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Abstract: As Chip-multiprocessor (CMP) become 
the ubiquitous architecture, especially for commercial 
servers targeting throughput-oriented applications, 
processor manufacturers are likely to integrate 
increasing number of cores on-die. Designing and 
developing these CMP architectures involves studying 
a number of options for on-die interconnect, cache and 
memory system while optimizing for both power and 
performance. Simulation-based study is widely adopted 
for the design space exploration for these systems.  
Although most existing CMP simulators have detailed 
cache and interconnect models, they use simplistic 
memory models that use either a fixed latency to the 
memory sub-system or a simple queuing model which 
adds bandwidth constraints to the fixed latency 
approach. In this paper, we demonstrate the necessity 
for a cycle-accurate memory model for CMP 
architecture. We study three types of memory models: 
(1) Fixed latency model, (2) simple queuing model and 
(3) detailed cycle-accurate model. We show that the 
performance difference among them is increased as the 
number of cores is increased on-chip. We also find that 
optimization studies done using simplistic models can 
lead to erroneous conclusions. Our studies show that 
the performance difference between simplistic models 
and accurate memory controller can be as high as 65% 
for memory optimization studies. 

1. Introduction 

The scaling limitations of uni-processor and 
availability of large silicon area due to reduced 
transistor size has lead to increased number of cores on 
a chip. The cost of extracting more instruction level 
parallelism (ILP) from a single thread/core is becoming 
expensive due to complex logic, wider issue width and 
even more accurate branch predictors. These factors 
have fueled the growth of chip multi-processors 
(CMPs), also known as multi-core processor. These 
CMPs are becoming the ubiquitous architecture for 
commercial servers targeting throughput-oriented 
applications [1]. 

The emergence of CMPs has lead to increased 
exploitation of the thread-level parallelism. 
Furthermore, independent processes in a system can be 
executed in tandem on different cores for faster 
response time, and to improve the overall throughput. 
The simultaneous execution of multiple 

processes/threads increases the memory bandwidth 
demand, i.e. the increased number of cores aggravates 
the memory wall problem.  

The other factor contributing further to the memory 
bandwidth problem is the slowdown in growth of 
number of pins per die and pin bandwidth. The 
inadequate growth in memory bandwidth will further 
aggravate this problem as we move to increased 
integration.  

To explore CMP design space and propose 
optimization techniques, simulation methodology is 
widely adopted. Most modern CMP simulators though 
have a detailed cache and interconnect models, use a 
simplistic memory model [2][3][4]. The memory 
system is assumed to be a fixed latency model [2] or a 
simple queuing model. In the fixed latency model, all 
memory requests experience the same latency 
irrespective of bandwidth constraints. For bandwidth-
constrained systems such as multi-threaded processors, 
the fixed latency model would give overly optimistic 
results. A slightly improved model is a queuing model 
which has bandwidth constraints, with a specific 
arrival and service rate for memory requests. The 
queuing model is based on M/M/1 model where the 
arrival and service rate are assumed to be Poisson 
distribution.  

 

Figure 1 illustrates the memory response time at 
different throughput requirements for the three 
memory models. Compared to a detailed memory 
model, the two simplistic models behave similar to it at 
lower bandwidth requirement, but do not faithfully 

Figure 1. Latency response for various memory models  



 

   

track it at higher bandwidth. Though the queuing 
model fares slightly better than the fixed model in 
tracking the detailed model’s behavior, it still 
underestimates the memory latency by as much as 25% 
for the maximum throughput. This is due to the 
queuing model’s inability to capture the memory 
contention overhead, which we explain later, increases 
significantly with the throughput. The simplistic 
models do not work as well for memory intensive 
workloads as they do for compute intensive workloads. 

In this paper, we study these three memory models 
in detail. Applications that are memory-bound can 
show artificial improvement in performance when 
using simplistic models, but will not result in true 
performance gain in an actual system which will have a 
cycle-accurate model. We show that the performance 
difference between the two models can be as high as 
15% and can increase up to 65% for memory 
optimization studies, such as prefetching. This 
behavior can lead to incorrect conclusions about 
certain optimization techniques and result in 
substandard products.  

