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CHAPTER 1

INTRODUCTION AND MOTIVATION

The modern world is characterized by the integration of computing

power into our lifestyles. The incorporation of “intelligence” into every

device and gadget forms the basis of the ongoing computing revolution.

This new wave is characterized by freeing computing power from a tradi-

tional desktop environment and making it an all pervasive yet invisible

force. It is this demand for “hidden computing power” which has fuelled

the growth of the embedded systems marketplace. Current estimates indi-

cate that there are more than 5 billion embedded processors being used in

the world[1] and that this number is constantly growing with nearly 4 bil-

lion dollars worth of micro controllers being sold annually.

1.1 Characteristics of Embedded Systems

Embedded System design factors in various issues which are not consid-

ered in the design of high performance desktop systems. These include:
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Low Cost : A large number of embedded products including cell

phones, electric shavers, toasters etc. are in markets where the end user

is unwilling to spend a little extra for slightly better performance or a

few extra features. Embedded designers are thus forced to design

systems with optimal price/performance ratios and extract the required

performance at the least cost. The result of this is that the resources

available to the designer are minimal. For example an embedded

system rarely has more than a few MB of memory available.

Low Power: Power consumption is another critical factor in the design

of these systems. This is largely because most of these systems are

battery operated and are expected to remain active for long periods of

time. e.g. pacemakers, sensors, cell phones, PDAs. They are often

deployed in harsh uncontrolled environments.eg digital sensors. The

size of these systems is often a deterrent to incorporating the cooling

systems required. Thus low power is an essential feature.

Predictability: Owing to the large number of real-time applications that

most embedded systems run it is of paramount importance that they

exhibit predictable behavior. This implies that under all possible events

and conditions one can predict the behavior of the system. In these

systems the underlying hardware has to guarantee that any code
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running on it will have the same execution overhead every time it is

run. The software is usually designed for the worst case scenario and

such that the overheads are deterministic.

Responsiveness: Embedded applications, like control system

applications, are event driven and need to respond quickly to these

events. Such systems rely heavily on interrupts and have to designed to

have low interrupt response times as well as low interrupt processing

overheads.[9]

Temporal Accuracy: Distributed embedded applications which manage

remote databases and network devices all require highly precise time

granularities [8]. The resolution and accuracy is expected to be in the

order of microseconds for most of these applications.

1.2 Current Trends in Embedded Systems

The absence of general features and extremely tight design constraints

has led to most embedded applications being extremely specialized and

highly optimized. A typical embedded design procedure goes through sev-

eral steps [3],[10]

• Design Specification

• Hardware/ Software Partitioning
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• Parallel HW/SW development

• System Integration and Testing

Each of these steps relies heavily on the experience of the designer. The

actual development involves several pain staking steps including writing

hand-coded assembly, developing your own specific job scheduler,

resource manager and device drivers, addressing code placement and mem-

ory space issues and customizing hardware modules for particular design

specifications. [3]

All these factors have lead to little scope for errors in the design space.

The inflexibility of the design makes the overhead of correcting errors in

the design or accounting for modifications in the specifications very high.

Additionally it allows for very little reusability of the design or portability.

New versions of the product may require complete redesign or in some

cases considerable rework for incorporating additional functionality. Fur-

ther, studies show that more than fifteen percent of developers report that

between 26 and 50 percent of their projects are never finished. Forty-one

percent report that up to 25 percent of their projects are abandoned. [4]

With more and more players in the embedded devices market a reduced

time-to-market is one of the chief concerns. In order to achieve faster time-

to-market and prevent abandonment of projects embedded developers are
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moving towards designing systems which are more generic and flexible.

Designers now chose more generic hardware, program in higher level lan-

guages and use third party tools for their development.

So what then does the market offer to an embedded system developer? In

terms of hardware it is a set of processors which are reminiscent of the

desktops of a bygone era. e.g. 68000 and Z80 designs [17, 16] or stripped-

down versions of contemporary high-performance desktop processors, e.g.

MIPS, PowerPC and x86 designs. [ 12,14,15]. By definition, these designs

are born of high-performance design goals, not embedded-systems design

goals. Similarly, many hardware structures such as caches and memory-

management units that appear in embedded processors—even in those pro-

cessors that are designed specifically for the embedded market—are based

on high-performance designs, for example the MMUs and caches in the

ARM and Hitachi SH7750 architectures [11,13].Some of the embedded

microprocessors have incorporated embedded design requirements like low

power and reduced die area. e.g. the StrongARM, and Motorolas’s Mcore.

Several processor vendors have also come up with strategies to improve

code density. These strategies are based on compressing 32 bit instructions

to 16 bit opcodes and decompressing it on the fly e.g. ARM Thumb exten-

sion, using variable length instruction length e.g. Infineon Camel [18] or

using fixed 16-bit instructions e.g. Hitachi Super H architecture.
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Embedded software developers also have a growing number of third

party tools at their disposal. These tools help embedded engineers to work

at higher levels of abstractions on designs and specifications, reduce the

number of design errors and reduce development time by allowing reus-

ability. They include:

• Design automation tools for system-on-chip designs and hardware -

software co-design e.g. Synopsys’ System Studio, ARM® Integrator/CP

(TM) development platform

• software modelling tools e.g. Artisan,

• integrated development environments e.g. Code Warrior, Multi 2000,.
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• Operating Systems e.g. vxWorks, embedded Linux

Their growing popularity is reflected by several strong market indicators.

The EDA embedded design market was a 1.5 billion dollar market in the

year 2000. Also a recent study about operating system usage in the embed-

ded industry indicates that “home grown” operating systems are soon to be

a thing of the past. The percentage of developers using their own operating

system is expected to drop by nearly 80% from 25% in the year 2001 to 5%

the following year. This rapid downturn in the roll your own category is the

direct consequence of the growing complexity of embedded applications

and the unwillingness of companies to invest precious man hours on rein-

venting the wheel, i.e. developing their own operating system services

when they can get it from a reliable third party.

1.3 Motivation

Because of the architecture-level focus on high performance computing,

many of the microarchitecture structures in use today—even those used in

architectures aimed specifically at embedded systems—are geared toward

the goals of high-performance computing, not embedded computing. As a

result, there is very little architectural support in today’s embedded proces-

sors for predictable performance or high resolution timing.
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In addition to the previously mentioned legacy mechanisms at the archi-

tecture level that frustrate the design of embedded systems (mechanisms

such as branch prediction, data prediction, hardware-managed caches, out-

of-order issue, etc.), there are numerous legacy mechanisms at the system-

software level that cause similar problems. For instance, the time manage-

ment scheme found in most operating systems uses a periodic clock inter-

rupt to increment an internal counter and thereby update the operating

system’s internal notion of time in the external world. This scheme is sim-

ple and effective and is generally used to handle clock resolutions on the

order of ten milliseconds; the scheme does not scale particularly well

beyond that, though interpolation schemes exist to increase the resolution

further, as discussed later. Nonetheless, to achieve resolutions down to

microsecond accuracy is non-trivial using conventional means, and yet

these are exactly the types of resolutions necessary for high-performance

embedded systems [19,20].

Real-time literature is rich with innovative scheduling schemes targeted

towards achieving the timing requirements of the workload in an optimal

fashion.[21,22] A larger number of these schemes including EDF are rarely

implemented in commercial real time operating systems owing to the sub-

stantial and variable software overhead.
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Our solution to the problem is to support embedded systems by looking

at architectural mechanisms and combined hardware/software schemes that

address the goals of embedded systems. In particular, we present an investi-

gation of the following instances of hardware support for embedded operat-

ing systems:

special CAM-based hardware1 to help turn scheduling tasks that typically

run in O(n) time into tasks that run in O(1) time; and

a medium-resolution internal clock (500 µsec.) that provides both good

accuracy and low overhead, especially if coupled with the CAM hardware.

We find that, by using these mechanisms, one can achieve better timing

accuracy and more predictable performance without requiring more CPU

overhead or energy. In fact, the scheme simultaneously reduces both CPU

overhead and energy consumption. Our experimental set-up is a highly

accurate software model of the Motorola MCORE processor [14]; our sim-

ulator runs the same unmodified application and operating system binaries

as our test hardware and models energy consumption of the CPU as well

[2]. The embedded operating system under study is µC/OS-II, a popular

public-domain, open-source RTOS [23]. In our benchmark tests of the

CCAM hardware, we saw the maximum jitter in the system decrease, we

1. “CAM” stands for content-addressable memory, another term for fully associative cache. The hardware data
structure is used to search a small set of objects in parallel for a matching value or least/greatest value; it
essentially behaves like a small, fast hardware database.
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were able to increase the number of tasks in the system by a factor of two

beyond that achievable by software means alone, and on an average we saw

a factor-of-two reduction in energy consumed.

The gains come at a price, though detailed discussion lies beyond the

scope of this paper. The cost is an increase in die size that is significant

when compared to the processor core alone but less so when compared to

the size of a typical embedded chip that includes RAM, ROM, and various

peripheral devices. The CAM structure and associated timing hardware

account for roughly 2000 register-bit equivalents (RBEs, a process-inde-

pendent unit of die-area measurement [27]) for a 64-task CAM. Given that

a 32x32 register file requires roughly 1000 RBEs, this can double the size

of a small cacheless embedded core such as MCORE. However, once

peripherals and memory structures are added, the overhead is less dramatic;

the 64-task CAM structures represent more moderate 5% increases in the

size of a typical embedded processor, such as the MCORE-based

MCM2001 [15], that includes external RAM, ROM, and peripheral I/O

devices.

1.3.1 Support for Process, Time and Event Management

There are numerous facilities one could investigate to help the perfor-

mance of embedded systems. We chose to attack the facility that is com-



11

mon to all embedded operating systems and represents a variable overhead

in each one (i.e. its overhead scales with the number of tasks or processes

in the system). This facility is the management of processes and events, or

scheduling.

The design of the mechanism that we investigate is based on the needs of

the operating system, which must perform the following functions:

determine, from a set of tasks, which has the highest priority or nearest

deadline;

determine which in a set of tasks need to be updated when a semaphore

or lock is released;

provide to tasks a mechanism to suspend themselves for a specified

period of time or until a specified event occurs.

Scheduling is intrinsically an O(log n) or O(n) operation, as it involves

ordering and searching a set of n tasks, based on priority, earliest deadline,

etc. Scheduling represents an overhead that is variable, depending on the

size of the task set, and is thus a good target for optimization. The schedul-

ing process as implemented in most embedded operating systems is actu-

ally O(n) because the task sets are typically small (rarely more than a few

dozen tasks) and maintained in short lists or arrays—not binary trees. The

constants involved in maintaining a balanced binary tree would tend to
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make the O(log n) implementation actually take more time than the simpler

O(n) linked-list implementation.

We note that the embedded operating system’s requirements (e.g. search

a small set of items for a matching value or a greatest/least value) map

extremely well to a CAM structure. By implementing these functions in

hardware, one can take advantage of hardware's ability to perform multiple

comparisons in parallel and so turn this O(n) operation into an O(1) opera-

tion; i.e. the procedure takes the same amount of time no matter how large

the task set, up to the size of the CAM structure.

1.4 Overview

This report is based on the following lines. Chapter 2 will provide a back-

ground on the working of real-time operating functions. Chapter 3 will be

an overview of the CCAM- a description of its interface, its operation and

design. Chapter 4 will describe the experimental setup while in Chapter 5

the results of the experiments will be presented. Chapter 6 will provide a

summary of the work and give an insight into future work.
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CHAPTER 2

BACKGROUND: REAL-TIME OPERATING SYSTEMS

2.1 Real-Time Systems

Donald Gilles’ definition of a real-time system[28] is as follows:

“A real-time system is one in which the correctness of the computations

not only depends upon the logical correctness of the computation but also

upon the time at which the result is produced. If the timing constraints of

the system are not met, system failure is said to have occurred.”

This implies not just that real-time systems have to respond to external

stimuli or service tasks within a specified timberland but that, irrespective

of the system load, this action has to be predictable. Additionally it is also

desirable that real-time systems achieve their functional correctness and

timeliness while being highly utilized.

A good example of a real-time system is robot arm working on a con-

veyor belt. The robot arm has to pick a certain part off the belt. In this case

the robot arm will not be able to pick up the part if it attempts to do so

either late or early. Another more complex example is an air traffic control-

lers. These systems are required to monitor the movement of aircraft and

changes in the weather conditions in their coverage area and based on this
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information they have to be able to calculate the trajectory of aircraft in the

system, schedule its landing and provide all this information to a human

controller. These systems have to perform a wide variety tasks including

data and image processing, updating data bases and intensive compu-

tion.Each of these tasks have different response times e.g. weather updates

may take place every 2 seconds while display refreshes have to occur every

tenth of a second. Additionally the system has a variety of workloads some

of which are periodic, like weather updates or display refreshes and others

which are aperiodic e.g. aircraft entry into airspace. The system response to

each of these tasks has a well defined upper bound which has to be

achieved irrespective of the system load i.e. changing weather conditions or

number of aircraft.

2.1.1 Real-Time Terminology

There are several terms which are commonly used in discussion of real-

time systems. This section is an overview of some of these terms.

Job : This refers to a unit of work which can be scheduled or executed

by the system. For example a function which reads the input off a

memory port can be considered a job.

Task : This is a collection of related jobs which collectively achieve a

single function. For example a collection of jobs which read data from
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a memory location, perform certain computations and write the result

to another location can all be considered to constitute a task. A task is

said to be periodic if it has to be run at regular intervals. An aperiodic

or sporadic task is run when a certain infrequent event occurs.

