
184 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

As computer systems evolve towards exascale and attempt to meet new
application requirements such as big data, conventional memory technologies
and architectures are no longer adequate in terms of bandwidth, power,
capacity, or resilience. In order to understand these problems and analyze
potential solutions, an accurate simulation environment that captures all
of the complex interactions of the modern computer system is essential. In
this article, we present an integrated simulation infrastructure for the entire
memory hierarchy, including the processor cache, the DRAM main memory
system, and nonvolatile memory, whether it is integrated as hybrid main
memory or as a solid state drive. The memory simulations we present are
integrated into a full system simulation, which enables studying the memory
hierarchy with a faithful representation of a modern x86 multicore processor.
The simulated hardware is capable of running unmodified operating systems
and user software, which generates authentic memory access patterns for
memory hierarchy studies. To demonstrate the capabilities of our infrastructure
we include a series of experimental examples that utilize the cache, DRAM
main memory, and nonvolatile memory modules.

Introduction
The rise of multicore systems has shifted the primary bottleneck of system
performance from the processor to the memory hierarchy, accelerating the
gap that had already existed between processor and memory performance
(the memory wall). Previously, the memory wall problem was the result of the
increasing frequencies of CPUs relative to the latency of the memory system,
which meant that CPUs were losing more processing time waiting on memory
accesses. However, as processor frequency improvements stalled and with the
introduction of multicore systems, a more urgent problem was created since the
current memory system cannot scale at the same rate as the number of cores.
Therefore, in modern systems there is actually much less bandwidth and capacity
per core than there was a few years ago. This trend can be seen in Figure 1. This
problem, combined with the existing operating frequency problem, has led to the
memory hierarchy becoming the dominant source of slowdown in the system.
To address the increased need for capacity, systems are now relying more on solid
state drives and other high performance storage systems, exacerbating the latency
problem of the memory system due to the increased frequency of references to
the slower storage system. Finally, since multicore systems are running threads
in different address spaces with different access patterns, there is less locality of
reference for the cache hierarchy to exploit. This implies that overcoming the
multicore memory wall problem requires examining the entire memory hierarchy
from the cache system down to the storage system.

“…overcoming the multicore memory

wall problem requires examining the

entire memory hierarchy…”

AN INTEgRATED SIMulATIoN INfRASTRuCTuRE foR THE ENTIRE
MEMoRy HIERARCHy: CACHE, DRAM, NoNVolATIlE MEMoRy, AND DISk

Jim Stevens
university of Maryland

Paul Tschirhart
university of Maryland

Mu-Tien Chang
university of Maryland

Ishwar Bhati
university of Maryland

Peter Enns
university of Maryland

James Greensky
Intel labs

Zeshan Chisti
Intel labs

Shih-Lien Lu
Intel labs

Bruce Jacob
university of Maryland

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 185

Intel® Technology Journal | Volume 17, Issue 1, 2013

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2000 2002 2004 2006 2008 2010 2012

M
B

/M
IP

S

Year

DRAM (MB)/MIPS

Figure 1: DRAM capacity (MB)/processor speed(MIPS)
per core for a typical system
(Source: university of Maryland, 2013)

In addition to the strain on memory system capacity and bandwidth that
has been introduced by multicore chips, memory system capacity is also
limited by scaling problems at the device level. For DRAM, as the memory
cells shrink, the charge that can be stored on the capacitor becomes very
small and the pass transistor leakage increases, which reduces the retention
time of the cell and requires more complex peripheral circuitry to detect
the smaller charge. For flash memory, as the dielectric of the floating gate
shrinks, the amount of damage during program-erase cycles that can be
tolerated decreases and the cells wear out faster.[1] Additionally, since control
circuitry has analog components that are difficult to scale down, as the
DRAM and flash cell size decreases, the control circuitry takes up a larger
percentage of the chip area relative to the memory array. Architects have
attempted to address device scaling problems by adding more devices with
technologies like FB-DIMM and Buffer on Board, as well as technologies
in currently development like the Hybrid Memory Cube.[2] However, these
solutions require additional hardware to be designed and added to the
memory system, making them currently prohibitively expensive for most
applications. New memory technologies have also been suggested that might
eventually provide a solution to the capacity problem but these technologies
are not yet competitive with existing technologies in terms of cost or
capacity.[17] Meanwhile, software is not helping to alleviate the situation,
because application working sets continue to increase in size. In recent
years, big data applications such as bioinformatics and graph analytics
have only accelerated the increasing demand for faster and more scalable
storage systems. This has also contributed to the rapid adoption of solid
state drives. However, much of the storage system’s software and hardware
infrastructure was constructed around assumptions of millisecond access
latencies and, as a result, fails to efficiently utilize the new high performance
storage solutions being implemented. In order to meet the new challenges
posed by big data applications, the storage system needs to be reworked
from the OS file system down to the hardware interfaces. Finally, as the