We also show that irrespective of memory 
optimization techniques, using simplistic models can 
result in incorrect performance projections for multi-
core systems. We observed that the difference in IPC 
between simple latency model and cycle-accurate 
model (with rest of the system being same for both 
models) is 2% for a single core, and increases to 15% 
for 8 cores. This can lead to incorrect conclusions 
about relative performance gains as the number of 
cores is increased. 

The rest of the paper is organized as follows. Section 
2 describes our motivation. Section 3 describes our 
simulation methodology for the three memory models. 
Section 4 describes the results, and section 5 describes 
the related work. We conclude in section 6 with our 
findings.  

2. Motivation 

In this section, we explain the latency response of a 
detailed cycle accurate model similar to [5] and 
highlight the importance of memory subsystem for 
CMPs. Figure 2 illustrates the memory sub-system 
response at different throughput requirements 
measured for dual channel DDR3-800 with closed 
paging policy. The maximum sustained bandwidth for 
this system is around 7GB/s. Maximum sustained 
bandwidth is the maximum bandwidth observed in the 
simulation and is different from the theoretical 
maximum. In our study, this has been observed to be 
around 70-80% of the theoretical maximum for server 
workloads and depends on various factors such as 
read-write ratio, paging policies, address mapping etc. 
The bandwidth-latency curve consists of three distinct 

regions.  
Constant region: The latency response is fairly 

constant for the first 40% of the sustained bandwidth. 
In this region the average memory latency almost 
equals the idle latency in the system. Idle latency is the 
default cost of the memory operation i.e. the cost of 
opening the page, reading data out of the open page, 
and returning it to the processor. The system 
performance is not limited by the memory bandwidth 
in this zone, either due to applications being non-
memory bound or due to excess bandwidth availability.  

Linear region: In this region, the latency response 
increases almost linearly with the bandwidth demand 
of the system. This region lies for throughputs in the 
range of 40% to 80% of the sustained maximum 
throughput. The average memory latency starts to 
increase due to contention overhead introduced in the 
system by numerous memory requests. The 
performance degradation of the system starts in this 
zone, and the system is claimed to be fairly memory 
bound.  

Exponential region: This is the last region of the 
bandwidth-latency curve. This region exists between 
80%-100% of the sustained maximum. In this zone the 
memory latency is dominated by the contention latency 
which can be as much as twice the idle latency or 
more. Applications operating in this region are 
completely memory bound and their performance is 
limited by the available memory bandwidth.  

The figure clearly illustrates the need for a system to 
operate in the constant region or at least the linear 
region. However, due to the increased bandwidth 
demands of multi-core systems and the hurdles faced 
in scaling memory bandwidth, systems will be forced 
to operate in the linear and exponential region more 
frequently. 
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The memory bandwidth problem will lead to 

significant reduction in performance gain as the 
number of threads is increased. Figure 2 illustrates this 
non-linear performance scaling for SPECJbb [6], a 
server workload. We simulated various threads with 
each having a private 16KB L1 cache (separate 
instruction and data cache), each set of 8 threads 

Figure 2. Memory Bandwidth Vs Latency curve  



 

   

shared the 512KB L2 cache and all threads shared the 
last level cache. The last level cache size (L3) was 
increased proportionally from 2MB to 32MB for 8 to 
128 threads. The maximum available memory 
bandwidth was set to 52 GB/Sec.  
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  The system performance scales linearly from 8 
threads to 32 threads. Beyond 32 threads, this 
performance gain tapers down because of the increased 
average memory latency of the system. The memory 
latency increases exponentially, as explained above, 
for a large number of threads (greater than or equal to 
64 in this case). This contributes to the non-linear 
increase of system performance with the number of 
threads. This non-linear scaling in performance can be 
captured only in a system which faithfully models all 
memory system interactions.   

3. Methodology 

In this section, we explain our simulation 
methodology, memory models and simulation 
parameters in detail. 