Release Time : This is the earliest time at which a task becomes

available for execution. A job can be executed any time at or after its

release time. If all the jobs in a system are available for execution right

at the outset than it is assumed that no job has a release time. For

example a periodic job may be released every 100 ms for execution.

The release times for this job is 100 ms, 200 ms, 300 ms and so on and

so forth.

Deadline : This refers to the instant of time within which the job has to

complete execution. If the periodic job mentioned above has to

complete prior to the release of the next job than its deadlines are 200

ms, 300 ms, 400 ms etc.

Response Time : This refers to the time interval between the release

time of a task and its completion time i.e. the instant it completes

execution. For example if a job is released at 10 ms and completes

execution at 25 ms, than the response time is 15 ms.
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Tardiness : This refers to how late a task completes with respect to its

deadline. A task is said to have a tardiness of zero if it completes at or

before its deadline while a task which completes after its deadline has a

tardiness equal to the difference between its completion time and its

deadline.

2.1.2 Classification of real-time systems

Real-time systems are classified based on the strictness of their timing

requirements or the criticality of their deadlines. There are two categories

Hard Real-Time Systems : A real-time system is said to be a hard real-

time system when it has extremely tight timing constraints and strict

deadlines. These systems execute critical tasks whose delayed

execution or non execution would have catastrophic consequences.

Hard real-time tasks are expected to have a tardiness of zero and exhibit

deterministic temporal behaviour.This implies that they are expected to

complete at or before their deadlines and that their execution is

absolutely guaranteed. Typical hard real-time applications include anti-

lock braking systems, pace makers and air flight controllers.

Soft Real-Time Systems : On the other hand soft real-time systems are

more concerned with best-effort services. [6,7] These systems execute

less critical tasks and can tolerate missed deadlines. Unlike in a hard



17

real-time system where results from late tasks have no usefulness, tasks

in a soft real-time system continue to be useful even if late. The

usefulness of their results gradually tapers off with the tardiness of the

task rather than dropping abruptly to zero at the instant after the

deadline. In general the performance of these systems is described in

probabilistic terms i.e. 95% of the time the data arrives on-time.

Typical examples include multimedia applications like MPEG decoders

and encoder, telecommunications applications like internet telephony

and some sorts of data acquisition applications.

2.1.3 Real-time system requirements

A real-time system has several requirements to fulfill including:[28, 25]:

Timeliness: There is a certain upper bound within which the system is

expected to finish certain tasks. The time within which the task has to

be completed is termed the deadline. The criticality of the deadline

depends on the function of the system.

Simultaneity or simultaneous processing: The system should be able

to process events that occur simultaneously and still meet all deadlines.

This implies that a real-time system should be inherently parallel in

nature. This can be achieved by making the system either a multi-

processor system or by using a multi-tasking model.A distributed real-



18

time system or a heavily interrupt driven system are cases where

simultaneous events occur on a regular basis.

Predictability: One common goal in real-time system design is

predictability. Predictability implies that it can be demonstrated that the

system fulfills its requirements under a variety of situations. This

implies that predictability is subject to the assumptions made while

determining it[29].

Predictability of simple static real-time systems is much easier to

determine and design for. This is because the number of tasks in these

systems are known and their worst case execution times are available

up front. In addition the system consist of largely either hard real-time

or soft real-time applications. The predictability of these systems then

can be expressed using a single number depending on which

component i.e. interrupt latency or fixed periodic task behavior, is the

dominant factor.

Predictability of a complex real-time system on the other hand is more

difficult to design for. This is because these system have a variety of

tasks with different levels of criticality. The environment in which these

systems function is also non-deterministic in nature. In general

predictability for these systems can be viewed to have two components.
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The first which is a more macroscopic is concerned with overall system

performance. This component requires demonstration that critical tasks

performance is 100% guaranteed and that non-critical tasks achieve a

performance which is close to the maximum actual performance. The

other is with respect to individual tasks or task groups in the system.

The second more microscopic look at the system considers the specific

periodicity timing and deadline requirements of the individual tasks.

Dependability: As real-time systems are often deployed on extremely

critical missions, they have to be dependable. Dependability is defined

as “the trustworthiness of a computing system which allows reliance to

be justifiably placed on the service it delivers.” [30]. A dependable

system has the following attributes

• Availability This is the extent to which a system is ready for use

• Reliability This is a measure of the extent to which the system’s actions

and results can be trusted.

• Safety This is the extent to which the system does not harm the

surrounding environment itself.

• Security This is the extent to which the system is safe from unauthorized

access or tampering.
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A dependable system has to provide for the following [5]

• Fault Prevention: Prevention of fault occurrence,

• Fault Tolerance: Correct functioning in the event of faults

• Fault Removal: Elimination of current faults

• Fault Prevention: Forecast future faults and prepare for their prevention

or effective handling.

To make a real-time system dependable it would require providing for

exception handling, incorporating fault tolerant features into the

scheduler and designing for correct functioning in the event of partial

hardware failure.

2.2 Real-Time Operating Systems

The Posix Standard 1003.1 defines real-time in operating systems as:

"Real-time in operating systems: the ability of the operating system to

provide a required level of service in a bounded response time."

This implies that a real-time operating system aka the RTOS is expected

to provide basic operating system functionality like scheduling, timer ser-

vices, synchronization primitives, inter-process communication mecha-

nisms among other things in a deterministic fashion. This implies that the

overhead of the operating system should be consistent for all invocations.
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RTOSes are expected to have a small size as they are used on systems with

scarce memory resources. Typical RTOS memory footprints are on the

order of several 100 kilobytes. As the subset of operating system services

used is heavily application dependent these systems have to be modular,

scalable and completely configurable.Besides the basic real-time kernel

services commercial RTOSes offer a variety of optional services including

support for networking, file system I/O, multiprocessor systems, graphics

etc. The extent of the extensibility of modern day RTOS’ can be gauged by

looking at the flexibility offered by the commercial RTOS, vxWorks.

vxWorks offers nearly 100 different options to the real-time programmer

which can be used to generate a variety of configurations. [25]

In this chapter we examine some of the basic real-time kernel services,

design choices and implementations.

2.2.1 Scheduling

Scheduling is the mechanism which determines which job has to be exe-

cuted from the pool of jobs in the system. The logistics behind the decision

making mechanism is based on the scheduling algorithm implemented.

2.2.1.1Terminology

Typical scheduling algorithms used in RTOSes are termed correct

because they generate valid schedules
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Valid Schedule: Jane Liu [25]says that a valid schedule has to guarantee

that all tasks are scheduled only after or when they are released and

such that all resource and precedence constraints are met.

Feasible Schedule : A valid schedule in which every task meets its

deadlines.

Optimal Scheduler : A scheduler which always generates a feasible

schedule if the given set of jobs can have one.

Preemption : This refers to the ability of the scheduler to halt execution

of a task in favour of another task with higher priority or criticality.

Permitting preemption allows the scheduler to service sporadic tasks

and higher priority tasks which are released during the execution of the

current task. A system where a task can continue executing without

being ever switched out is a nonpreemptive one.

Schedulable Utilization : This represents the upper bound of the

utilization of the periodic tasks in the system for which a particular

algorithm can generate a feasible schedule. Clearly the higher the

schedulable utilization the better the algorithm is.

Ready Queue: It is the set of all tasks in the system which have been

released are available for execution.
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Pause Queue /Timeout Queue/ Delay Queue: It is the set of tasks

which are not available to run till the passage of certain time i.e. the

delay of the task

2.2.1.2Types of Schedulers

Scheduling is one of the most heavily researched areas in the real-time

world. The result is a plethora of schedulers which tackle a wide range of

application types and offer varying services and utilizations. The three

most commonly used approaches to scheduling are

Clock-driven : This is an off-line scheduling mechanism common in

systems where the nature of the workload i.e. execution times, relative

deadlines etc. are known exactly at the point of system design. Jobs in sys-

tems employing a clock-driven scheduler are executed in a predetermined

manner. The run time overhead of scheduling in these systems is negligi-

ble.

Weighted round robin: This is the commonly used approach in systems

with time-shared applications. Tasks which are ready to run are placed in a

FIFO queue. Starting from the head of the queue each task is executed in

turn for a single time-slice. If the job does not complete at the end of its

time slice it is preempted and placed at the end of the queue.
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This technique is used in networking applications where messages have

to be sent or received from several ports. The advantage of this scheme is

that the overhead of inserting a task on the queue or removing it off the

queue is constant. The downside is that the response time of a task is pro-

portionate to both number of tasks in the queue and the number of time

slices it takes to complete.

Priority driven approaches : Schedulers of this type base their schedu-

ing decision based on some sort of priority. In these systems each task is

associated with a priority. This priority is based on either off-line computa-

tions or on-line run-time calculations. Priority schedulers always schedule

the task with the highest priority.

Thus there are two types of priority driven schedulers

Fixed or Static Priority Schedulers: The priority of tasks in these sys-

tems is fixed at the outset using standard off-line methods like Rate-Mono-

tonic Analysis [21] and Deadline -monotonic analysis. RMA assigns tasks

priorities based on their periods. The shorter the period, the higher the pri-

ority of the task. These priorities are fixed for the lifetime of the system.
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The characteristics of a fixed-priority scheduler are:

• Good predictability: Systems using a fixed priority scheduler can be

validated easily using static off-line methods.Additionally in an

overloaded system or in the event of job over runs one can easily predict

that higher priority jobs will be serviced and the lower priority jobs will

miss their deadlines.

• Schedulable Utilization: It can be mathematically proven that the

schedulable utilization of a fixed-priority scheduler is not very high. The

schedulable utilization of RMA degrades exponentially from the best

case of 82% for a system with two tasks to nearly 69% to a system with

10 or more tasks.

• Simplicity: As tasks are associated with the same priority level through

out their life this makes for easier system design, implementation and

validation.

Fixed priority schedulers are the common choice in most standard real-

time systems. Real-time systems support anywhere from 64 different prior-

ity levels to 256 different priority levels.Some operating systems allow

multiple tasks to share the same priority level while others allow only one

task to be at a certain priority level.
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In order to support fixed priority scheduling in a system with unique pri-

ority levels one of the approaches is to maintain a ready queue which is

sorted based on priority. Selecting the next task to run involves just looking

at the first element in the queue and hence has a constant low overhead.

Inserting tasks onto the list has a variable overhead and is dependent on the

number of priority levels and tasks in the system. Another approach would

be to maintain an unsorted ready queue. Every scheduling instance the

scheduler traverses the entire queue and determines which task to run in the

next interval. This mechanism is common in general-purpose operating

systems like Linux where the operating system traverses the entire queue,

calculates the current goodness of the task and uses this value when it

makes it selection. The scheduling operation in this case has a constant

overhead. But this determinism is achieved at very high costs.

All the mechanisms described above have overheads which scale with the

number of priority levels. This is not desirable in an embedded system

where it is desired that the RTOS overhead is not just low but also does

deterministic and ideally independent on the workload i.e. its nature, size

etc.

One of the methods used to reduce the overhead and still achieve deter-

minism is to employ bit vectors. This mechanism is employed in µC/OS.
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This is achieved by first partitioning the tasks into groups. This grouping is

based on the priority levels of the individual tasks. The ready list of µC/OS

is shown in Figure 2.1. For e.g. µC/OS has 64 tasks which are partitioned

into 8 unique groups where tasks in group 1 will have a higher priority than

those in group 2 but a lower priority than those in group 0. Each group is

associated with a bit vector which is set when any task in the group is ready
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Fig. 2.1. Ready List in µC/OS. The figure shows the ready list in µC/OS which is
divided into a two level data structure consisting of a ready group and the ready table.
Individual tasks have an entry in the ready table and a group of tasks have a single bit
entry in the ready group.
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to run. In µC/OS a single byte can be used to hold the group bit vectors.

Each group in turn is associated with a byte of bit vectors which are associ-

ated with individual group members. Entering a task on the ready list or the

two level bit vector structure involves setting the bit associated with the

task's group and the bit associated with the task in its groups bit vector

table. Scheduling in µC/OS essentially involves using this two variable

ready list to determine which task to run. It does this by performing a 2 step

inverse lookup operation. Thus the overhead of inserting or removing a

task from the ready list or selecting the next task to run is constant. But the

trade-off is the increased kernel size required for maintaining an inverse

lookup table of 256 entries.This particular implementation of the selection

procedure is not very scalable as the size of the inverse lookup table

increases exponentially with the number of priority levels in the system.

Alternate implementations with bit vectors do away with the bulky

inverse lookup table. This is done by associating a unique bit vector to

every priority level in the system and performing a number of comparisons

in order to determine the highest priority level job available. The number of

such comparisons depends on the number of priority levels in the system,

the size of the data in the system and the actual profile of tasks which are

available at a given instant. Though there is a factor of variability in sched-
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uling the worst and best execution times are not so vastly different to be an

issue as in the earlier cases.

Dynamic Priority Scheduler: These schedulers assign different priori-

ties to different jobs in a task. The priority of a task varies dynamically with

respect to the other tasks in the system.Some dynamic priority schedulers

include Earliest Deadline First - EDF and Least Slack Time First - LST.

EDF assigns priorities to jobs based on their absolute deadlines. Once a

job is placed on the ready queue its order with respect to the other tasks on

the queue is fixed. Thus the priority of a task can vary with each run mak-

ing it a dynamic scheduler.

Some characteristics of EDF schedulers are

• Schedulable Utilization The EDF algorithm has a 100% schedulable

utilization. This makes it an optimal algorithm for all loads.