“…big data applications such as

bioinformatics and graph analytics

have only accelerated the increasing

demand for faster and more scalable

storage systems.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

186 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

community pushes towards exascale computers, the power and resilience
limitations of the current memory system are becoming more pronounced.
[3] If an exascale-sized main memory system were constructed using today’s
technology, then just that component alone would consume the entire
system power budget. Furthermore, given the current probability of failure
in memory system components, as the number of components approach
the numbers needed for exascale, the probability of a failure somewhere in
the system approaches 1. This means that if an exascale computer were built
with today’s memory technology, not only would it use too much energy, it
would also be breaking constantly. Therefore, to enable the push to exascale
it is imperative that new, more energy-efficient and resilient memory
technologies and architectures be developed.

In order to overcome these problems, new architectures and software need
to be developed and evaluated. Since the new solutions will involve multiple
aspects of the system, the feedback between the various components of the
system is vital to understanding performance. For example, many researchers
are studying how to integrate nonvolatile memory into the system as a first
class citizen, which involves both the hardware and the software. Trace-based
simulation has been used in the past to study these kinds of architecture
problems. Unfortunately, trace-based simulation does not capture the feedback
loops between software and hardware. One way to produce these feedback
loops is to build a real-world prototype. However, due to the engineering effort
required, real-world prototypes are impractical and costly for studying large
design spaces. Full system simulation models those complex interactions and
can provide valuable insights into the dynamic behavior of a variety of system
designs. Previously, no full system simulator existed that could study all levels
of the memory and storage hierarchy. In this article, we describe our simulation
infrastructure that addresses this need by providing a full system simulator
capable of modeling the entire processor and memory hierarchy, including the
storage system.

Simulator Description
Our memory hierarchy simulation infrastructure is an extension of the
MARSSx86 full system simulation environment[4] developed at SUNY
Binghamton. We utilize MARSS to simulate the microprocessor and other
non-memory hierarchy components of the system. The memory infrastructure
builds on top of the prior MARSS memory hierarchy and incorporates
detailed simulations of every level of the hierarchy including the cache, the
main memory system, and the storage system. The cache simulator is an
extended version of the existing cache simulation in MARSS that allows for
heterogeneous technologies at different levels of the cache hierarchy. For
traditional DRAM-based main memory systems, our simulation environment
uses DRAMSim2, which is a detailed, cycle-accurate DRAM memory system
simulator developed by our lab[13]. For nontraditional hybrid nonvolatile/
DRAM memory systems our simulation environment uses two modules,
HybridSim and NVDIMM, which simulate the memory controller and

“…the feedback between the various

components of the system is vital to

understanding performance.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 187

Intel® Technology Journal | Volume 17, Issue 1, 2013

nonvolatile DIMMs that would be used by such a system. The hybrid
memory components can also be reconfigured to simulate solid state drives.
Figure 2 shows the overall structure of our simulation environment, including
its constituent modules and how they communicate with one another.

Functional CPU
Emulation

Disk
Interface

Peripheral
Device

Emulation

Detailed CPU
Timing Simulation

Memory
Interface

PTLSim

MARSSx86

QEMU

PTLSim QEMU

IRQ
Handler

MARSSx86

Functional CPU
Emulation

Disk
Interface

Peripheral
Device

Emulation

Detailed CPU
Timing Simulation

Memory
Interface

IRQ
Handler

HybridSim

DRAMSim2 PCI_SSD

HybridSim

NVDIMM DRAMSim2

NVDIMM DRAMSim2

Figure 2: Block diagram of simulation environment for
hybrid memory (top) and SSD (bottom)
(Source: university of Maryland, 2013)

MARSS
MARSS is designed to simulate a modern x86 computer system. MARSS utilizes
PTLSim to simulate the internal details of the processor. PTLSim is capable of
simulating a multicore processor with the full details of the pipeline, micro-op
front end, reorder buffers, trace cache, and branch predictor. In addition, PTLSim
also simulates a full cache hierarchy and can implement several cache coherency
protocols. For the hardware that is not explicitly simulated, such as disks or the
network card, MARSS uses the QEMU emulation environment. MARSS is
able to boot full, unmodified operating systems, such as any Linux distribution,
and then run unmodified benchmarks. We selected MARSS as the basis for our
memory hierarchy simulation infrastructure because of its ability to simulate

“We selected MARSS as the basis for

our memory hierarchy simulation

infrastructure because of its ability

to simulate both the user programs

and the operating system

functionality…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

188 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

both the user programs and the operating system functionality, while most other
simulation environments are only capable of simulating user-level instructions.
Therefore, in addition to being the most realistic simulation environment possible,
MARSS can be used to study the behavior of the operating system, which we view
as vital to solving the problems of future memory and storage systems.