3.1 Simulation Framework  
We use a trace-driven platform simulator called 

ManySim [3] to evaluate CMP platforms. ManySim 
simulates the platform resources with an abstracted 
core. ManySim contains a detailed cache hierarchy 
model, a detailed coherence protocol implementation, 
an on-die interconnect model and a queuing memory 
model as described in previous section. 
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Figure 4 shows our multi-core architecture model. 
Each core in our model has a private L1, a private L2 
and all cores share a distributed L3 cache as shown in 
figure 4. To study the impact of different memory 
models on estimating memory performance we 
enhanced the ManySim simulator to run with three 
different memory models including a detailed memory 
model in this study. We refer the reader to [3] for a 
more detailed description about the methodology. 
(1) Fixed Memory Model: In this model, all memory 
requests incur the same delay irrespective of the 
requested system bandwidth, access pattern, ratio of 
read to write requests etc. There is no concept of 
bandwidth limitation in this model. This does not 
address the memory contention overhead either. 
Memory contention overhead is the effect experienced 
by a memory request when the memory controller’s 
transaction queue is full. In this scenario, a memory 
request has to contend with other requests to get 
serviced and becomes more pronounced at higher 
bandwidths of the system. This is the most simplest of 
all models, and hence the fastest. This is used in most 
uni-processor CPU simulators such as Simplescalar 
[7], alpha-sim [8] and multi-processor simulator like 
GEMS [2].  
(2) Queuing Memory Model: This model is based on 
the memory requests arrival and servicing rate. The 
arrival and service rate are assumed to be Poisson 
distribution in our study. Unlike the fixed latency 
model, the queuing model is able to capture the effects 
of bandwidth-constraints on memory latency albeit to a 
limited extent as shown in later sections. This model 
still does not capture the effects introduced in the 
system due to contention among memory requests 
accurately. This model is faster than the accurate 
memory controller but slower than the idle latency 
model. 
3) Detailed Memory Model: The memory controller 
is a detailed cycle-accurate model that supports DDR 
and FBD protocols similar to DRAMSim [5]. The 
model supports various scheduling algorithms such as 
read first, write first, adaptive etc. The scheduling 
algorithm used in this study is an adaptive scheduling 
algorithm. This policy gives priority to read requests 
over write requests as long as the number of 
outstanding writes is below a threshold. The threshold 
is set to be 2/3rd of the write queue size. The model 
also provides the flexibility to vary the address 
mapping policies, number of ranks, DIMMs etc. in the 
system. In our studies we call this Accurate Cycle 
Latency Model (ACLM). The detailed memory 
controller is the most cycle accurate of all models and 
captures the memory system behavior completely. This 
is also the slowest among all models. 

Both the fixed and queuing models need to specify 
service latency for a request. This latency value is used 

Figure 3. Performance scaling over threads for SpecJbb 
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by the Fixed Memory Model as the latency value for all 
transactions, while it is used in the Queuing Memory 
Model as the basic memory latency without any 
bandwidth impact. This provides two additional 
variations:  
• Idle Latency Model (ILM), where the minimum 

round trip time for a memory request is equal to 
the idle latency of the accurate memory controller. 

• Average Latency Model (ALM), where the 
minimum round trip time for any memory request 
is equal to the average memory latency of the 
accurate memory controller i.e. the idle latency of 
this model is equal to the average latency of the 
accurate model. Average latency for each 
workload is computed for the entire simulation 
period using an accurate memory controller.  

Based on the memory model and latency value it uses, 
we have the following four types of simplistic memory 
models: 
• Simple Idle Latency Model (SILM): This fixed 

latency model uses the idle latency value as the 
memory latency.  

• Simple Average Latency Model (SALM): This 
fixed latency model uses the average latency of the 
cycle accurate model for the memory latency.  

• Queue Idle Latency Model (QILM): In this model 
the minimum latency for a memory request is 
equal to the idle latency of the AMC.  

• Queue Average Latency Model (QALM): This is 
the type of queuing model where the minimum 
latency of a memory request is equal to the 
average latency of the cycle accurate model. 

Table 1 summarizes the behavior of these various 
memory models. 