• Predictability The disadvantage of this algorithm is that it produces

unpredictable schedules in overloaded scenarios. Late jobs which have

missed their deadlines have higher priority than later jobs which have

not missed their deadlines in turn to be late. This implies that

mechanisms to handle system overload and job overruns have to be

implemented.
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• Validation This system cannot be validated due its unpredicatability

using known off-line methods. It requires dynamic validation which

may not be feasible.

Echidna, a commercial RTOS, implements a non preemptive version of

the EDF algorithm. The ready queue in Echidna comprises of tasks which

are sorted on the basis of their deadline. The task at the top of the queue has

the earliest deadline and hence the highest priority. Selecting a task to run

has a constant overhead but inserting a task onto the queue is an O(n) oper-

ation. For preemptive system the overhead of placing tasks on the queue

would be very significant.

An alternate way to implement this would be to maintain FIFO queues of

threads with the same relative deadline [25]. The tasks in each queue are

ordered on the basis of their absolute deadlines. Thus task selection

involves just searching the heads of each of these queues. The overhead of

this operation is dependent on the number of relative deadlines in the sys-

tem. The complexity can be decreased from O(n) to O(log n) by using a

priority queue for the first task of each FIFO queue. Inserting a task would

involves adding the task at the end of the queue associated with its relative

deadline. The complexity of this operation is 1 when the FIFO queue is

non-empty and is O(n) when the queue is empty.[DIAGRAM]
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As can be seen EDF schedulers are not easily implemented in software

with low overheads due to their very dynamic property. This and their

unpredictable behavior have not made them popular choices in the real-

time operating system world.

2.2.2 Time Services

The concept of time is central to a real-time operating system. Both task

level and system level decisions are made on the basis of time. Time man-

agement can be said to have two aspects. The first aspect is concerned with

the actual representation of the current time, its update and retrieval while

the second aspect is concerned with the usage of this ‘time’ itself or its pas-

sage to make scheduling decisions, provide timestamps, exact delays, time-

outs and periodic signals.

To keep the operating system apprised of the current time in the external

world, typical systems use a high priority interrupt driven by an accurate

clock at 100-1000 times per second. Most operating systems maintain a

counter which gets updated every timer interrupt. The value of this counter,

the timer tick counter, represents the number of timer ticks or interrupts

that the system has seen since startup. Operating systems like µC/OS use

this counter as the system clock. These operating systems offer a current-

time function that returns the time as the number of ticks since the system
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started. The granularity of this measurement is dependent on the frequency

of the timer interrupt, and the user has to perform the conversion from ticks

to the desired time units.

Other systems like Linux maintain the system time relative to the Epoch

Jan. 1 1970 in terms of seconds and microseconds as opposed to timer

ticks. In these cases, updates to the system clock involves adding a timer

tick interval in seconds and microseconds to the system clock and handling

possible microsecond overflows. As the overhead of this update is far

greater than the simple counter increment approach, the timer interrupt

handler is treated as a long interrupt. A typical ‘long interrupt handler’ in

Linux splits the workload into work that needs to be done immediately and

work that can be done a little later. The interrupt handler handles only the

former and schedules the latter in what is termed as the bottom half of the

interrupt. Thus, the timer interrupt handler in Linux only updates the timer

tick counter. The system clock update takes place in the bottom half of the

interrupt. To handle possible infrequent updates the system clock, Linux

maintains an additional counter, the wall clock tick counter, which keeps

track of the last update to the system clock in terms of timer ticks [26].

When asked for the current-time, Linux returns the value of the software

system clock after accounting for the time that has elapsed since it was last

updated. The elapsed time is comprised of two components. The first com-
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ponent takes care of possible infrequent updates to the system clock. This

is done by accounting for differences between the timer tick counter and

the wall clock tick counter. The second component accounts for the time

since the last timer interrupt. Computing this involves using counters that

are updated independently by the hardware, like the timer modules count-

down register. The timer module’s countdown register value gives the

amount of time remaining until the next timer interrupt. The operating sys-

tem converts this value appropriately to compute the time elapsed since the

last interrupt. In architectures with on-chip counters, like the Time Stamp

Counter in Intel’s microprocessors, Linux estimates the time since the last

interrupt occurred by using the difference between the TSCs current value

and its value at the last interrupt.

There are problems with each of these schemes. The simple interrupt-

driven scheme is not scalable, as more frequent interrupts would simply

increase the operating system's overhead and increase the chance that a

high-priority clock interrupt would delay the execution of an otherwise

high-priority task. Using the TSC counter or the timer counter registers in

order to achieve finer granularities complicates the process of reading the

system clock. The complexity of the operation can result in a substantial

overhead that can effect the accuracy of the readings. This is the case when

the overhead involved in obtaining the higher resolution measurement is of
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the same order as the precision of the measurement itself. On the MCORE

processor the Linux like scheme takes approximately 8 microseconds to

complete assuming that there are no overheads involved in accessing the

timer counter registers. Thus in the best case it is within 6% of the preci-

sion of the timer measurement. The accuracy of a time measurement that

uses interpolation techniques is considered to be less accurate than one

which is based exclusively on interrupt based clocks [Kailas2000]. In addi-

tion, this process of interpolation is extremely platform dependent and is

not easily portable across systems.

Often a task in a real-time system has to pause its execution for a finite

amount of time. This time is termed the timeout or delay.This delay value is

typically expressed in the terms of system clock units. All operating sys-

tems provide facilities for tasks to place themselves on the timeout queue

or delay queue or pause queue. Every timer interrupt, besides updating the

system clock, the RTOS updates the state of tasks on this timeout queue. If

the timeout value associated with the task has expired it is released and

placed on the ready queue. By associating the timer interrupt with the time-

out queue update, the granularity of time delays automatically gets

restricted to that of the system clock. Typical embedded applications like

those in networking and controls require granularities far finer than that of
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the system clock timer interrupt which is typically 10 ms. Finer resolutions

would imply an increase in the RTOS overhead.

One of the solutions to circumvent this problem has been to use hardware

based timers to schedule individual tasks which require timing resolutions

higher than those provided by the system clock.

Timer implementation is a POSIX 1004.3 standard.Several OSes offer

this facility including Real - Time MACH [31], real-time extensions to Win

NT, vxWorks[25] etc. This facility includes providing the task the capabil-

ity to create individual timers. Each of these timers is associated with a

period or one-shot timeout and an expiration action. Upon the creation of a

timer the OS would program one of the multiple clocks (hardware counters

which countdown and release an interrupt when they hit zero) based on the

information provided by the task. When the timer throws an interrupt the

associated interrupt handler takes the appropriate expiration action which

normally involves releasing a task. Some RTOSes extend this single user

task - single timer concept by associating multiple tasks with a timer. The

timer is associated with a software based queue of tasks sorted on the basis

of expiration time. This timer timeout queue is rather similar to the system

level timeout queue. This timer mechanism is efficient when the number of

tasks using it is low and the number of interrupts do not completely over-

whelm the system.
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One of the chief issues associated with any form of timeout queue is the

overhead of maintaining it. Typically the timeout queue is maintained as

some form of linked list structure. RTOSes like Echidna, NOS and real-

time versions of Linux maintain the timeout queue as a queue of tasks

sorted on the basis of their timeouts. The timeout of any task on the queue

is relative to that of the task immediately before it on the queue. Insertion

onto the queue has an overhead of O(n) while update is O(1) because only

the timeout of the first element has to be updated. The complexity of

removing tasks from the queue i.e. releasing a task after its timeout has

expired is also an O(1) operation. But at an given update event, more than

one task may become ready to run. Thus the total overhead associated with

releasing tasks from the timeout queue is dependent on the number of tasks

in the system. This chief advantage of this method is the low overhead

associated with the update. The chief disadvantage of this scheme is the

non-deterministic overhead.

µC/OS tackles the problem of non-determinism associated with inserting

a task on the timeout queue by eliminating the need to perform this opera-

tion completely. All the tasks in the system have an entry in the timeout

queue by default but only some tasks have delays associated with them.

Timeout queue updates require traversal of the entire queue and updating
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the status of each individual entry. Though this operation has a high over-

head, it is constant in a system with a fixed number of tasks.

2.2.3 Inter process Communication and Synchronization

Most operating systems provide a variety of facilities for two processes to

exchange data, control information and synchronize this information

exchange in order to ensure that it occurs at the right time and such that the

two processes do not interfere with each other. Typical operating system

methods for exchanging information include shared memory and message

queues. Typical OS synchronization primitives include semaphores,

mutexes and monitors.

As virtual memory is not a common feature among RTOSes, most uni-

processor RTOSes do not support shared memory. Shared memory in these

systems is normally implemented in these systems as global data. In order

to synchronize access to this global data synchronization primitives like

semaphores and mutexes can be used. Sometimes the need for these syn-

chronization mechanisms is eliminated by intelligently scheduling the pro-

cesses accessing this data.

Message queues provide a means for one or many threads to communi-

cate with some other thread or threads. Message queues can be imple-

mented as FIFO or LIFO queues when all messages have the same priority
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or as a list of messages sorted on the basis of priority. A mailbox is a mes-

sage queue which can hold only one message at a given point.

Semaphores and mutexes are common synchronization primitives imple-

mented in RTOSes. Each semaphore is associated with a count which keeps

track of the number of tasks which can access some shared data at a given

point.

The following are operations common across all IPC mechanisms.

When a task makes a request for a semaphore or a message on the mes-

sage queue one of two things can happen. If the resource is available the

task is granted its request right away. If it is not available the operating sys-

tem places the task on the blocked list of tasks waiting for the particular

resource.

Similarly when a task posts a semaphore or a message there are two pos-

sible events that can occur. If there is no task waiting for the resource than

the operating system notes that an additional resource has been made avail-

able. On the other hand if there are tasks waiting on that resource than the

OS selects a task from the list of waiting tasks to release. This selection

policy can be either based on the order in which requests for the resource

were made i.e. FIFO or based on priority i.e. the task with the highest prior-

ity is released every time or in a random fashion.
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µC/OS offers various inter-process communication mechanisms includ-

ing semaphores, message queues etc. Each mechanism is classified as a

type of event and is associated with a data structure called the event block.

Event blocks contain information like the nature of the event (semaphore

etc.), an event counter, and a list of tasks blocked on the event (Blocked

task list). This blocked list is similar to the RTOS’ ready list. Blocking a

task on a particular event involves updating the event’s blocked list as well

as removing it from the RTOS’ ready list. Determining which task needs to

be released upon the posting of an event involves a procedure similar to

that of determining which task needs to be run. The overheads of these

operations are constant. The disadvantage of this implementation is that

each event is associated with its own blocked list and using an IPC heavy

system will require high memory overheads.

Echidna on the other hand provides a synchronization primitive similar to

the semaphore called the syncaphore. The blocked list of a syncaphore is a

FIFO queue. Inserting a task on the queue has a complexity of O(n) in the

current implementation as the OS traverses the entire queue of blocked

tasks and adds the new entry to the end of queue. This can be optimized to

an O(1) operation by maintaining an additional pointer to the tail of the

queue. The task which is released when a syncaphore is posted is always

the first task in the blocked queue. Task selection is thus a O(1) operation.
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In Echidna the task blocks are moved between the various queues. Thus

using many syncaphores does not increase the memory overhead of the

operating system.

2.3 Related Work

A software based clock in general is susceptible to variations in the inter-

rupt latency of the processor and the time to execute the timer interrupt

handler. Various suggestions have been made to provide more accurate tim-

ing [31,32,20]. In particular, Savage [31] suggests using additional high

resolution hardware timers. Each timer is associated with a sorted timeout

queue onto which a task can add itself. The scheduler of the main operating

system (Mach) is multiplexed with the interrupt handler of these hardware

timers. The resolution in this scheme is achieved by increasing the interrupt

overhead of the system. Kailas [20] focuses on building an on-chip time

management unit that provides accurate and precise time readings. In their

scheme the system time is updated independently of the software. The

scheme’s focus is to provide an accurate time stamp for events. Adomat

[31] transfers the entire RTOS functionality into hardware in an attempt to

get better determinism and performance. They suggest building a real time

coprocessor unit to achieve this. The coprocessor is capable of making
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scheduling decisions, etc. This does not translate into flexibility as far as

the RTOS developer goes.

The off chip hardware unit is well suited for multiprocessing real time

environments. Lindh [34] discusses incorporating the real time coprocessor

into a multiprocessor environment. Klevin [35] also discusses using it for

bus monitoring in a multi processor unit. Furuns [33] suggests hardware

means to support asynchronous interprocess communication in a message

intense system.
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CHAPTER 3

CCAM: DESCRIPTION

The CCAM is a hardware data structure that maintains the state of all the

tasks running on the system. Figure 1 shows the layout of the CCAM Task

Entry Table. We use a 64 entry CCAM table for our experiments. Each

entry is 72 bits wide and has 6 fields.

3.1 CCAM Structure

Each task in the system is associated with an entry in the CCAM. The

following are the fields in the CCAM.

ID : This field gives the address of the task entry in the CCAM table. It

serves as the unique identifier for a task and is the value which the hard-

ware uses to tag the result of any requested search.

Status : This 8 bit entry indicates the status of the associated task entry.

The structure of the status entry is given in Fig 3.1. All the fields are single

bit wide except for the Run Status field which is 3 bits wide.
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Valid: This bit is used to indicate if the entry in the CCAM table has

valid data or not.

Suspend : Setting this bit indicates that the task has been suspended.