Cache Simulation
While PTLSim already provides an SRAM-based cache simulation, studying
other technologies is vital because of the power, bandwidth, and capacity
problems that arise in the design of the memory hierarchy for future
systems. Memory technologies such as SRAM, STT-RAM, and eDRAM
have been considered for implementing on-die LLCs. Though they all
have low read latency and high write endurance, they can be very different
for other performance characteristics. For instance, SRAM is low density
and has high leakage current, STT-RAM has high write latency and write
energy consumption, and eDRAM requires refresh. Additionally, due to the
very different inherent characteristics of each of the memory technologies,
researchers have proposed various power and performance optimization
techniques. Therefore, in order to make useful comparisons between SRAM,
STT-RAM, and eDRAM LLCs, we expand MARSS with the following:

1. We integrate a refresh controller into MARSS to support eDRAM LLCs.

2. In addition to the parameterized cache access time, we expand MARSS
with parameterized cache cycle time, tag access latency, and refresh period.
Separating cycle time and tag access latency allows the user to evaluate
pipelined caches and sequentially accessed caches (such as when data array
access is skipped on a tag mismatch). We also modify MARSS to support
asymmetric cache read and write latencies. This property is required to
evaluate STT-RAM caches realistically.

3. We integrate dead line predictors to enable low power modes for SRAM
and eDRAM caches.

These changes allow our environment to investigate future cache designs
incorporating new technologies and techniques.

DRAM Main Memory Simulation
Since the DRAM-based main memory system has a large number of
configuration and timing parameters, such as the command and data queues,
address mappings, refresh timings, low power modes, activate and pre-charge
periods, and so on, choice of one or another scheme could have drastically
different power or performance implications.[14] Therefore, DRAMSim2, a
cycle-accurate JEDEC DDRx memory system simulator, was developed.[12][13]
It models the memory controller, memory channels, DRAM ranks, and banks.
The DRAMSim2 timing behavior has been compared and validated against
Verilog-based device models published by DRAM vendors.

Recently, JEDEC published the next generation DDR4 standard.[15] DDR4
devices could operate at double the speed of previous generation DDR3 chips,

“These changes allow our environment

to investigate future cache designs

incorporating new technologies

and techniques.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 189

Intel® Technology Journal | Volume 17, Issue 1, 2013

and moreover DDR4 will have additional features enabling low power and
high memory capacity. DDR4 devices will have banks separated into multiple
bank-groups to facilitate higher bandwidths and greater bank-level parallelism.
However, since banks within a bank-group share some peripheral circuitry,
requests to banks of the same bank-group takes longer time than banks on
different bank-groups. We modified the DRAMSim2 memory controller to
incorporate these DDR4 specific changes.

Power dissipated due to DRAM represents a substantial portion of the total
system power budget, as the main memory capacity and bandwidth increases
to satisfy requirements of the current and future data-intensive applications.
Therefore, to study the tradeoffs involved with switching to various DRAM
low power modes, such as active, power-down, self-refresh, and deep power-
down , requires accurate switching time as well as the current drawn during
each mode. Furthermore, refresh command scheduling could also potentially
affect the switching to low power modes. We have augmented DRAMSim2
with detailed low power modes and a range of refresh policies, allowing users
to study the performance and power tradeoff when using different low power
modes and refresh methods.

Nonvolatile Memory Simulation
Recently many designs have been proposed that utilize nonvolatile device
based DIMMs to address the capacity issues of the main memory system. For
DIMMs that are not made using DRAM parts, we use NVDIMM, which is
capable of simulating DIMMs made from a wide variety of technologies. This
is possible because most nonvolatile technologies share many common features
and differ in only a few parameters. For instance, both flash and Phase Change
Memory (PCM) feature asymmetric reads and writes. To allow for these
differences, NVDIMM has a wide variety of options that can be used to shape
the behavior of the system. Some technology-specific options include access
latencies, device interface widths, address mapping policies, and wear leveling
policies. For example, in flash a dynamic mapping scheme is used so that dirty
pages can be set aside to be erased during idle cycles by a garbage collection
process, enabling faster modifications of existing data. This scheme was chosen
because the erase time for flash is prohibitively long even for basic storage
applications. Early architectures for PCM, on the other hand, have been
designed with a simpler static mapping scheme that does not require a garbage
collection process because its erase is considerably faster than flash’s.

In addition, other options have been included in NVDIMM to enable
investigations into the effects of organization, scheduling, and timing. A
good example of such a study is to determine how many devices of a given
type can be included on a DIMM before the host interface channel (such
as DDR3 or SATA) is saturated. By enabling both device and architecture
level investigations, NVDIMM allows our memory hierarchy simulation
infrastructure to study different methods for integrating nonvolatile memory
into a computer system.