Memory 
Models 
 

Bandwidth 
Limitations 
 

Memory 
Contention 
overhead 

Simulation 
speed 
 

Fixed 

Memory 

model 

N N Fastest 

Queuing 

Memory 

model 

Y N Medium 

Detailed 

Memory 

Model  

Y Y Slow 

Table 1. Memory Model Comparison 

Table 2 summarizes the various simulation 
parameters in our study. We varied the number of 
threads (threads are synonymous to cores in our 
studies) in the platform from 1-16. The L2 cache 

slice/core is 256KB and scaled linearly with the cores. 
The L3 cache size was 1MB/core and was scaled 
linearly as well. We set the simplistic model bandwidth 
to be the maximum sustained bandwidth of the detailed 
DRAM model. We also modeled different memory 
channels (1, 2 and 4) for the detailed model and had 
corresponding service latencies for the simplistic 
models. 

Parameter Variations 
Number of 

cores/threads 

1, 2, 4, 8, 16 

Shared L2 

cache size 

256KB - 2MB (scaled linearly with 

cores). 8-way, 64-byte line size 

Shared L3 

cache size 

1MB - 8MB (scaled linearly with 

cores). 16-way 64-byte line size 

Simplistic 

Memory Model 

Fixed and Queuing Model 

Detailed 

DRAM Model 

DDR3 800 with support for 1, 2 and 

4 channels, read and write queue size 

of 42, adaptive scheduling 

Table 2. Simulation Parameters 

3.2 Workloads 

We used server benchmarks in our study as these are 
some of the important classes of applications to exploit 
the performance benefits of chip multiprocessors. The 
memory traces were captured from a four socket dual 
core Pentium 4 machine. The traces were captured 
from significant points in the workload that reflect the 
benchmarks behavior accurately. 

On-line transaction processing (OLTP) is 
represented using TPC-C [9]. TPC-C simulates a 
complete computing environment where a population 
of users executes transactions against a database.  

ERP is represented using sales and distribution 
benchmark, the SAP SD 2-tier benchmark [10]. 
Transactions in this application involve creating orders, 
creating deliveries for orders, displaying orders, 
changing options, listing and creating invoices. 

SPECjbb2005 [6] is a Java-based server benchmark 
that models a warehouse company that serve a number 
of districts (much like TPC-C). This workload is 
intended to test the performance of JVM components 
including garbage collection and runtime optimization.  

SPECjAppServer2004 [11] is a multi-tier benchmark 
for measuring the performance of Java 2 Enterprise 
Edition (J2EE) technology-based application servers. It 
is an end-to-end application which exercises all major 
J2EE technologies implemented by compliant 
application servers. 



 

   

4. Performance Evaluation 

In this section, we present the performance 
evaluation using the different memory models. We 
present the impact on CPI, throughput projection and 
also show the impact of various models on memory 
optimization techniques like prefetching.  Our results 
show that all benchmarks exhibit similar trend, hence 
we present the results for SPECJbb in this section.  

4.1 Impact on CPI 

Figures 5, 6 and 7 illustrate the performance of 
SILM and QILM for different number of threads with 
1, 2 and 4 memory channels respectively. The y-axis 
shows the CPI normalized to the detailed memory 
model. Figure 6(a) shows that for single threaded 
workloads the CPI obtained from both models are 
nearly identical to that obtained from the detailed 
model. However, increasing the number of threads, 
results in an increase in the difference between the CPI 
values predicted by the detailed model and those 
obtained from the SILM. The CPI is off by 35% and 
62% respectively for 8 and 16 threads. This large error 
in estimation is because SILM makes an unrealistic 
assumption of infinite bandwidth. SILM behaves close 
to the cycle accurate model only in the constant region 
of the bandwidth latency curve as shown in figure 5(b).  

QILM behaves different from SILM, and the 
difference with detailed model is minimal. The error 
increases to 5% when the number of threads is 8, but 
reduced to 2% for 16 threads. This is because of the 
bandwidth constraint imposed by the queuing model is 
identical to the detailed model in the operating region 
of the applications. QILM model behaves similar to the 
detailed model at the two extreme end of the 
bandwidth requirement (i.e. constant and exponential 
region) as show in latency response graphs and 
diverges from it in the linear region. Hence the 
performance difference with detailed model first 
increases and then decreases.   