Periodic : When this bit is set it indicates that the task is periodic in

nature. The CCAM provides support for periodic tasks whose deadlines are

the release times for the next iteration of the task.

deadline /
periodID Status Event ID DelayT

V S CI XR - 3 bits

V - Valid

S - Suspend

P - Periodic Task

CI - Cannot Interrupt

X - Unused

Task Status Register Bit Descriptors

P

R - Run /Scheduling Status

Status Register

Task Entry Table

8 bits 8 bits 8 bits 16 bits 16 bits 16 bits

Fig. 3.1. CCAM Structure. The structure of the CCAM’s Task Entry Table is shown.
Each individual task entry comprises of several fields which contain pertinent
information for a task. The status, event id and priority are all 8 bit fields while the
remaining fields are all 16 bits long.

Priority

7 6 5 4 3 0

DelayE
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Cannot Interrupt : Tasks with this bit set cannot generate CCAM inter-

rupts when they become available to run.

Pause

Ready

Late
DelayT = 0/

DelayT = Deadline
DelayT = 0/

Task delayed/

DelayT = Release Time

Task blocks on Event/

Set Event ID

Block Timeout

Block

Task blocks on Event

with a Timeout/

DelayE = Timeout,

Event Occurs

Set EventID

DelayE = 0

Fig. 3.2. State Machine representation of Run Status of a Task. The diagram shows
how the run status of a task changes in the course of its execution. Each task is
associated with a release time and a deadline. In the case of a periodic task the deadline
is the period of the task. DelayT, DelayE are the two types of delays possible for tasks.
They are updated every timer tick. The former is mapped onto the Delay - Timeout field
and the latter to the Delay - Event field.

Timeout on Event

DelayT = 0/

If Periodic
DelayT = Deadline

Released

If Periodic
DelayT = Deadline

DelayT = 0/
If Periodic

DelayT = Deadline

DelayT = 0/
If Periodic

DelayT = Deadline
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Run Status : This 3 bit field is used to represent the scheduling status of

the task.Tasks have a time related or event related status. Tasks may have

any of the following time related status,

• Pause i.e. waiting to be released,

• Ready i.e. available for execution or

• Late i.e. has missed its deadline.

In addition a task may have event related status like

• Blocked or waiting on an event,

• Blocked with a timeout i.e. waiting on an event for a finite amount of

time,

• Released i.e. becoming available to run after the event is posted and

• Released after timing out on an event.

Fig3.2 shows how the run status of the task changes during the course

of its execution.

These states are equivalent to the various queues maintained by the OS to

help manage tasks. For example a task which is available for execution is

associated with a ready status which is the same as being placed on a ready

queue. Tasks which are waiting on an event are placed on the blocked

queue associated with the particular event. The various event queues are
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integrated on the CCAM. All blocked tasks are given the status of blocked

or blocked with a timeout. The event ID is used to help determine which

event queue a task is on.

Priority : This 8-bit field holds the priority of a task as per operating sys-

tem convention. This value is used to by the Get Task- Priority Sort instruc-

tion and also to break ties when an event on which two or more tasks are

waiting on is released.

Event ID : This field holds the ID of the event on which a task is wait-

ing. It helps distinguish between all blocked tasks in the system.

Table 1: CCAM Module Address Map

Address Name Use
Access
Type

100010e0 ID Register Task ID on which operation needs to be per-
formed; Holds results of a CCAM Instruction

Read /
Write

100010e4 Instruction Regis-
ter

CCAM Instruction and required data are writ-
ten into it

Write

100010e8 CCAM Tick Data
Register

Duration of single tick in microseconds Write

100010ea CCAM Tick Reg-
ister

Number of system ticks which have occurred
since
initialization

Read/Write

100010ee Control Register Used for configuring the CCAM operation
mode

Read/Write
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Delay Fields : There are totally three 16-bit fields in a CCAM entry

which are dedicated to handling time related constraints.

• DelayT This 16 bit field holds either an unsigned or signed value

depending on the CCAM configuration. Negative delay values indicate

that the timeout value has expired. The delay values are updated every

time the timeout queue is updated. In the case of preemptive systems

this is every timer tick while for a non preemptive systems this would be

when a task has relinquished the processor and a timeout queue update

needs to be performed or every timer tick if the system is idling.

The interpretation of the value in this field depends on the run status of

the task. When the task in paused the value in this field represents the

release time of the task. Once the task is ready to run, the value in the

field would represent the deadline for the task. When the CCAM is

configured to support negative delays, the delay field will continue to be

updated once the deadline has passed and the task’s status has changed

to late. The delay value then indicates how late the task is.

In the case of periodic tasks the value in this field represents the release

time for the next iteration of the task. If the periodic task is ready it also

represents the relative deadline of the current iteration of the task.
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• DelayE This value is used to track event timeout values. When a task

blocks on an event it can specify the maximum amount of time in timer

ticks that it is willing to wait for the event. The CCAM puts this value in

this delay field.

• Periodic Delay / Deadline This 16 bit location serves as a storage

location. When an EDF scheduler is used it is used to store the value of

the deadline of the task. When the task is released i.e the delayT field

reaches zero, it is this value which gets automatically loaded into the

delayT field. For a periodic task this value represents the period of the

task.

3.2 CCAM Module Interface

The CCAM module interface has 5 registers. These registers are mapped

into the memory space of the system and can be accessed using load and

store instructions. The memory module map of the CCAM interface is

given in Table1.

CCAM Control Register: This 8 bit register is used to configure the

operating mode of the CCAM.

The bits have the following meaning
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Auto Decrement AD When this bit is set the CCAM automatically

updates the state of the delays every “timer tick” i.e. performs automatic

timeout queue maintenance. The RTOS sets the rate of the timer tick at ini-

tialization.

Enable Interrupt EI When this bit is set along with the AD bit the CCAM

generates interrupts every time it performs a timeout queue update and

finds that a task has become available for execution i.e. status of any of the

tasks in the CCAM table has changed from Pause to Ready or from

Blocked Timeout to Released Timeout following an update.

Enable Repetitive Interrupt ERI When only the EI bit is set the CCAM

interrupt is a one-time interrupt. Enabling this bit makes the CCAM inter-

rupt a repetitive one.

Lock L When this bit is set the CCAM cannot perform any automatic

updates. The RTOS sets this bit every time it wants to access the CCAM

and the AD mode is enabled.

Negative Delay ND This bit determines if the CCAM delay is a signed or

unsigned number. When set delay values of tasks, which are late or have

been released following timeout on an event, will continue to be decre-

mented during timeout queue updates.

Release Time - Deadline RD When this bit is set it implies that the RTOS

uses both release time and deadline information to perform its scheduling.



50

This mode is useful in deploying dynamic priority based RTOSes onto the

CCAM.

At startup all bits in the control register are disabled. The CCAM operat-

ing mode is normally set up during system initialization. The configuration

choice is made based on whether the system is preemptive or nonpreemp-

tive, how many tasks it is running, the nature of its scheduling algorithm

etc. For example an operating system like Echidna would set the RD bit to

indicate that tasks have a release time and a deadline.

The operating system uses two registers to access the information in the

CCAM. These registers are the CCAM ID register and the CCAM Instruc-

tion Register.

CCAM ID Register: This register holds the id of the task which the

next CCAM instruction works on. The ID for a 64 entry table is a number

between 0 and 63 and is the index of the task’s entry in the table. The

CCAM returns information regarding the status of the last operation to the

operating system via this register.

CCAM Instruction Register: The OS uses this register to load the

CCAM instruction. Writing to this register initiates a CCAM operation.

The CCAM has 15 valid instructions of which 10 operate on specified

CCAM task entries while the remaining 3 access every valid task entry in
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the CCAM. Issuing a CCAM instruction in majority of the cases is a two

step procedure. In the first step, the operating system writes the index of the

task on which the instruction is being performed into the CCAM ID regis-

ter. Following this it writes the instruction into the CCAM Instruction Reg-

31 27 0

X

Format 1: Instructions with no data e.g. Priority and Delay Sort

Delay / TimeoutEventIDInstn

Instn

Format 4: Set Event Instruction

31 27 15 0

Format 2: CCAM Tick, Set Delay Instructions - 16 bit Data

31 27 15 0

XPriorityInstn

Format 3: Set Priority and Remove Task

31 27 19 0

Fig. 3.3. Instruction Layout of CCAM instructions. This figure represents the
interpretation of the different bits in a CCAM instruction word.

Format 5: Create Task Instruction

XInstn Delay / Timeout

X

Delay / TimeoutPriorityInstn

31 27 15 0

X P

14

19

19
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ister. The CCAM performs the operation and returns the result of the

operation via the CCAM ID register. For example, when the OS issues a

release event operation, the CCAM returns the id of the task that was made

ready to run. Details of the instructions and their operations are given in

Table 2. A layout of the different types of instructions is given in Figure

3.3.

The instructions occupy the upper 4 bits of the CCAM instruction word.

The remaining 28 bits are used to pass extra information required to exe-

cute the instruction to the CCAM. For example, during task creation, infor-

mation regarding the task - its periodic nature, its priority are all packed in

the CCAM instruction word.

Table 3: State Assignments for Run
Status

State Assignment

Pause 000

Ready 100

Late 101

Block 010

Block Timeout 011

Release 110

Release Timeout 111
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Instruction Use

Create Task Creates a task entry at a specified CCAM slot;
Information regarding a tasks periodicity, priority,
interrupt status are passed in the instruction word.

Delete Task Invalidates the associated task entry

Set priority Sets the priority of the specified task

Get priority Returns the priority of specified task

Set Suspend Sets suspend flag of task based on value passed

Get Status Returns the Status Register Value of specific task

Set Delay:
Release Time

Sets the Release Time for the specified task

Set Delay:
Relative
Deadline

Sets the relative deadline of a specified task or its
period in the case of a periodic task

Get Delay Returns the delay value in the delay1 field. This
value is either the

Set Event Blocks the task on specified event; Updates the
delay field of task with event timeout value

Release Event Searches for task with highest priority waiting on
specified event id and releases it

CCAM Tick Decrements all the delay values associated with
valid task entries and updates their status
appropriately

Get Task -
Priority Sort

Returns the task ID of the highest priority task
which is ready to run

Get Task
Delay Sort

Returns the ID of the first task with the least delay
(delay 1 field) which is ready to run

Table 2: CCAM Instructions
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CCAM Time Tick Data Register: This register specifies the duration

of a single CCAM tick. The value of the time is given in hundreds of

microseconds.

CCAM Time Tick Register: This register serves as the periodic time

source for systems using the CCAM for timeout queue management. The

register is a counter that is incremented every CCAM tick. The operating

system can reset this value during runtime.

3.3 Implementation

Run Status State Machine : The run status of each task can be imple-

mented as a state machine with 7 states. Each state is associated with 3 bits.

The state machine flow is given in Figure 3.2. The individual state assign-

ments are given in Table 3.

The inputs to the state machine are the following signals

Status. Periodic - This bit indicates if the task is periodic or not.

Set Event This signal goes high when a task is made to wait on an event

i.e. a Set Event instruction is executed.

Set DelayE This signal goes high when a value is loaded into the DelayE

field.

Set DelayT This signal goes high when a value is loaded into the DelayT

field i.e. a Set Delay: Release Time Instruction is executed.
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DelayT hits zero This signal is sent to the task status machine from the

CCAM tick module. It is high when the task delayT field has reached zero.

DelayE hits zero This signal is sent to the task status machine from the

DelayT

Tick amount

Deadline 0

Result >=0

Selection
Logic

2 Way MUX

1

1

Adder Adder

New DelayT

1

Enable

Fig. 3.4. CCAM Tick Module for handling Timeout Delays. This is a simplified
representation of how the DelayT field gets updated every timer tick. Unless specified
the wires are all 16 bit wide. The module to handle Event timeouts would be similar
without the presence of the additional adder stage.

3

Run Status

Enable

1

To Task Run Status

State Machine

1

Status
- .Periodic

Status.Periodic

Run Status[0]

Run Status[1]

Run Status[2]

Result >= 0

Selection Logic Cell
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CCAM tick module which processes the tick for the DelayE field. It is set

when the task times out on the event.

The output of the state machine is the 3 bit run status.

Tick Operations: The CCAM decrements the delay values every time a

CCAM tick instruction is generated. Based on the result of the operation

the run status of the machine gets updated. There are two delays that have

to be serviced. The first is a delay value associated with release times and

deadlines i.e. scheduling while the second is one associated with event tim-

eouts i.e. synchronization based.

Servicing the delay value in the DelayT field of the CCAM is a two step

procedure. The first involves subtracting the tick amount from the delay.

The second involves updating the DelayT field if the result of the previous

operation is non-positive. The module which handles the CCAM tick has

two adder stages as seen if Figure 3.4. The first stage subtracts the tick

amount from the current contents of the DelayT field.It thus takes as input

the contents of the DelayT and the tick amount. The second adds to the

result of this operation either zero or the stored deadline depending on the

status of the task, the result of the operation etc. The inputs to this stage are

thus the output from the preceding adder stage and the output of a 2 way

MUX whose inputs are the contents of the deadline storage field and the
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value 0. Both adders have the same enable signal but the second one is

enabled a clock cycle after the first. The operations are performed only if

they are enabled.