“We have augmented DRAMSim2

with detailed low power modes and

a range of refresh policies,”

“…NVDIMM allows our memory

hierarchy simulation infrastructure to

study different methods for integrating

nonvolatile memory into a computer

system.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

190 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Nonvolatile Memory Integration
There are two primary ways to integrate nonvolatile memory into a computer
system below the cache level, as illustrated in Figure 3. The first method is
the traditional storage route, which uses the same software and hardware
abstractions and protocols as hard disk drives. The second method is to tie
the nonvolatile memory directly into the memory controller. Our memory
hierarchy simulation infrastructure is designed in such a way that you can
utilize a common set of modules to simulate both integration methods, which
enables the ability to make fair comparisons between the two.

PCle
Controller

Memory
Controller

Core i7 CPU

X86
Core

X86
Core

X86
Core

X86
Core

Shared Last
Level Cache

PCle Lanes

SSD
Controller

DRAM
NAND Devices

PCle Solid State Drive

DRAM DIMM

ONFi

ONFi

DDR3
Channel

Hybrid
Memory

Controller

Core i7 CPU

X86
Core

X86
Core

X86
Core

X86
Core

Shared Last
Level Cache

Buffer
Channel

NV
Controller

DRAM
NAND Devices

NV DIMM

DRAM DIMM

ONFi

ONFi

DDR3
Channel

Figure 3: System design for SSD (top) and hybrid memory (bottom)
(Source: university of Maryland, 2013)

In both disk-like and memory-like integration methods, since the nonvolatile
memory typically has long latencies, a faster memory such as DRAM or SRAM
is utilized as a buffer or cache. We provide the HybridSim module to simulate
this aspect of the system. HybridSim uses NVDIMM as its backing store and
DRAMSim2 as its cache. HybridSim’s features enable the study of a variety
of cache replacement policies, prefetching policies, and hardware/software co-
design (for example, having the memory controller and operating system work
together to manage nonvolatile memory).

When HybridSim is simulating a memory-like integration method for
nonvolatile memory, also known as a hybrid main memory, it interacts with
the memory controller of the base MARSS system to capture addresses and
bypass its simpler memory model. HybridSim then performs its caching
functions and sends requests to DRAMSim2 or NVDIMM to implement
requests. When the requests complete, HybridSim sends callbacks to the
MARSS memory controller to indicate that a request is done and allow the
processor to make progress at the appropriate clock cycle.

“HybridSim’s features enable the

study of a variety of cache replacement

policies, prefetching policies, and

hardware/software co-design…”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 191

Intel® Technology Journal | Volume 17, Issue 1, 2013

When HybridSim is simulating a disk-like integration method, it receives
disk requests from MARSS and then later raises an I/O interrupt to indicate a
request is complete. This works exactly like a modern solid state drive. We also
provide an additional module called PCI_SSD to simulate the host interface for
a modern SATA or PCIe SSD and to allow the user to configure various options
including the number of lanes, half or full duplexing, an optional two-level
interface (such as Intel Direct Media Interface to SATA), frequency, and protocol
overhead. Our SSD simulation also ties in with our DRAMSim2 main memory
simulation to perform direct memory access operations to DRAM before or
after a disk request occurs. This process of disk simulation is also compatible
with simulators for conventional hard disk drives like DiskSim[5] and HDD
simulation could be achieved by simply modifying the PCI_SSD module.

Simulation Variability and Warm-Up
Full system simulation introduces some additional sources of complexity
and nondeterminism that can lead to inaccurate results if they are not dealt
with properly. In particular, just as in a real system, the OS introduces
nondeterminism into the simulation as a result of timing variation (for
example, interrupt arrival time) from run to run. This problem can be reduced
by utilizing checkpoints of the system state, which MARSS enables using the
QEMU snapshot mechanism. Another source of complexity is how to properly
warm up the caches and other state (such as NVDIMM’s address mapping)
for novel memory hierarchy architectures. We provide a generic mechanism
for warm-up utilizing state files that can be saved during a warm-up period
or generated by scripts and then restored at the beginning of the region of
interest. An example of this warm-up process can be seen in Figure 4.

Baseline Configuration
The baseline configuration for the following experiments is a quad-core, out-of-
order system, with cache organization similar to the Intel® Core™ i7. The cache
experiments below use this processor with a modified LLC to incorporate new
memory technologies. The cache experiments also utilized the baseline DRAM
main memory configuration. These baseline configurations are shown in Table 1.