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16
Number of threads

N
o

rm
al

iz
ed

 C
P

I

SILM
QILM

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000

Bandwidth (MB/s)

L
at

en
cy

 (
cy

cl
es

)

SILM

QILM

ACLM

 

As shown in figure 6, the dual channel configuration 
gives similar trend for both SILM and QILM. Both 
models have increased difference from the detailed 
model when the number of threads is increased. 
However QILM still performs better. The difference is 
15% and 57% for QILM and SILM respectively. Since 
the 2 channel configuration provides more bandwidth 
than 1 channel, the applications operate in the linear 
region of the bandwidth-latency curve. 
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 (a) CPI Normalized to a detailed model 

 

 (b) Bandwidth vs. Latency response 
Figure 5: Single Channel performance results 

 

 (a) CPI Normalized to a detailed model 

 

(b) Bandwidth vs. Latency response 
Figure 6: Dual Channel performance results 
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The difference between QILM and ACLM is 
maximal in this zone, and hence the performance 
difference is more for QILM with 2 channels 
compared to 1 channel.  It is due to the same reason, 
increased bandwidth availability, SILM fares better 
with 2 channel configuration than 1 channel. 

We observe a similar trend continuing with 4 
memory channels as shown in figure 8. The 
difference from the detailed model is increased to 
about 19% when the total number of threads is 16 for 
both the models. Since 4 channels provide even more 
bandwidth as opposed to 2 channels, the difference 
between the two models and detailed model becomes 
comparable.  

4.2 Impact on Throughput Projection 

We also looked at the throughput projection as we 
increased the number of threads with the three 
memory models. Figure 8 (a), (b) and (c) shows this 
data for 1, 2 and 4 memory channels respectively. 
The y-axis shows the performance improvement 
normalized to a single thread. We can see that with 
single memory channel, QILM has the same curve as 
the detailed model: the memory throughput is 
increased to its maximum with 8 threads, but starts to 
reduce as we keep increasing the number of threads 
due to the increased memory traffic. QILM is able to 
capture the bandwidth constraints of a real machine 
accurately in a tightly constrained system. SILM, on 

the other hand has a very different behavior. The 
throughput keeps increasing as the number of threads 
is increased. This is due to the fact lack of bandwidth 
constraint in the model. This model works fine in a 
memory unconstrained environment but not so well 
when memory is overloaded. Hence SILM can 
capture the performance improvement from 1 to 4 
threads as well as ACLM but not so for higher 
threads. 

QILM matches the detailed model with 1 memory 
channel, but it shows different behavior as we 
increase the memory channels, as shown in figure 
8(b) and 8(c). With 4 memory channels, QILM 
behaves more like the SILM. This is because of the 
QILM diverging from the detailed model in the linear 
region of the bandwidth-latency curve as shown in 
Figure 8(c). 
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(a) Single Memory Channel 
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(b) Dual Memory Channel 
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(b) Bandwidth vs. Latency response 
Figure 7: Quad Channel performance results 

 

 (a). CPI Normalized to a detailed model 

 

(c) Quad Memory Channel 
Figure 8: Throughput projection for various 

memory channels with different threads 
 



 

   

4.3 Average Latency Results  

In the above results both the SILM and QILM used 
the ACLM idle latency as the memory service delay 
in their models. It is expected that using the average 
latency can provide more accurate results. Therefore, 
we ran the benchmarks with ACLM, computed the 
average latency, and used them in these two models.  
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Figure 9. CPI normalized to detailed model for 
SALM and QALM with dual memory channels 

 

Figure 10. Memory latency distribution  

0

1

2

3

4

5

6

7

8

0 5 10 15 20

Number of threads

N
or

m
al

iz
ed

 IP
C

SALM

QALM

ACLM

 
Figure 11. Throughput projection for Dual 
memory channels with different threads 

Figure 9 shows the CPI of SALM and QALM 
memory models normalized to ACLM. Here, the 
SALM model performs better than the idle latency 
model and varies from over predicting the CPI by 

0.5% for 1 thread to under predicting it by 5% for 16 
threads. QALM over predicts the CPI for all case 
with the maximum difference being 4% for 16 
threads. Over prediction of performance happens due 
to the fact that most memory requests in a real system 
don’t necessarily experience the average memory 
latency as shown in figure 10. This figure shows that 
almost 65% of the requests experienced less than the 
average latency. Since we assume the same memory 
latency for all requests, the average latency models 
tend to be more conservative. Hence, the average 
latency models lead to over prediction of CPI.  

