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’05, pages 41–41, Berkeley,
CA, USA, 2005. USENIX Association.

[9] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite
for Chip-Multiprocessors. In Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, June
2009.

[10] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance
Comparison of Contemporary DRAM Architectures. In Proc.
26th Annual International Symposium on Computer Archi-
tecture (ISCA’99), pages 222–233, Atlanta GA, may 1999.
Published by the IEEE Computer Society.

[11] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-
performance DRAMs in workstation environments. IEEE
Transactions on Computers, pages 1133–1153, 2001.

[12] H. Fredriksson and C. Svensson. Improvement Potential and
Equalization Example for Multidrop DRAM Memory Buses.
IEEE Transaction On Advanced Packaging, 32(3):675–682,
2009.

[13] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-buffered
DIMM memory architectures: Understanding mechanisms,

overheads and scaling. In High Performance Computer Ar-
chitecture, 2007. HPCA 2007. IEEE 13th International Sym-
posium on, pages 109–120, 2007.

[14] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems :
Cache, DRAM, Disk. Morgan Kaufmann, 2008.

[15] M. LaPedus. Micron rolls DDR3 LRDIMM. EE Times,
2009.

[16] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A
Full System Simulator for x86 CPUs. In Design Automation
Conference 2011 (DAC’11), 2011.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A
Cycle Accurate Memory System Simulator. IEEE Computer
Architecture Letters, 99(RapidPosts), 2011.

[18] G. Shigehiro. AMD’s Next Server Platform ”Maranello”.
PC Watch, 2008.

[19] A. L. Shimpi. The AMD Memory Roadmap: DDR3, FBD
and G3MX Examined. AnandTech.com, 2007.

[20] S. Srinivasan. Prefetching vs The Memory System : Opti-
mizations for Multi-Core Server Platforms. PhD thesis, Uni-
versity of Maryland, 2007.

[21] J. Suarez. Enterprise X-Architecture 5th Generation. Tech-
nical report, March 2010.

[22] D. T. Wang. Modern DRAM Memory Systems : Perfor-
mance Analysis and a High Performance, Power-Constrained
DRAM Scheduling Algorithm. PhD thesis, University of
Maryland, 2005.

[23] S. Woo. DRAM and Memory System Trends. October 2004.
[24] M. T. Yourst. PTLsim: A cycle accurate full system x86-64

microarchitectural simulator. pages 23–34, 2007.
[25] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM:

building high-bandwidth memory system using low-speed
DRAM devices. In Proceedings of the 36th annual inter-
national symposium on Computer architecture, ISCA ’09,
pages 255–266, New York, NY, USA, 2009. ACM.

12