Processor 4-core, issue width = 4, 2 GHz

L1I (private) 128 KB, 8-way, 64-B block size

L1D (private) 128 KB, 8-way, 64-B block size

L2 (private) 2 MB, 8-way, 64-B block size

L3 (shared) (if present) 8 MB, 16-way, 64-B block size

DRAM (if used as cache) 512 MB, 64-way, 4-KB page size

DRAM (if used as main memory) 1 GB, DDR3-1333

Nonvolatile main memory 8 GB, 4-KB page size, PCIe 3.0 16 Lane equivalent bandwidth

Table 1: Baseline Configuration
(Source: university of Maryland, 2013)

“Our SSD simulation also ties in

with our DRAMSim2 main memory

simulation to perform direct memory

access operations…”

Workload

Saving memory states
Restoring memory states and
performing detailed simulation

Custom binary trace file

HybridSim

re
st

or
e

Trace file
translator

Modified
QEMU

HybridSim readable
memory trace

1) DRAM cache state
2) NVM main memory state

Simulation results

MARSS +
HybridSim +

DRAMSim2 +
NVDIMMSim

Figure 4: An example of a complete warm-up
(Source: university of Maryland, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

192 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

The DRAM examples also utilize the baseline processor and cache shown in
Table 1.

For the hybrid and SSD experiments, an 8-GB NVM is considered, with a
512-MB DRAM cache in front of it. The nonvolatile DIMM organization
has 1 channel, 64 dies per channel, 2 planes per die, 4,096 blocks per plane,
64 pages per block, and each page is 4 KB. All transfers between the NVM
and the DRAM occur at the page granularity. The timing parameters for
the nonvolatile memory are based on MLC flash numbers.[6] The DRAM
cache, also in the form of a DIMM, is organized as 1 channel, 1 rank per
channel, 8 banks per rank, 8,192 rows per bank, and 1,024 columns per row.
All transfers between the DRAM and the L2 cache occur at the L2 cache
line granularity (64 B). DRAM timing parameters are based on a Micron
datasheet.[7] All devices are 8 bits wide.

For these experiments we use the GUPS benchmark and a random access
micro-benchmark called mmap developed by our lab as well as selected
benchmarks from the NAS benchmark suite, the SPEC benchmark suite,
and the PARSEC benchmark suite.[8][9][10][11] These benchmarks were selected
because they have a large working set size and are memory intensive.

Experiments
The following experiments demonstrate examples of the wide variety of studies
that can be performed using the various modules of our environment. For the
processor cache, we present energy and execution time data for last-level caches
constructed using different memory technologies for a several benchmarks. To
demonstrate the capabilities of the DRAM system portion of the simulator,
we have included power and instructions-per-cycle data for similar sets of
several benchmarks. Finally, we exhibit the features of the nonvolatile memory
portions of our environment with data showing the effects of additional
bandwidth, prefetching, working set size, and memory system traffic volume on
system performance. Table 1 contains the baseline configuration details that are
common to all of the experiments.

Caches
As a case study, we compare the LLC energy consumption and system
performance when using SRAM, STT-RAM, and eDRAM. The LLC is a
32-nm, 32-MB, 16-way write-back cache that is partitioned into 16 banks
and uses 64-byte blocks. It is also pipelined and sequentially accessed.

Figure 5 illustrates the normalized energy breakdown of LLCs based on SRAM,
STT-RAM, and eDRAM. We include the results for “regular” implementations
(without power-optimization) and “low power” implementations. For instance,
“regular” SRAM uses high performance transistors to implement the entire
cache without power gating; “regular” STT-RAM uses storage-class STT-RAM
technology, which has a long retention time but requires high write energy;
and “regular” eDRAM uses the conventional periodic refresh method. On

“…we compare the LLC energy

consumption and system performance

when using SRAM, STT-RAM,

and eDRAM.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 193

Intel® Technology Journal | Volume 17, Issue 1, 2013

the other hand, low power SRAM uses dead line prediction[18], power gating,
and low leakage CMOS for the memory cells[19] to reduce leakage power; low
power STT-RAM uses device optimization techniques to reduce write energy
by sacrificing data-retention time[17]; and low power eDRAM uses dead line
prediction to reduce the number of refresh operations. The impact of different
memory technologies and implementations on system performance is shown in
Figure 6.

0

Lo
w

 p
ow

er
 S

R
A

M

N
o

rm
al

iz
ed

 L
L

C
 E

n
er

g
y

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

0.05

0.1

0.15

0.2

0.25

0.3

0.35

bodytrack canneal facesim freqmine

Dynamic Leakage Refresh

Figure 5: Normalized llC energy breakdown with respect to various memory
technologies. The results are normalized to regular SRAM (not shown). Note
that regular SRAM dissipates 5x more power on average
(Source: university of Maryland, 2013)

0.9

Lo
w

 p
ow

er
 S

R
A

M

N
o

rm
al

iz
ed

 S
ys

. E
xe

. T
im

e

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

0.95

1

1.05

1.1

bodytrack canneal facesim freqmine

Figure 6: Normalized system execution time with respect to various memory
technologies. The results are normalized to regular SRAM (not shown)
(Source: university of Maryland, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