Figure 11 shows the throughput projection using 
the two average latency models. The y-axis shows the 
performance improvement normalized to a single 
thread. Both these models track the detailed ACLM 
model well. Even the SALM fixed latency model, 
with no bandwidth constraint, captures the trend 
accurately due to a more accurate average latency 
being used in the model. This is due to the fact that 
we capture the average latency for each thread 
configuration using the ACLM and plug it back into 
the service latency of the simplistic models. As we 
show in the next section, computing the average 
latency from ACLM for each thread/benchmark 
configuration is cumbersome, but the model behaves 
very close to a detailed model. 

4.3.1 Challenges in Average Latency Model  

Though the average latency models capture the 
memory system behavior well, we highlight the 
challenges in computing the average latency in this 
section. 

  
Figure 12. Average memory latency for various 
memory channels  

Figure 12 shows the average memory latency for 
the three memory channels for different threads. This 
graph illustrates that the average latency can vary 
from about 450 cycles to 1250 cycles, a factor of 
2.6X, for different number of threads and memory 
channels. The average latency is subject to change for 



 

   

each benchmark as well. This is because the average 
memory latency in a system depends on various 
factors such as number of DIMMs, number of banks, 
read-write ratio of the memory requests, scheduling 
algorithms, number of cache misses etc. This is a big 
challenge as the number of such parameters is huge 
and variation in the latency can vary a lot as well. A 
solution would be to use Monte Carlo approach of 
running various benchmarks with different memory 
configurations and using the average latency thus 
computed in simplistic models. This still cannot 
guarantee an accurate performance prediction as any 
change in the platform architecture can affect the 
average memory latency. Hence, for our base case we 
used the idle latency of the system over average 
latency.   

4.4 Impact of memory optimization techniques 

In this subsection we study the impact of simplistic 
models on memory optimization studies:prefetching.  
Prefetching has been well established to reduce 
memory latency in the system [12].  We studied the 
performance of stream prefetchers in the last level 
cache with a stream depth of 5.  

Figure 13 illustrates the IPC difference of all the 
simplistic memory models (SILM, SALM, QILM 
and QALM) with respect to ACLM for dual memory 
channel.  We observe that the idle latency models 
(SILM) under predict the performance by up to 65% 
(and 13% for QILM) for 8 threads, a trend shown 
earlier. This is due to the lack of bandwidth 
constraint in SILM, and inability to capture 
contention overhead in QILM. 

 

  Figure 13. IPC difference of simplistic models 
normalized to ACLM for SpecJbb 

The average latency models (QALM) over predict 
the performance by up to 18% (and 8% for SALM), 
as shown earlier, due to most requests experiencing a 
latency less than the average latency in a real system. 
These results highlight their inability to capture 

actual platform behavior. 

Memory 
Model 

1 
thread 

2 
threads 

4 
threads 

8 
threads 

ACLM 4.0% -3.7% -28.4% -56.9% 

SILM 10.5% 8.8% 5.7% 5.3% 

SALM -3.8% -10.7% -32.9% -57.7% 

QILM 6.19% 0.3% -22.0% -54.1% 

QALM -6.7% -15.6% -38.1% -61.7% 

Table 3. Performance Improvement over threads 
with prefetching 

Most studies focus on relative performance 
improvement rather than absolute numbers. Table 3 
shows the performance improvement for various 
threads using different memory models with 
prefetching (i.e. each model is compared against 
itself without prefetching and the resulting 
performance improvement is shown).  We notice that 
the performance trend for SILM is vastly different 
from ACLM. SILM shows performance benefits of 
5% with prefetching for 8 threads, whereas ACLM 
shows a significant degradation in performance for 
the same case. As explained earlier, this is due to the 
lack of bandwidth constraint in SILM. Similarly, 
QILM shows performance benefits for 2 threads 
whereas ACLM shows benefits only for single thread 
scenario and degradation for others due to the system 
operating in the exponential region of the bandwidth 
latency curve. The average latency models, due to 
their conservative nature, project performance 
degradation even for the single threaded case. These 
results show that one might reach erroneous 
conclusions about relative performance improvement 
using simplistic models. 