The enable signal is high only if the following conditions are met

Valid Entry AND ((Run Status = Pause OR Run Status = Block Timeout

OR Run Status = Ready AND CCAM Control. RD) OR Periodic Task OR

CCAM Control.Negative Delay)

One of the inputs to the second stage as mentioned earlier is from a 2 way

MUX. The output of the mux is dependent on the result of the previous

stage as well as the status of the task. The output of the mux is the deadline

of the task if the following conditions are met

(DelayT-TickAmount <=0 AND Periodic Task) OR (DelayT-TickAmount

<=0 AND Run Status = PAUSE)

The CCAM Tick handler module can be designed with a single adder and

a state machine to keep track of what operation to perform next.

The DelayE field Tick handler module is similar to the DelayT module

except that it only has the first adder stage. This module is enabled only if

the following conditions are met

(State = Block Timeout) OR (State = Release Timeout AND CCAM

Control.Negative Delay)
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Sort Operations: The CCAM performs 64 element sorts in a single

instruction. Instructions sort either 8 bit priority values or 16 bit delay val-

ues and return the tag of the task with the least magnitude priority or delay.

Sorts are required by the following instructions

Release Event: This instruction identifies which one among a group of

tasks waiting on a particular event to release. This requires an 8 bit priority

sort. All tasks which are waiting on the event are sorted.

Get Task - Priority Sort: This instruction helps identifies which one of the

tasks which are available to execute to run. This too requires an 8 bit prior-

ity sort of all tasks which are available for execution.

Get Task - Delay Sort: This instruction which is used by dynamic priority

schedulers like Echidna helps select the task with the least delay or earliest

deadline. This requires a sorting 16 bit elements which can be signed or

unsigned depending on the CCAM configuration. The criterion for being

among the set of elements which are sorted for this instruction is the same

as the earlier instruction.

We use a tree of 16 bit comparators to perform the sorting. Each compar-

ator element in the tree can sort 2 values and is capable of performing both

signed and unsigned comparisons. Each comparator element has 2 16 bit

inputs. It takes as input the value to be sorted and the ID of the tasks. Its
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Fig. 3.5. Structure of Input Comparator Element. The figure shows the basic design
of the comparator element that forms part of the CCAM sort tree. The comparator is
capable of both signed and unsigned comparisons.

Negative Delay
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output is the ID of the task with the lower delay or priority value and the

corresponding delay / priority value. For comparators in the first level the

value which enters the comparator is selected using a two way tristated

mux. The selection logic for the mux is based on the instruction word. The

mux output is enabled depending on whether the task satisfies the criterion

for the sort.

Enable Logic

• Enable - Priority Sort / Delay Sort

The pseudo-logic equation used to determine if a task entry satisfies the

criterion for the sort is

(Status = Ready OR Status = Late OR Status = Released OR Status =

Released Timeout) AND Valid AND Not Suspended.

Substituting the various literals for the above expression and minimizing

it based on the state assignments made in Table 3 we get

Status.Suspend

Status.Valid

Status.RunStatus[2] Enable

Fig. 3.6. Enable Logic for Priority /Delay Sort. The figure shows the test
for a task element to participate in the sorts for the Get ID/Priority Sort and
Get ID /Delay Sort instructions.
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(Status. Run Status[2]) & Status. Valid & ~Status.Suspended i.e.

Additionally it should be checked that the instruction is either the Priority

Sort or the Delay Sort.

It can be expressed then as

(Instruction = Priority Sort OR Instruction = Delay Sort) & Enable1

• Enable - Release Event

Tasks who participate in this sort have to satisfy the following criterion

(EventID in instructions = EventID in Entry) AND (Status = Block OR

Status = Block Timeout)AND Valid

A comparator checks that the event ID in the instruction is the same as

that which the task is waiting on. Additionally it should be checked that the

instruction is the Release Event Instruction.

Comparator
EventID

Instruction
EventID

Status.Valid

Run Status[2]

Run Status[1] Status = Block +
Status = Block Timeout

Enable

Fig. 3.7. Enable Signal for Release Event Priority Sort.



62

Select Logic

This logic helps select the input data values based on the instruction. For

Get Task - Priority Sort and Release Event instructions it selects the prior-

ity as input and for the Get Delay instruction it selects the Delay value.

The Comparator tree is given for a CCAM with 16 tasks in Figure 3.8.

3.3.1 CCAM Energy Model

The cost associated with a CCAM instruction depends on the number of

basic operations the instruction performs. We assume that each of these

Fig. 3.8. Comparator Network. This figure shows a comparator network for a
CCAM with 8 task entries. For 64 entry CCAM there would be 2 additional
levels. The result at the end is a Task ID and its corresponding delay or priority.
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basic operations—add, compare, load/store, logic operation—cost as much

as an equivalent instruction on the Mcore processor. The basic operations

arise from two distinct aspects of the CCAM instruction, namely the

lookup and the actual instruction execution itself. Some CCAM instruc-

tions require fully associative lookups while others directly map into the

CCAM. Fully associative lookups are required for operations like the

release event, which requires identifying all tasks waiting on a particular

event id. These lookups are more expensive as the number of comparisons

is proportional to the number of elements in the CCAM. Thus depending

on the nature of the lookup the number of compare operations associated

with the instruction will change. The cost of executing the instruction is the

cumulative cost of all the operations.

For example, the total cost of a set priority instruction is that of a direct

lookup and a byte store. The CAM release event instruction, on the other

hand, has associated with it the cost of a fully associative lookup and exe-

cution costs arising from the compare operations required to determine

which of the valid entries has to be released.
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3.3.2 Die Area Cost

The area occupied by the CCAM can be expressed by referring to models

for on-chip memories proposed by Flynn et al[27]. The area can be

expressed as

area = logic + data + tags + status.

The logic refers to the logic associated with the sort comparator trees, the

associated state machines etc. The tags are the elements that are used in a

fully associative look up which includes the event field. These fields are

associated with a comparator element. We assume that the delay-timeout

fields and delay-event fields which are associated with adders occupy the

same die area. The data fields include the delay-deadline and the priority

field. The total value after computation is 2600 rbe which is equivalent to a

48 wide 32 bit register file. This approximates to an area increase equiva-

lent to that of a 1.5 register files or 8% of the chip area.
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CHAPTER 4

EXPERIMENTS

All real time operating systems perform a certain set of operations to pro-

vide a framework for task management, event management and schedul-

ing. In nearly all systems, these tasks are performed exclusively in

software. We attempt to ascertain the benefits and trade-offs associated

with moving some of the operating system’s workload from software to

hardware. We measure the overhead involved in performing these opera-

tions in terms of energy consumption, reliability in execution time and

overall performance of the system.

The operating system that we used for our study was µC/OS, a multi-

tasking preemptive real time operating system and Echidna, a cooperative

multitasking operating system.

µC/OS : It is a public domain real-time operating system which is repre-

sentative of current commercial RTOSes which employ static priority

based scheduling algorithms[23] .µC/OS supports upto 64 tasks with each

task being assigned a unique priority level. µC/OS also provides support
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for standard operating system services including IPC mechanisms like

semaphores etc. It has been designed for modularity, scalability and deter-

minism. We use two versions of µC/OS—the original preemptive version

and a modified nonpreemptive version.The non preemptive version uses

the same framework as that of the preemptive one but does not have any

support for handling possible race conditions. Additionally the timer inter-

rupt in the non preemptive version merely updates the time. Unlike its pre-

emptive counterpart, the nonpreemptive OS does not perform any timeout

queue management in the timer interrupt handler. All timeout queue update

operations are performed at scheduling boundaries. The granularity of the

system clock for µC/OS is dependent on the frequency of the timer inter-

rupt.

Echidna : This is a commercial dynamic priority RTOS which treats

threads as port based objects [37 , 38] . It provides support for reconfig-

urable software-based components. Echidna provides its tasks a non-stan-

dard API. Echidna does away with the standard while(1) construct. It

provides an API where the developer has to partition the task into different

sections based on their function viz. initialization, termination, synchroni-

zation, cycle or main body. The Echidna scheduler is based on a non-pre-
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emptive implementation of EDF. It also provides high resolution system

clock by performing interpolation using the timer counter registers.

The configurations that we study include the following:

Original: In this configuration all the task, event and time management

and scheduling is done exclusively in software. The system clock is main-

tained in software and updated every timer interrupt.

With the CCAM: In this configuration the operating system uses the

CCAM to hold information regarding the state of the tasks in the system.

The operating system queries the CCAM when it makes scheduling deci-

sions, performs event management etc. The system clock continues to be

maintained in software. Although the hardware maintains the timeout

queue of the system the operating system directs the update of this queue.

For the preemptive version, this configuration has a regular timer interrupt

during which the system performs these two tasks. For the nonpreemptive

case the timer interrupt serves only to update the system clock. The timeout

queue is only updated prior to scheduling.

With CCAM in Auto Decrement Mode: This configuration is similar to

the earlier mentioned scheme. The main difference is that the system clock

management and timeout queue update is performed independently of the

software. The CCAM updates the clock and task timeout delays automati-
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cally every “timer tick”. The CCAM can be configured to interrupt the sys-

tem when a new task is available to run following the update.

Using the periodic feature: In this configuration the CCAM supports

periodic tasks. When these tasks are created, the period is specified. For

these tasks the CCAM automatically reloads the period into the delay field

every time it hits zero. We do not use this feature with Echidna.

Host Processor

Mcore Simulator

RTOS - Echidna/ µC/OS

Application Tasks

Fig. 4.1. Experimental Setup. The figure shows the experimental setup for this study.
The Mcore C simulator runs on a desktop machine. The RTOSes execute directly on
the Mcore simulator.
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We also measure the effect of varying the resolution of the system clock

on the above from 500 Hz to 2 kHz. The Echidna configuration is also

tested for a higher resolution clock.

We test the configurations using different workloads. The workloads are

selected from the MediaBench suite of benchmarks [7]. The applications

used for this study include the following:

G721: This application implements the CCITT’s (International Tele-

graph and Telephone Consultative Committee)g.721 voice compression

algorithm.

ADPCM: This application performs adaptive differential pulse code

modulation on a given audio sample.The encode converts a raw 16 bit

PCM sample to a 4 bit ADPCM sample while the decode does the reverse

operation.

GSM: This application performs speech transcoding. It compresses

frames comprising of 160 13-bit samples to 260 bits.

The Mediabench applications are compute-intensive and each consists of

two tasks: an input task that runs at a predetermined rate and an output task

that is released every time there is valid data for it to process. The two tasks

communicate to each other using standard interprocess communication

mechanisms like semaphores. In addition to the application workloads we
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also have various background applications running on the system to pro-

vide variability in system load, scheduling, and thus task timing. These

include the following:

control loop task: This is a periodic background task that runs every

32ms and represents background workload commonly seen in embedded

systems.

aperiodic hardware-generated I/O interrupt: This interrupt occurs

with a fixed probability on every cycle, yielding an exponential inter-

arrival time distribution with average interrupt rate of 100 Hz.

We measure the performance of the system in terms of jitter, energy con-

sumption, overhead and execution time of operating system tasks.

Release Time

Period Period + δ Period - δ

Output Arrival Time Instance of positive jitter Instance
of negative
jitter

1 2 3 4

Fig. 4.2. Jitter Example. The figure shows how jitter is measured for a periodic task
with a fixed period. The result of invocation 2 of the task arrives on-time i.e. one
period interval after the last result. Invocation 3 starts late and the inter-arrival time
is off from the period by δ. The next invocation starts execution on-time but its
output arrives early with respect to the last output.



71

Jitter: We study the variation in the inter -arrival times between output

of periodic tasks. If the inter-completion time is different from the period

we say that the task has a jitter. If the output arrives early we say that the

task has negative jitter and if it arrives late we say that it has positive jitter.

We consider the example in Figure 4.2 where the periodic task is execut-

ing with a fixed period. The output from invocation 2 arrives exactly one

periodic interval from the last seen output. Thus the particular invocation is

said to have zero jitter. By contrast the output of invocation 3 is available a

time interval Period + δ after the output of invocation 2. The output is off

by an amount δ or it has a positive jitter of δ. Invocation 4 starts execution

on-time but its output is available in time period -δ after the previous out-

put or the invocation has a negative jitter of δ.

Response Time: The response time to an interrupt is the time since the

arrival of the interrupt and the completion of its servicing. This completion

Interrupt Occurs

ISR Response TaskHigh priority load

Interrupt Response
Completion

Fig. 4.3. Response Time to External Interrupt. The figure depicts the handling of an
interrupt. The interrupt is handled by an ISR which releases a response task which
completes servicing the interrupt. The response time is the time between the arrival of
the interrupt and the completion of the response task servicing it.

Response Time



72

is marked by the end of execution of the tasks which are executed in

response to the interrupt. We consider a system which uses a split interrupt

servicing strategy. The interrupt servicing is done in two stages. The first

being the execution of the actual ISR itself which handles any hardware

specific responses and releases a high priority response task to complete

the handling of the interrupt.The second stage is the execution of the high

priority response task which executes the non-critical part of the interrupt

handling.

Figure 4.3 depicts the typical interrupt handling in a system using split

interrupt servicing. The ISR is not invoked as soon as the interrupt arrives

because interrupts may be disabled when the interrupt arrives. Besides this

there is an additional overhead of flushing the pipeline and loading the ISR.

The ISR releases a high priority task which is executed only after the other

higher priority tasks viz critical OS and user level tasks, complete execu-

tion.In the absence of these critical tasks there will always be a delay due to

the overhead of performing scheduling and a context switch.