194 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

DRAM
As an interesting case study of a DRAM-based main memory system, we
show the impact of refresh when device size is increased from small 1-Gb to
future big 32-Gb chips. We simulated few SPEC2006 benchmarks in region
of interest (RoI) for 1 billion instructions, assuming both with and without
refresh enabled. Figure 7 presents the energy contribution separated for each
type of operation, that is: read and write, activate and pre-charge, background
and refresh operations. The Y-axis representing energy is normalized to the
corresponding 1-Gb device values for each benchmark. The background and
refresh energy portion increases for higher density devices, because of the
greater number of peripheral circuitry and cells to be refreshed as device size
increases. Since with DRAM density, the number rows also increases, this
leads to more frequent refresh commands to be scheduled, and therefore leads
to a degradation of the memory performance and latency. Figure 8 shows the
percentage degradation of system performance (IPC) and the average latency
increase due to refresh operations as the size of DRAM devices vary.

0

1g
b

2g
b

hmmer namd milc

Energy contributions normalized to 1gb device

gromacs GemsFDTD libquantum mcf mix2mix1

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb

1

2

3

4

5

6

7

ref rd/wr bgact/pre

Figure 7: Energy contributions separated for each operation type normalized to the 1-gb DRAM device size. Refresh
and background energy consumption increases when DRAM density gets higher
(Source: university of Maryland, 2013)

0

1g
b

2g
b

hmmer namd milc

Percentage performance impact of refresh operations

gromacs GemsFDTD libquantum mcf mix2mix1

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb

10%

20%

30%

40%

50%

60%

ipc avg_lat

Figure 8: Percentage of refresh penalty measured using Instructions Per Cycle (IPC) of the entire system and average
latency of the memory system. for higher density devices, the performance penalty increases sharply
(Source: university of Maryland, 2013)

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 195

Intel® Technology Journal | Volume 17, Issue 1, 2013

Nonvolatile Memory
An important type of study for future memory systems is to understand how
the system reacts to changing the working set size and volume of accesses. This
is especially important in hybrid main memory systems because nonvolatile
memory latencies can be significantly slower than traditional SRAM and
DRAM. The Giga-Updates Per Second (GUPS) implementation from Sandia
National Laboratories is an ideal benchmark to study such access patterns since
it takes the working set size and number of accesses as parameters, unlike many
other benchmarks that assume a constant pattern for memory accesses. GUPS
creates a large table and then performs a series of updates on pseudorandom
locations within that table. In this experiment we chose table sizes of 256 MB,
512 MB and 1 GB. The DRAM cache in our test system was 512 MB. Our
choice of table sizes allows us to see the effect on system performance when the
table fits in the DRAM cache easily, when the table is approximately the same
size as the DRAM cache to cause some swapping between the DRAM cache and
the nonvolatile backing store, and when the table is two times the size of the
DRAM cache to cause a significant number of DRAM cache misses. We also
vary the number of updates from 1000 to 5000 in increments of 1000 to show
the effect of different volumes of memory traffic on system performance. Finally,
we included data for systems that incorporate the nonvolatile memory as both
a hybrid memory and as a traditional SSD. From the results in Figure 9, we can
see that for the SSD configuration as the table grows larger than the 512 MB
DRAM and more accesses must go to the slower flash swap space, system
performance suffers as would be expected. However, for the hybrid memory
version, performance is not dependent on the table size. This is because Linux
sees the 8 GB backing store as the main memory address space and allocates the
entire table inside this space. Initially, this table is not present in the DRAM
cache because it has been accessed yet. When the table size is twice the size of the
DRAM, the performance of the Hybrid implementation becomes much better
than the SSD implementation. This is because the SSD has more overhead for
its accesses to the swap space than the Hybrid has for its accesses to the flash.

0.00E+00
1k 2k 3k 4k 5k 1k

Number of Updates Size of Table

2k 3k 4k 5k

1024 MB512 MB256 MB

1k 2k 3k 4k 5k

2.00E+08

4.00E+08

6.00E+08

E
xe

cu
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

8.00E+08

1.00E+09

1.20E+09

1.40E+09

1.60E+09

1.80E+09

SSD Hybrid

Figure 9: Execution time of guPS when table size and number of updates are
varied (smaller is better)
(Source: university of Maryland, 2013)

“…the SSD has more overhead for

its accesses to the swap space than the

Hybrid has for its accesses to the flash.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