5. Related Work 

  There are various studies that highlight the need 
for accurate architectural models to evaluate the 
system performance. Alameldeen and Wood 
identified the performance variability as a major 
challenge for architectural simulation studies for 
multi-threaded workloads [13]. Variability in this 
study refers to the differences between multiple 
estimates of a workload performance. The impact of 
variability on multi-threaded workloads can be 
extended to chip-multiprocessors. Alameldeen et al. 
also have characterized commercial workloads 
dependency on non-determinism [14]. The authors 



 

   

propose a methodology that uses pseudo-random 
perturbations and standard statistical techniques to 
compensate for the non-deterministic effects.  

Desikan et al. highlight the experimental error that 
arises from the use of non-validated simulators in 
computer architecture research in a uni-processor 
environment [7]. This work describes ways to reduce 
the error by considering specific aspects of the 
pipeline. A similar study involving multiprocessors 
was studied in [15] by Gibson et al. The authors have 
compared their simulator with an actual hardware for 
FLASH based systems. This paper studies the source 
and magnitude of error in a range of architectural 
simulators by comparing the simulated execution 
time of several applications to their execution time on 
the actual hardware being modeled. 

Krishnan and Torellas examined experimental 
errors in multiprocessor simulations due to simple 
processor models [16]. They propose a novel direct-
execution framework that allows accurate simulation 
of wide-issue superscalar processors without the need 
for code interpretation. 

Cain et al. discusses the issues of precision and 
accuracy in simulation [17]. Their work highlights 
the operating system effects on both commercial and 
SPECint workloads. They also show that incorrect 
speculative path in a simulation environment is 
unimportant for these benchmarks and show the I/O 
effects on simulation accuracy for uni-processors.  

Simulation errors by selecting particular program 
phases were investigated by Sherwood et al. [18]. 
This study proposes a solution to address this 
problem by selecting basic block distribution that 
represents the entire program’s execution across 
different architectural metrics such as branch miss 
rate, IPC, cache miss rate etc. This approach is based 
upon using program’s profile code structure to 
uniquely identify the different phases of execution in 
the program.  

Oskin et al. introduce a hybrid processor simulator 
that uses statistical models and symbolic execution to 
evaluate design alternatives [19]. This simulation 
methodology allows for quick and accurate contour 
maps to be generated to the performance space 
spanned by design parameters.  

Most of these aforementioned studies focus on the 
core and omit the memory system. Our work 
highlights the need for an accurate modeling of 
memory system in CMPs where the memory plays a 
crucial role in determining the performance. 

6. Conclusion 

In this work, we presented various simplistic 
memory models and highlighted the drawbacks of 
using them. One of the main arguments in favor of 

such models has been that they are sufficient to 
compute the performance difference between various 
configurations, though may not be useful for absolute 
values. Our studies show that these models can be 
wrong both in absolute performance numbers and 
relative performance comparison between different 
configurations.  

Our studies show scenarios wherein the simplistic 
models either over-predict or under-predict the 
system performance with respect to cycle accurate 
model. We also show that using simplistic models 
can lead to wrongful conclusions in terms of 
performance projection as shown with SALM and 
QALM. These simplistic models predicted 
performance degradation with prefetching for single 
thread system whereas the ACLM predicted 
improvement. Under-predicting the performance can 
lead to over designing the system, and will render it 
expensive. Over-predicting the performance can lead 
to system being ineffective due to not being able to 
meet the performance constraints of applications in a 
real world environment. Both these cases are causes 
of concern due to simplistic models.  

Our results show that as the system complexity 
grows more accurate models are needed to evaluate 
the system performance. The ease of use and speed 
offered by the simplistic models are easily offset by 
the inaccurate results produced by them and may not 
serve their purpose. An optimized solution would be 
to have a hybrid memory model wherein the detailed 
model co-exists with the simplistic models and based 
on the platform throughput requirements the 
appropriate memory model is chosen. This kind of 
modeling can be both fast and accurate. 
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