RTOS Overhead: Assuming that the application’s energy consumption

will be roughly constant across different operating systems, we measure

the additional energy that the operating system consumes while managing

the workload. We separate the energy values based on the function of the

OS code including semaphore management, time management, context
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switching, interrupt handling, enabling/disabling of interrupts, scheduling,

task management and initialization of the system.We also measure the CPU

overhead that RTOS functionality represents.

Execution Time: We measure variability in the time taken by the operat-

ing system to perform operations such as pending and posting a semaphore,

delaying a task and to service an interrupt. We measure the time between

the initiation of these tasks and the scheduling of the next task on the sys-

tem.
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CHAPTER 5

RESULTS

5.1 Overhead

5.1.1 Preemptive µC/OS Configurations

Timeout queue maintenance has two aspects - entering a task on the tim-

eout queue and updating the timeout queue every timer interrupt. The

former factor is dependent on the behavior of the tasks in the system while

the latter varies with the system clock frequency.

The bulk of the energy savings gained while using the CCAM in preemp-

tive configurations of µC/OS arises from altering the fashion in which the

timeout queue is updated. Timeout queue updates in µC/OS are performed

by walking through a task queue containing all the tasks in the system, dec-

remented non-zero delays and releasing those tasks whose timeout values

have reached zero. We replace this queue traversal with a single CCAM

instruction, the CAM tick. This instruction automatically decrements the

delay associated with every task entry in the CCAM. The cost of this

instruction for a single task is that of the decrement operations to update
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Fig. 5.1. Energy Consumption for preemptive µCOS configurations. The graphs show
the variation in the energy consumption of the RTOS running the g721 decode
benchmark at 4 ms periods. The y-axis represents the energy consumed by the kernel
while the x-axis represents the workload size. The data for different system clock rates
are grouped at each workload point.
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the timeout value, comparison and logical operations to determine if the

timeout value needs to be updated and store operations required to update

the task status and its timeout value if needed. The energy overhead for

performing timeout queue maintenance decreases to 6% - 20% of the origi-

nal value on an average as seen in Figure5.1(a) and (b). Increasing the sys-

tem clock frequency in µC/OS results in a proportional increase in the

number of times the timeout queue is updated. The overhead in a software

managed timeout queue system is far greater than in systems with hard-

ware maintained timeout queues.

The µC/OS timer interrupt handler updates the timeout queue as well as

the system clock. Both these operations are performed automatically by the

CCAM when it is used in the auto decrement mode. An interrupt is gener-

ated every time a task on the timeout queue becomes available to run. Thus

the interrupt only serves as an indicator to the operating system that a new

scheduling point has been reached and has a negligible overhead. This

allows the system to continue executing without being sidetracked to per-

form housekeeping chores. This reduces the interrupt arrival frequency

approximately to that of the minimum task frequency. Operating system

configurations using the auto decrement mode of the CCAM have approxi-

mately the same software overhead for the same workload irrespective of

the frequency of the system clock as can be seen in the Fig 5.1(c).Another
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interesting side effect of this is the reduction in context switch and schedul-

ing overhead. As there are less interrupts the RTOS has to perform less

context switches and this can be seen in Fig 5.1.

Using hardware for event management reduces the number of instruc-

tions executed upon a semaphore pend or a semaphore post by nearly 50%.

This is because the hardware based scheme eliminates the need to update

software data structures like the ready list and the event block. Semaphore

pend operations are now reduced to just merely updating the event field,

the delay field and the status of the associated task in the CCAM. When a

semaphore is posted the hardware sorts all tasks waiting on the particular

event id and returns the id of the task that got released. It also updates the

status of the task simultaneously. These hardware operations reduce the

software overhead to 30 - 40% of its original values. Event overhead does

not change with the system clock frequency as it is workload depen-

dent.Thus all configurations of the CCAM have the same event overhead.

Using the CCAM reduces the scheduling overhead by only around 20%.

The current scheme employed by µCOS which uses bit vectors has a low

constant overhead irrespective of the number of tasks in the system.

Overall employing the CCAM can reduce energy overhead by as much as

20-40%.
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Fig 5.2 shows the variation in the processor utilization by the RTOS for

different configurations.The data is represented for the benchmark gsm

decode running with a period of 160 ms.

RTOS overhead is of two types - a workload dependent fraction and a

workload independent section. The workload dependent fraction comprises

of those functions of the RTOS which tasks explicitly request for like being

placed on the event queue or on the timeout queue. The overhead of these

operations depends largely on the frequency at which applications request

these services. Workload independent fractions comprise of those opera-

tions which the RTOS has to perform independent of the workload behav-

iour. This includes maintaining the system clock and updating the timeout

queue. The frequency of these operations are independent of the workload

but the overhead i.e. execution time may vary with the workload size.

Scheduling has both a workload dependent and workload independent frac-

tion. The former arises from the fact that scheduling has to be performed

every time a task requests to be blocked or gets unblocked either when it

hits its release time or an event is posted. The latter refers to the scheduling

and context switching which is performed following every timeout queue

update.
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Fig. 5.2. Utilization for preemptive µCOS configurations. The graphs show the
utilization of the various components of the RTOS for 4 different preemptive
configurations. The graphs are representative of data for the gsm decode benchmark
executing with a period of 160 ms. The x-axis represents the number of tasks and the y-
axis the processor utilization. Data for different system clock rates are grouped together at
each workload point.The y-axis scale of graphs c and d are from 0-2% while that of a and
b are from 0-20%.

(a) Original µCOS

(b) With CCAM

(c) With CCAM in Auto Decrement Mode

(d) With CCAM using Periodic Feature

a b c

a 500 Hz

c 2 kHz
b 1 kHz

Task

Scheduling

Context Switch

Time

Timeout Queue

Interrupt

Event

CCAM



80

For the original µC/OS configurations the processor utilization increases

linearly with the workload. The bulk of the increase comes from the time-

out queue management overhead which can have an overhead of as little as

1% to as much as 12%. As the workload runs with a 160 ms period it uses

RTOS functionality like semaphores etc. less often than an application like

g721 decode which runs with a period of 4 ms. Thus the event and schedul-

ing overhead are less affected by changes in the workload size.As the sys-

tem clock overhead increases we observe that the scheduling and context

switch overhead also increase proportionally. This is because following

every timer queue update the RTOS has to invoke the scheduler and per-

form a context switch as well. Increasing the timer tick frequency increases

the number of such scheduling operations and in turn the overhead.

For the µC/OS which uses the CCAM the timeout queue management

overhead is constant for all configurations. This is because the complexity

of this operation has decreased from O(n) operation to that of a O(1) opera-

tion. Thus the overhead of the RTOS is less affected by workload increases

and does not go beyond 6% of the total usage. The scheduling and context

switch overhead continues to scale with the system clock frequency like in

the earlier scheme. This is because the configuration sees as many inter-

rupts over a run as the earlier scheme does.
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Moving the timeout queue updates to the hardware further reduces the

RTOS overhead to under 2%. This is because the overhead which was

workload independent has been eliminated. Timer ticks are processed in

the hardware and the software is invoked only when a new task is available

for execution. Thus scheduling is performed less frequently than the earlier

configurations. As the workload behavior does not change with the system

clock overhead we see that for a given workload the RTOS overhead stays

the same as the system clock rate changes. Additionally using the periodic

feature reduces the RTOS overhead because it no longer has to execute and

schedule a separate task which ensures that all periodic tasks stay on beat.

5.1.2 Non preemptive µC/OS configurations

The bulk of the energy savings gained from using the CCAM in the non

preemptive case comes from moving the timeout queue update from soft-

ware to hardware. In the case of a non preemptive system timeout queue

updates take place either when a task completes and the RTOS schedules a

new task or when the RTOS is idling and a timer interrupt occurs. Thus the

frequency of timeout queue updates depends on the system clock fre-

quency as well as the nature of the workload.The overhead of a single

update operation is dependent on the size of the workload.
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For lightly loaded systems there is a higher probability that the RTOS

will be idling when a timer interrupt arrives and a timeout queue update

can be serviced at the instant the system clock gets updated. In addition to

these timer interrupt driven updates the RTOS attempts to perform an

update at every scheduling point if required. Thus if there are more sched-

uling points the resulting timeout queue overhead will also be higher.

The benefit of the CCAM tick instruction as in the preemptive case arises

because it reduces the overhead of an individual timeout queue update

operation. This reduces the energy consumption overhead of the timeout

queue update to nearly 10% of the original. Further using the auto decre-

ment mode eliminates the need for the software to perform any sort of tim-

eout queue update.

In the case of a heavy workload like gsm decode whose utilization num-

bers we have in Figure we see that the timeout queue update overhead ini-

tially increases with workload size but decreases after a certain workload.

This is because as the number of tasks increases the overhead of a single

timeout queue update operation increases. The number of scheduling

points at which the operation is performed also increases. These increases

are accompanied by a decrease in the idling time and a chance that more

timer ticks pass before a timeout queue update is performed. The two fac-
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tors work in opposite directions and depending on which one dominates the

overhead of the timeout queue operation either increases or decreases with

workload. Using the CCAM eliminates the first factor i.e. increase in over-

head of single timeout queue update operation with workload. This results

in a drop in the utilization as the workload increases. This is less obvious

for the CCAM employed in auto decrement mode.

Using the CCAM does not reduce the overhead of adding a task to the

timeout queue. The overhead of this operation in µCOS is constant and

small and involves updating the delay field in the task entry block and

removing it from the ready queue. The hardware instruction performs the

similar operation i.e. updates the task entry and the task status register.

A nonpreemptive OS polls time more often than a preemptive OS. Every

time a timeout queue update is performed or attempted the RTOS reads the

current time in order to determine how many timer ticks have elapsed since

the last update.This polling overhead increases with the workload and

timer frequency as can be seen in Figure 5.3 (a). Using the CCAM does not

lower the overhead as can be seen in Figure5.3 (b). Employing the CCAM

in auto decrement mode eliminates the need to poll the time in order to

maintain the timeout queue. There is a further decrease in this component
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in the case of the configuration using the periodic feature because tasks no

longer need to determine their next release time.

5.1.3 Echidna

The bulk of the RTOS overhead is seen in three components viz. the

scheduling, the polling of the system clock and adding tasks on the various

scheduling queues. Echidna maintains a ready queue that is sorted based on

deadlines and a pause queue i.e. timeout queue with tasks sorted based on

release times. Every time a task completes the scheduler checks to see if

there are any tasks which are ready to be released. This involves comparing

the current operating system time with the release time of the task. If the

release time is past then the tasks are moved from the pause queue to the

ready queue. When all newly released tasks have been moved the RTOS

runs the task with the earliest deadline first. If there are no currently ready

tasks the RTOS continues to poll the pause queue till a task becomes avail-

able to execute. Thus even when the system is idle the RTOS constantly

polls the ready and pause queues and the system clock. Thus a system with

a low workload i.e. one task has a high RTOS overhead. This idling polling

overhead decreases as the number of tasks in the system increases. Thus we

see that the RTOS overhead gradually decreases with system load. After a

certain workload this no longer holds true. This is because the overhead of
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adding tasks to the queue now increases. Inserting a task into a sorted

queue is an O(n) operation. The overhead of this operation increases with

the number of tasks in the system. When this increase dominates the RTOS

overhead we see that the RTOS overhead gradually increases.

Using the CCAM with a system clock resolution of the same order

increases the overall energy consumption of the system. For a configura-

tion with 1 task it is nearly the same but this energy consumption gradually

increases with workload and saturates at a workload of around 12 tasks.

The CCAM configuration has no software overhead for adding tasks to the

various tasks queues. The CCAM reduces the complexity of adding a task

onto a queue from O(n) to O(1). Adding a task onto the pause queue or tim-

eout queue involves setting the timeout delay or updating the delay field

and the task status. This eliminates the need for an O(n) insertion onto the

pause queue. At the time of placing a task onto the pause queue the RTOS

can set the deadline value also. This value is loaded into the Deadline field

and automatically loaded into the Delay-Timeout field when the release

time reaches zero. Thus the overhead of placing the task on the ready queue

has also been reduced to a constant overhead. The scheduling overhead is

higher than the case of the original configuration because the processor has
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more idle time and thus checks if there is a task available for execution

more often.

Bulk of the CCAM energy is consumed in performing a regular update to

the timeout values and from checking if a task is available to run. The

Fig. 5.5. Energy Consumption of Echidna based configurations. The graphs show the
variation in the energy consumption of the Echidna kernel with workload for the g721
decode benchmark executing with a 4ms period. The y-axis shows the energy while the
x-axis depicts increasing workload. Graphs a and b have a clock resolution on the order
of 100 us. Graphs c and d show the energy overhead for CCAM configurations using a
lower system clock resolutions. Each workload point has data for 3 different system
clock rates - 500 Hz, 1 kHz and 2 kHz.
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former operation is performed every 100 microseconds. In the case of the

software based configuration the kernel performs a comparison with the

timestamp of the task element at the head of the pause queue or the ready

queue at every scheduling point or when the system is idling. The update is

more expensive than this simple comparison. In addition the idle time in

the system increases by employing the CCAM. This results in the RTOS

constantly polling the CCAM in order to determine if there is a task to run.

The energy consumption scales with workload and tapers off. This is

because like earlier there are two conflicting trends seen with increasing

workload - one is the decreasing idling time or lowering of polling over-

head and the other is the overhead in providing the services to the various

tasks. The former increases far more rapidly than the latter decreases till at

a workload where they both compensate each other.