196 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Optimizing the performance of the nonvolatile backing store is another
important area of study for future memory systems. One area of potential
performance gain is the interface of the nonvolatile devices used to create
the backing store. To show the effect of improving the bandwidth provided
by these interfaces, we utilize an in-house micro-benchmark called MMAP.
MMAP works by first defining a large memory mapped file that is opened
with the mmap() system call in Linux and then it accesses this file randomly.
This benchmark is well suited to bandwidth studies because it is single
threaded and therefore provides a clear picture of the effect of a minor change
without much noise from other system threads. Additionally, since MMAP
is designed to force misses to the DRAM cache as often as possible, which
causes only one 64-byte access within each 4-KB page, it maximally stresses
the host interface and device channels in the backing store. This is a worst-case
scenario for the memory system because it generates a large volume of random
accesses that are not fully utilized by the cache. This is the reason for the low
observed IPC. For this experiment, we vary the clock rate of the interface of
a device (the amount of time it takes to transmit 8 bits of data) from 0.05 ns
to 10 ns. In addition, we also utilize a basic sequential prefetching algorithm
to generate more accesses and place greater pressure on the devices. We vary
the number of additional pages that are prefetched by our algorithm from 4 to
8 to 16. As was the case in the previous example, we also include data for
both a hybrid-style integration of the nonvolatile memory and an SSD-style
integration. In Figure 10, we can see that both faster device interfaces and
larger prefetching windows help to improve the system performance. We do
not use the prefetching in HybridSim for the SSD version of the experiment
because prefetching is performed by the operating system for disk accesses. It is
also important to note that there is less nondeterminism in these results than in
the previous example because this example is single threaded, which eliminates
nondeterminism introduced by the OS scheduler when it has to schedule
multiple threads. There is still some minor nondeterminism in this experiment’s
results, but that is what one would expect from a real system.

0

SSD Hybrid–0 Hybrid–4

Device Interface Latency (ns) Prefetching Window

Hybrid–8 Hybrid–16

10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05

0.0005

0.001

0.0015

U
se

r
IP

C
 (

L
ar

g
er

 is
 B

et
te

r)

0.002

0.0025

0.003

Figure 10: Performance of MMAP with varying bandwidth and prefetching window size
(Source: university of Maryland, 2013)

“Optimizing the performance of the

nonvolatile backing store is another

important area of study for future

memory systems.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 197

Intel® Technology Journal | Volume 17, Issue 1, 2013

Conclusion
In this work, we have introduced a complete memory hierarchy simulation
environment that is capable of accurately simulating the processor cache,
the DRAM main memory system, and nonvolatile memory, whether it is
implemented as a hybrid memory or as an SSD. We have shown the utility of
this infrastructure for solving future memory hierarchy design problems by
presenting example experiments that demonstrated multiple last-level cache
cell technologies, DRAM refresh schemes, and nonvolatile memory integration
methods.

References
[1] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. “The

bleak future of NAND flash memory.” In Proceedings of the 10th
USENIX conference on File and Storage Technologies (FAST’12).
USENIX Association, Berkeley, CA, USA, 2–2.

[2] E. Cooper-Balis, P. Rosenfeld, and B. Jacob, “Buffer On Board
memory systems,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12, 2012.

[3] US Department of Energy Office of Science. “The Opportunities
and Challenges of Exascale Computing.” Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee. Fall 2010.

[4] A. Patel et al., “MARSSx86: A Full System Simulator for x86
CPUs,” in Design Automation Conference 2011 (DAC’11), 2011.

[5] J. Bucy et. al. “The DiskSim Simulation Environment Version
4.0 Reference Manual.” Carnegie Mellon University Parallel Data
Laboratory Technical Report CMU-PDL-08–101. May 2008.

[6] Micron Technology. “128Gb SLC Flash Datasheet.” 2012. [Online].
Available: http://www.micron.com/parts/nand-flash/mass-storage
/mt29f128g08akcabh2-10

[7] Micron Technology. “4Gb DDR3 SDRAM Datasheet.” 2009.
[Online]. Available: http://www.micron.com/parts/dram/
ddr3-sdram/mt41j256m16re-125

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. 2008. “The PARSEC benchmark suite: characterization and
architectural implications.” In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques
(PACT ‘08). ACM, New York, NY, USA, 72–81.

[9] NASA Advanced Supercomputing Division. “NAS Parallel
Benchmarks.” 2012. [Online]. Available: http://www.nas.nasa.gov
/publications/npb.html

Intel® Technology Journal | Volume 17, Issue 1, 2013

198 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

[10] Standard Performance Evaluation Corporation. “SPEC2006 CPU
Benchmarks.” 2012. [Online]. Available: http://www.spec.org
/cpu2006/

[11] Sandia National Labs. “RandomAccess GUPS (Giga Updates
Per Second).” 2012. [Online]. Available: http://www.sandia
.gov/~sjplimp/algorithms.html

[12] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie
Baynes, Aamer Jaleel, and Bruce Jacob. “DRAMsim: A memory-
system simulator.” SIGARCH Computer Architecture News,
Vol. 33, No. 4, pp. 100–107. September 2005.

[13] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A Cycle Accurate Memory System Simulator,” Computer
Architecture Letters, Vol. 10, No. 1, pp. 16–19, Jan.-June 2011.