Figure 5.5 c and d show the variation in energy consumption for lower

resolution system clocks 500 hz, 1 kHz and 2 kHz. These configurations

have a lower energy overhead than both the previous operations. They also

avail of the doze instruction to lower the energy overhead. These configu-

rations have the benefit of reducing the overhead to add a task onto the var-

ious system queues and also eliminating the need to poll the time

constantly in order to determine if a task is ready to go. This reduces the
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overhead of the RTOS by 50%. The lower clock resolution does not

adversely effect jitter but decreases energy consumption considerably.

The energy consumed the CCAM increases proportionately with work-

load as can be seen in the graphs Figure 5.1, Figure 5.3 and 5.5 But for a

given configuration the CCAM energy increases marginally with increase

of the frequency of the system clock. This is because the CCAM operations

that increase when the system clock rate increases are those used in timeout

queue management and involve only a single compare and decrement oper-

ation for each valid task entry.

5.2 Operating System Functional Measurements

We measured the time between the initiation of an operating system func-

tion, like taking a semaphore, to the time that control is handed back to the

user level code. The operating system functionality that we measured

includes posting a semaphore, pending on a semaphore, delaying a task and

the interrupt overhead. The numbers include the time spent in the operating

system function as well as those associated with scheduling and perform-

ing a context switch.

The duration of all these operations is independent of the workload run-

ning on the system or the resolution of the clock. The design of the µC/OS

kernel is such that the overhead of nearly all system calls is constant and
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does not scale with the workload. Increasing the system clock rate

increases the RTOS management overhead only and not the overhead of

the interfaces it offers tasks. In Figure 5.6, 5.7 and 5.8 we present the

results for the system running 6 g721 decode tasks running with a periodic-

ity of 4 ms.

For all operations the overhead of the non preemptive system is much

lower than that of the preemptive system. This is because non preemption

guarantees that no task will ever be interrupted thereby eliminating the

need for marking code as protected. Protection of the code represents two

Preemptive

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

p
ro

b
a

b
il
ity

Execution Time ms 0 5 10 15 20 25

Execution Time ms

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

p
ro

b
a

b
ili

ty

Preemptive CCAM

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

p
ro

ba
bi

lit
y

Non preemptive

Execution Time ms

0 5 10 15 20 25

Time ms

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti
v
e

p
ro

b
a

b
ili

ty

Non Preemptive CCAM

Fig. 5.6. Operation System Overhead for Semaphore Pend. The x-axis represents the
time in ms between the initiation of a particular OS provided function and the execution
of the next scheduled task. This time includes the overhead of performing the operating
system function and scheduling the next task. The y-axis represents the cumulative
probability for each point.
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thirds of the overhead of operating system operations. For example a non-

preemptive time delay takes around 5 µsec. while the preemptive configu-

ration takes nearly 15 µsec. to perform the same operation.

The semaphore pend operation’s overhead is dependent on whether the

resource is already available or not. When the semaphore is available the

operating system merely decrements the resource count and then schedules

the task again. This overhead is approximately the same for configurations

using the CCAM or not. When the resource is unavailable the operating

system has to update the event’s control block in addition to performing

Fig. 5.7. Operation System Overhead for Semaphore Post. The x-axis represents the
time in ms between the initiation of a particular OS provided function and the
execution of the next scheduled task. This time includes the overhead of performing
the operating system function and scheduling the next task. The y-axis represents the
cumulative probability for each point.
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scheduling and a context switch. The overhead of updating the event block

in both preemptive and nonpreemptive versions of µC/OS is expensive and

results in overheads as high as 17 µsec. for preemptive configuration to 14

µsec. for nonpreemptive configurations. For RTOS configurations using

the CCAM the update to the event block is no longer required. Each task

entry in the CCAM is associated with an event ID. Writing into the latter is

equivalent to the update event block operation performed in software. This
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Fig. 5.8. Operation System Overhead for Time Delay. The x-axis represents the time
in ms between the initiation of a particular OS provided function and the execution of
the next scheduled task. This time includes the overhead of performing the operating
system function and scheduling the next task. The y-axis represents the cumulative
probability for each point.
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reduces the overhead of semaphore pend operations to 10 µsec. in preemp-

tive operations and to 6 µsec. in non preemptive configurations.

Similarly semaphore post operations executed in operating systems with

hardware support take less time than those without. The greatest overhead

in semaphore post operations is determining which task needs to be

unblocked and then removing its entry from the event control block. Upon

a semaphore post, the CCAM does a search based on the event id and

returns the id of the task with the highest priority. It also simultaneously

marks the task as ready to run and resets the event field associated with the

particular tasks entry. As a result the overhead of a semaphore post is

reduced by nearly 5 µsec.

Delaying a task for µC/OS versions with and without the CCAM have

about the same overhead. This is because in both versions this involves

updating a single delay field either in a software block or in a hardware

data structure.

In general, one of the most important results as concerns real-time sys-

tems is the clear reduction in variability of execution time by using the

CCAM. As the semaphore operations show, using the CCAM all but elimi-

nates variability in all operations, save semaphore pend for preemptive

CCAM.
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In Figure 5.9 we study the interrupt overhead across the different config-
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urations. As expected, the overhead linearly increases with the workload

for the original configurations of µC/OS. As the system clock rate

decreases the average interrupt overhead increases marginally. This is

because the number of tasks that become ready to run following a timeout

queue update increases when the clock rate decreases. By contrast,

schemes that move the timeout queue maintenance to the hardware are

unaffected by varying the system clock rate or the workload.

We measured the number of interrupts seen by the operating system con-

figurations for workloads with large periods. The configurations that we

consider are the preemptive version of µC/OS with a regular timer interrupt

and the preemptive version of µC/OS that uses the CCAM in auto decre-

ment mode. In the latter, interrupts are generated only when a task becomes

available to run following the automatic hardware based timeout queue

update. Using the CCAM reduces the number of interrupts by more than

90% for all workloads and system clock rates. The number of interrupts

increases marginally with the workload. The increase is due to the number

of scheduling points increasing with workload. The number of interrupts

does not change with the system clock rate. This is in contrast with the con-

figuration using a regular timer interrupt where the number of interrupts

increases proportionally with the clock rate.
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5.3 Jitter

We represent the jitter value for the system running g721 encode and

adpcm decode applications. These tasks are representative of two types of

workloads. The first is a relatively light workload with each job not taking

more than 200 us to execute i.e. it completes within a single timer tick. The

latter is representative of compute intensive workloads which comprises of

jobs which require more than a single timer tick interval to execute to com-

pletely. We note that in most cases jitter occurs in an early - late pair. If a

job runs late i.e. has a positive jitter, then the scheduler attempts to bring it

back in step. This causes the inter-task period to be less than that of the des-

ignated period or the task to have negative jitter. We concern ourselves

only with the absolute jitter in terms of a percentage of the period of the

application.The data is represented in terms of a discreet probability distri-

bution function. For a given workload size the probability of a certain jitter

value is proportional to the size of the circle or symbol at that point. The

graphs plot jitter on the y-axis and workload size on the x-axis.

5.3.1 Preemptive µCOS Configurations

We consider the jitter initially for preemptive operating system configu-

rations running G721 Encode benchmarks at 8 ms periods. Every 10 micro-

seconds of jitter is grouped together for the purposes of representation. For
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a given configuration the reasons for jitter can be briefly summarized as

follows:

Variations in execution time of the workload In the case of g721

Encode a few frames in the stream take approximately 10 microseconds

longer to process. This results in an occasional early -late jitter of 10 us for

every task in the system. This contributes to a jitter of around 125th of a

percent for the g721 encode tasks.This jitter is considered as zero jitter for

the purpose of representation.

Periodic background task This background task executes every 32 ms.

When the release time of the tasks coincides with that of the background

load, the output arrives late and it arrives early in the late next invocation.

For a workload with tasks executing with 8 ms periods this causes a quarter

of the invocations to execute late and another quarter to execute early. As

the period is increased the number of such affected invocations also

increases proportionally. For the original configuration of µCOS this can

cause task executions to be delayed by approximately 80 microseconds or

around 1% jitter.

Aperiodic interrupt Aperiodic interrupts occur with an approximate fre-

quency of 100 Hz. In a preemptive system servicing this interrupt typically

involves executing an ISR and a high priority response task. Servicing an

interrupt thus has a noticeable overhead. This overhead can be as much as
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40 - 50 microseconds or 0.5 - 0.6 % jitter for original configurations of

µCOS. If an interrupt occurs after a task has been released but prior to its

completion it will delay the arrival of this output.

Combinations of above phenomenon The remaining jitter points can be

explained as a combination of the above factors. Interrupts and the periodic

background task can combine to result in the workload having a jitter any-

where from 40 microseconds to 140 microseconds or 1.75%.When multi-

ple interrupts are serviced this jitter can increase further to around 2%.

Using the CCAM decreases the overhead of operating system functions

like scheduling, semaphore posting or pending etc. Thus the jitter due to

the interference with other workload decreases by nearly 10 microseconds.

Periodic task jitter is nearly 0.9% of the period while aperiodic interrupt jit-

ter decreases to 0.4% The combined jitter due to the two phenomenon also

decreases.

Operating System Overhead

The RTOS performs periodic housekeeping activity involving time

related functions like updating the timeout queue and the system clock.

This is a regular periodic event and by itself will not affect the execution of

periodic tasks. Its effect is seen only if the execution period of a task spans

more than a single timer tick interval or the collective execution time of the
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(a) µCOS

Fig. 5.10. Jitter for Preemptive µCOS configurations. The graphs show the
variation in jitter for the g721 encode benchmark executing with a period of 8 ms.
Graphs (a)-(d) are for systems using system clock rates of 500Hz while graphs (e)-(h)
are for configurations using 1kHz clocks. The graphs plot absolute jitter as a percent
of the application period against the workload size. Data is represented in the form of
a probability distribution plot with the size of the data point being proportional to the
probability value at that point.
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tasks in the system is greater than or approximately equal to a single timer

tick interval. Even then a infrequently executing high priority task has to

execute and push the servicing of the application task to the next timer tick

interval. The servicing of this high priority background load will result in

the timer tick interrupt arriving prior to the completion of the application

task. The task resumes servicing after the timer interrupt service routine

has completed and any other high priority task released during the timeout

queue update has also been completed. The handler overhead contributes to

the jitter. The timer interrupt handler execution time scales with the work-

load from 40 microseconds for 4 tasks to 110 microseconds from 16 tasks.

The jitter due to the timer interrupt ISR alone scales from 0.5% of the

period to nearly 1.3%. As the timer tick frequency increases we observe

that the execution window available to tasks decreases further and they are

more likely to spill over into the next timer interrupt interval. The result is

that corresponding probability of the jitter increases as well. The jitter due

to the interrupt handler is accompanied by the jitter due to the various other

factors outlined above. This results in the jitter getting distributed across a

wider region and having much larger values.

Systems which maintain their timeout queue configuration completely in

software are subject to overload faster than those who do so in hardware.

During overload the system drops lower priority tasks. These systems tend



102

to have a a positive invalid rate i.e. missed tasks and dropped tasks. Tasks

can be either dropped after partial execution or no execution at all or can be

late. This infrequent execution causes the affected task as well as the other

tasks in the system to have large amounts of jitter. This can be seen in the

case of µCOS running with a 1kHz clock and a workload of g721 encode

tasks with a period of 8 ms.When there are 28 tasks executing in the system

it has a miss rate of around 2%. The infrequent execution of the low prior-

ity task causes the overall jitter of the system to be spread across a larger

region than that for a system with a lower workload. Increasing the system

clock resolution causes this overload to occur earlier. Doubling the clock

rate to2 kHz results in the system results in an invalid rate of 2% at a work-

load of 24 tasks.

The jitter for a system with 29 tasks is less widely distributed than that

with 28 tasks for the a clock rate of 2 kHz because the system tends to drop

more tasks completely than execute them partially or late. The distribution
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is thus more representative of a setup with 27 jobs and a possible 28th run-

ning very rarely.

We see that employing the CCAM allows the timeout queue management

to be performed in hardware and increases the time available to the appli-

cation to execute. Thus with a 1kHz clock the configurations using the

CCAM are able to all comfortably execute 29 tasks and have near-zero

invalid rates. Increasing the clock rate has next to no effect on the invalid

rate or the jitter as can be seen in the graphs for µCOS with the CCAM.

Fig. 5.11. Jitter for Preemptive µCOS configurations with a system clock rate of 2 kHz.
The graphs show the variation in jitter for the g721 encode benchmark executing with a
period of 8 ms. The graphs plot absolute jitter as a percent of the application period
against the workload size. Data is represented in the form of a probability distribution
plot with the size of the data point being proportional to the probability value at that
point.
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As the timer interrupt overhead does not scale with the number of tasks

the jitter due to this value also does not change with workload. This results

in the maximum jitter percent dropping to under 5% when the CCA M is

used. As the overhead of the RTOS interference is low increasing the timer

tick frequency has a less visible effect in the case of the configurations

using the CCAM. As earlier for the same workload an increase in the sys-

tem clock resolution is accompanied by an increase in the number of tasks

with non zero jitter.

We also studied the jitter for larger workloads like the ADPCM bench-

marks. We observed that for the same clock rate and the same workload

size the larger benchmark, adpcm decode, tends to have a more evenly dis-

tributed jitter. This is because as each individual task takes longer to com-

plete its execution is more likely to coincide with the servicing of some

other high priority background task like an interrupt etc. This causes the jit-

ter values to be nearly evenly distributed between the maximum and mini-

mum values possible. Increasing clock rate or using the CCAM has the

same advantages as seen in the case of the smaller benchmark.

5.3.2 Non preemptive µC/OS Configurations

We study the jitter in a non preemptive configuration for a system execut-

ing the adpcm decode benchmark at a period of 144 ms.The workload con-
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sists of two tasks which have execution times that are longer than a single

timer tick interval. The factors effecting the jitter in these systems is similar

to those in the case of a preemptive configuration.

Variations in workload The adpcm decode benchmarks execution over-

head can vary with each run by as much as 60 microseconds to as little as

10 microseconds. When there is more than one adpcm decode task execut-

ing the collective variation in execution time can result in jitters of the

order of 300 microseconds or 0.2%. for a system with 7 tasks to nearly 600

us or 0.4% jitter for a system with 10 tasks.

Periodic Background task This task executes with a period of 32 ms.

For light workloads the task tends to interfere with every alternate execu-

tion of the tasks in the system. The task causes a jitter of around 80 micro-

seconds on its own. As the workload increases the periodic task will

interfere with more than one task in the workload. The task with which it

interferes is not fixed. The result is that the effect of this interference on an

individual task varies over time. As tasks execute back to back a single

periodic task iteration may effect different number of tasks.

Polling of Aperiodic Interrupt Source The interrupt in this system is

polled every 2 ms. The application workload consists of tasks which take

more than 2 ms to execute. The result is that the polling task is executed

between every task execution. Occasionally when the task completes exe-
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Fig. 5.12. Jitter for nonpreemptive µCOS configurations . The graphs show the
variation in jitter for the adpcm decode benchmark executing with a period of 144 ms.
Graphs (a)-(d) are for systems using system clock rates of 500Hz while graphs (e)-(h)
are for configurations using 1kHz clocks. The graphs plot absolute jitter as a percent of
the application period against the workload size. Data is represented in the form of a
probability distribution plot with the size of the data point being proportional to the
probability value at that point.
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cution before a polling period has elapsed another read input or write out-

put task may execute before the polling task. This causes a jitter of 8

microseconds or a jitter of less than 0.1%.

Combinations of the above phenomenon The jitter of the various work-

load based factors is amplified when they occur together. The cumulative

effect of these factors can result in jitter as high as nearly 1% of the period.

Operating Systems Overhead Non preemptive configurations have less

operating system overhead as they tend to do away with critical section

protection and eliminate race conditions. Additionally timeout queue

updates are performed only either when a task completes and an update

needs to be performed or when the system is idling and an update needs to

be performed. Tasks are not halted in order to perform this operation and

hence this operation does not interfere as much as in the case of the pre-

emptive case. Occasionally during the execution of a hyper period of the

tasks the timeout queue update may not occur at the same points in an ear-

lier hyper period and it can contribute to a jitter depending on the size of

the workload - 40 - 120 microseconds or less than 0.1% jitter. All this

allows the non preemptive system to execute more tasks than a comparable

preemptive configuration. As in the preemptive case this jitter occurs in

combination with other interference jitter and is more considerable. Using
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the CCAM in non preemptive µCOS configurations has the same benefits

as in the preemptive case. The maximum jitter values are decreased as

operations are performed faster. But the gains in terms of decreased jitter is

minor compared to those achieved by switching from a preemptive config-

uration to a non preemptive one.In the case of a non preemptive configura-

tion using the CCAM it reduces the maximum jitter from 1% to nearly

0.5%.

5.3.3 Echidna

Tasks executing in echidna experience low jitter for light and moderate

workload sizes. The benefit of using a high resolution timer is seen in this

system. Jitter is of the order of 100 us which is less than 1% in the case of a

workload consisting of g721 encode tasks executing with a period of 8

ms.The aperiodic interrupt polling task executes every 4 ms. Every time an

interrupt is serviced there is a jitter of around 10 microseconds or 0.0125%

jitter. The periodic task which occurs every 32 ms interferes with every 4th

task and results in a jitter of just under 1%.

The system tends to overload rapidly. The original configuration of

echidna cannot support more than 14 g721 encode task pairs running with

8 ms periods. This is because the EDF scheduler of echidna selects to exe-

cute late tasks rather than execute newly released tasks which haven’t
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Fig. 5.13. Jitter for Echidna based configurations. The graphs show the variation in
jitter for the two different benchmarks. Graphs (a)-(d) are for g721 encode applications
with an 8 ms period and (e) - (g) are for adpcm decode with 144 ms period. The graphs
in the top half all have high system clock resolutions on the order of 10kHz while the
bottom graphs have resolutions on the order of 1 kHz. The graphs plot absolute jitter as a
percent of the application period against the workload size. Data is represented in the
form of a probability distribution plot with the size of the data point being proportional
to the probability value at that point.
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missed their deadlines. Thus when the system overloads the situation tends

to deteriorate rapidly and it exhibits unpredictable behavior. Additionally

the echidna scheduler has a higher overhead because it has to constantly

poll the time and check if the task at the head of the queue is ready to go

and for adding tasks to the various system queues.

All schemes which employ the CCAM in auto decrement mode whether

they are high or low resolution give low jitter values for all workload

sizes.They do not get overloaded as rapidly as well. This is because they

eliminate the RTOS O(n) operations and replace them with O(1) operations

with low overheads in terms of execution time.

Configurations executing adpcm decode benchmarks at 144 ms have

higher jitter. The variation in the workload size is considerable and can

result in jitter in the order of several percent for larger workloads. In addi-

tion these tasks take longer to execute and a polling task may miss its dead-

line as a consequence. Echidna not only executes late tasks but also does

not drop any iteration of a late task. It executes the task till all “dropped

iterations” have been taken care of. As a result the polling task is executed

repeatedly resulting in additional jitter. Using the CCAM does not elimi-

nate this behavior. It instead lowers the jitter by reducing the overhead of

the operations involved in placing it on the queues etc.
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5.4 Response Time

5.4.1 Preemptive µCOS Configurations

In a preemptive system when the interrupt occurs the system responds by

executing the associated ISR - Interrupt Service Routine. The ISR performs

two functions. The first of these is to acknowledge the interrupt. The sec-

ond is to schedule a high priority aperiodic task which executes the non-

critical portion of the interrupt handling routine. The best case interrupt

latency can be as low as 36 us for µCOS. For preemptive configurations

using the CCAM the minimum latency achieved is 27 us. This is because

the CCAM enables scheduling and semaphore posting to be accomplished

much faster.

The latency of the response depends among other things on the priority of

the response task relative to that of the other ready tasks in the system. As

the interrupt service task has the second highest priority among the tasks in

the system it often ends up being the highest priority task available for exe-

cution resulting in a greater than 80% probability of an interrupt being ser-

viced with minimum latency.

The worst case latency is seen when the aperiodic interrupt occurs when

the timer interrupt is being serviced. Every timer interrupt, µCOS performs
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timeout queue maintenance by walking through the entire task list and

updating the status of each individual task. During this timeout queue
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Fig. 5.14. Interrupt Response Time for Preemptive µCOS configurations. The graphs
show the variation in interrupt response time with variation in workload size and system
clock rates. Graphs (a) -(d) are for configurations with a system clock of 1 kHz while
graphs (e) - (g) are for systems with clock rates of 2 kHz. All systems are executing the
adpcm encode benchmark with a period of 240 ms.The graphs plot response time
against the workload size. Data is represented in the form of a probability distribution
plot with the size of the data point being proportional to the probability value at that
point.
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update scheduling is locked. Thus even though the actual ISR gets exe-

cuted, the high priority response task which it releases cannot be scheduled

till the RTOS completes updating the timeout queue. The CCAM helps
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(a) Non preemptive µCOS - 1kHz clock
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(e)Non preemptive µCOS - 2kHz clock
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(c)CCAM in Auto Decrement Mode- 1kHz clock
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(b) CCAM- 1kHz clock
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(d) CCAM in Auto Decrement Mode
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(f) Non preemptive µCOS - 1kHz clock

with Periodic Feature- 1kHz

Fig. 5.15. Response Time to Aperiodic Interrupts for Non preemptive µCOS configura-
tions. Data in graphs a-e are for the adpcm encode executing with a period of 240 ms
while graph f is for the g721 encode benchmark executing with a period of 16 ms.
Graphs (a)-(d) and (f) are for configurations with system clock rates of 1 kHz while
graph e has a system clock rate of 2 kHz..The graphs plot response time against the
workload size. Data is represented in the form of a probability distribution plot with the
size of the data point being proportional to the probability value at that point.
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reduce the timeout queue maintenance overhead by providing a single

instruction the “tick”. This helps reduce the overhead of the timer interrupt

by nearly 40 to 80% and in turn the worst case latency to as much as 50

microseconds.In the case of configurations which use the CCAM in auto

decrement mode the worst case interrupt latency is further reduced because

the high priority interrupt now performs only a scheduling operation which

has a lower overhead of approximately 10 microseconds.

Further as the number of tasks in the system increases the overhead of

timeout queue maintenance increases. This is because the timeout queue in

µCOS contains all the tasks in the system. Thus we see that the worst case

latency for the original configuration of µCOS increases proportionally

with the number of tasks in the system. For configurations which have

moved their timeout queue maintenance to hardware the worst case latency

is independent of the number of tasks in the system.

We note that increasing the timer tick frequency results in a correspond-

ing increase in the probability that a interrupt servicing may be delayed by

a timeout queue servicing. In the case of systems using the auto decrement

mode there is no alteration in the distribution. This is because the interrupt

occurs at scheduling points which still remain the same.

From figure we see that nearly 20% of the data is uniformly distributed

between the minimum and maximum latencies possible. There is a small
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concentration of data around the 90 microsecond region across all configu-

rations. This point represents the interrupts which occurred when the sys-

tem was idling in a low power mode. The arrival of the aperiodic interrupt

causes the system to switch out of its low power mode. Switching out of

the low power mode takes nearly 40 us. This switching overhead combined

with the latency of servicing the interrupt itself results in a latency in the

order of 90 microseconds.

5.4.2 Non preemptive µCOS Configurations

In the case of all non-preemptive systems, the interrupt is polled every 2

ms. When the polling task detects that an interrupt has been generated it

acknowledges the same and immediately executes the response task. The

minimum response time in non preemptive systems is thus on the order of

10 microseconds. In non preemptive systems the interrupt polling task may

often end up running late because it has to wait for another task to com-

plete. Thus the response time depends on not just the period of the polling

task but also on the execution time of the tasks in the system. The worst

case response time in a system with tasks with low execution overheads is

the polling task period e.g. systems executing G721 Decode/Encode tasks

as seen in Figure 5.15 f. On the other hand tasks running ADPCM Encode

(a larger task) can have worse case interrupt service times on the order of
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execution time of the task, in this case roughly 8 ms. As the interrupts can

occur randomly we see that the interrupt response time has a uniform prob-

ability distribution.

Using the CCAM does not alter the nature of this distribution as it is

workload dependent and not operating system dependent unlike the pre-

emptive configuration

We observe that altering the frequency of the system clock in a non pre-

emptive system has no affect on the response time as can be seen in figure

5.15. The distribution is virtually identical to that in Figure 5.15e.
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Fig. 5.16. Response Time to Interrupt for Echidna based configurations. The graphs
show the variation in the response time to the aperiodic interrupt for Echidna based
systems running the g721 encode benchmark at 16 ms. The x-axis plots increasing
workload sizes while the y-axis represents the response time in ms. The data is
represented in the form of a probability distribution function with the size of the circle
being proportional to an interrupt being serviced at that instance.

(a) Echidna Scheme (b) Echidna executing using the CCAM

(c) Echidna executing using the CCAM in auto decrement mode
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5.4.3 Echidna

In Echidna the interrupt polling task period has been increased to 4 ms.

This results in the interrupt response time being uniformly distributed in

the range of 0 to 4 ms as can be seen in fig 5.15. The distribution spreads

for workloads containing more than 25 task pairs. This is because the sys-

tem is overloaded and the polling task executes later than usual which

results in the further spread. The configurations with the CCAM do not

exhibit this behavior because they are not overloaded at these workloads.

Using the CCAM for echidna has the same affect on response time as in

the case of nonpreemptive µCOS. It only improves the response time at

certain workload levels. This is because the using the CCAM reduces the

RTOS overhead and thus increases the maximum workload size the system

can support.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusions

The CCAM effectively reduces RTOS overhead for operating systems

which employ it. The gains in terms of energy vary with µC/OS based pre-

emptive configurations from 20 to 40% of the original and are around 40%

in the case of non preemptive configurations. In the case of Echidna using

the CCAM with the same clock resolution as the original configuration

results in an increase in the energy consumption by 30%. For lower clock

resolutions though the gains are of the same order. Utilization overhead

decreases in all cases. The kernel utilization µC/OS decreases from 50% to

90% depending on the CCAM configuration employed.

The overall jitter in the system decreases because of lowering the kernel

utilization. The system is also able to run more tasks. In the case of echidna

the number of supported tasks increases by a factor of two. Interrupt

response time is improved in only the preemptive configuration of µC/OS.

It is lowered to nearly 25% of the original value.
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6.2 Future Work

The CCAM currently does not provide an effective solution to handling

priority sorts for systems with tasks with multiple priority levels without

introducing some sort of non-determinism. The model should move from

its unique priority level implementation level.

Another possible area of exploration is the usage of alternate time repre-

sentations which would lower the overhead of the timeout queue update in

the case of high resolution clock systems.

Finally the CCAM energy and execution model should be further vali-

dated. This can be developing a hardware prototype to confirm timing and

possibly energy measurements as well. Additionally porting operating sys-

tems which use different scheduling approaches would help in testing the

generic nature of the device.
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