[14] S. Srinivasan, L. Zhao, B. Ganesh, B. Jacob, M. Espig, and
R. Iyer. “CMP memory modeling: How much does accuracy
matter?” Proc. Fifth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS), pp. 24–33. Austin TX, June 2009.

[15] JEDEC, “DDR4 SDRAM Standard,” 2012. [Online]. Available:
http://www.jedec.org/sites/default/files/docs/JESD79-4.pdf

[16] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-Change Memory
Technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New York,
NY, USA: ACM, 2009, pp. 24–33.

[17] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and
M. R. Stan. “Relaxing non-volatility for fast and energy-efficient
STT-RAM caches,” High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on,
Vol., no., pp. 50–61, 12–16 Feb. 2011.

[18] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. “Cache
decay: exploiting generational behavior to reduce cache leakage
power.” In Proceedings of the 28th annual international symposium
on Computer architecture (ISCA ‘01). ACM, New York, NY, USA,
240–251.

[19] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand,
“Leakage current mechanisms and leakage reduction techniques in
deep-submicrometer CMOS circuits,” Proceedings of the IEEE,
Vol. 91, No. 2, pp. 305–327, Feb. 2003.

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 199

Intel® Technology Journal | Volume 17, Issue 1, 2013

Author Biographies
Jim Stevens received a BS degree in computer engineering from the University
of Kansas in 2006, an MS degree in computer science from the University of
Arkansas, Fayetteville, in 2009, and is currently pursuing a PhD in computer
science at the University of Maryland, College Park. His research interests
include memory controller design and adapting operating systems for
nonvolatile memories.

Paul Tschirhart received his BS degree in computer engineering from the
University of Virginia in 2007. He is currently pursuing a PhD in computer
and electrical engineering at the University of Maryland, College Park.
His research interests include memory controller design, memory system
architecture, and SSD design.

Mu-Tien Chang received the BS and the MS in electronics engineering
from National Chiao Tung University, Hsinchu, Taiwan, in 2006 and 2008,
respectively. He is currently pursuing a PhD in electrical and computer
engineering at the University of Maryland, College Park. His research interests
include memory circuit and processor cache design.

Ishwar Bhati received B.Tech. in electronics and communication engineering
from Indian Institute of Technology, Guwahati, India, in 2005. He worked
in the VLSI/ASIC industry as design and verification engineer for five years.
He is currently pursuing a PhD in electrical and computer engineering at the
University of Maryland, College Park. His research interests include energy-
efficient memory systems and high performance computing.

Peter Enns is currently pursuing a PhD in linguistics at the University of
Maryland with a concentration in computational linguistics and natural
language processing. He received a BS in computer engineering from the
University of Maryland in 2011 with honors (summa cum laude). While he
was an undergrad, Peter studied nonvolatile memory systems with Dr. Bruce
Jacob in Maryland’s Memory Systems Research Lab.

James Greensky is currently a software engineer in the Memory Architecture
Lab (MAL) within Intel Labs. James received his BS and MS degrees in
computer science and is currently pursuing a PhD in the area of computer
architecture from the University of Minnesota.

Zeshan Chishti received the BSc (Hons) degree in electrical engineering from
the University of Engineering and Technology, Lahore, Pakistan, in 2001,
and a PhD in computer engineering from Purdue University in 2007. He is
a Research Scientist at Intel Labs, Hillsboro, Oregon. His research interests
include microarchitecture, energy-efficient memory systems, and cache
hierarchies for chip multiprocessors.

Intel® Technology Journal | Volume 17, Issue 1, 2013

200 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Shih-Lien Lu received his BS in EECS from UC Berkeley, and MS and PhD
both in CSE from UCLA. He is a principal researcher and leads the memory
architecture team at Intel Labs. From 1984 to 1991 he was on the MOSIS
project at USC/ISI, which provides research and education community VLSI
fabrication services. He was on the faculty of the ECE Department at the
Oregon State University from 1991 to 2001. His research interests include
computer microarchitecture, memory circuits, and VLSI systems design.

Bruce Jacob received the AB degree in mathematics from Harvard University
in 1988 and the MS and PhD degrees in CSE from the University of
Michigan in Ann Arbor in 1995 and 1997, respectively. He also worked
for two successful startup companies: Boston Technology and Priority Call
Management; at Priority Call Management he was the initial system architect
and chief engineer. He is a professor of electrical and computer engineering at
the University of Maryland in College Park, and he is currently visiting at the
University of Siena, Italy, where he is working on memory issues for many-
core systems. He is a recipient of a US National Science Foundation CAREER
award for his work on DRAM, and he is the lead author of an absurdly large
tome on the topic of memory systems. His research interests include memory
systems, operating systems, and designing electric guitars.

