


ABSTRACT

Title of Thesis: HARDWARE SUPPORT FOR REAL-TIME 

OPERATING SYSTEMS

Degree candidate: Paul Kohout

Degree and year: Master of Science, 2002

Thesis directed by: Professor Bruce L. Jacob
Department of Electrical and Computer Engineering

As semiconductor prices drop and their performance improves, there is a 

rapid increase in the complexity of embedded applications. Embedded 

devices are getting smarter, which means that they are becoming more dif-

ficult to develop. This has resulted in the more frequent use of several tech-

niques designed to reduce their development time. One such technique is 

the use of embedded operating systems. Those operating systems used in 

real-time systems—real-time operating systems (RTOSes)—have the addi-

tional burden of complying with timing constraints. Unfortunately, RTOSes 

can introduce a significant amount of performance degradation. The perfor-

mance loss comes in the form of increased processor utilization, response 

time, and real-time jitter. This is a major limitation of RTOSes.



This thesis presents the Real-Time Task Manager (RTM)—a processor 

extension intended to minimize the performance drawbacks associated 

with RTOSes. The RTM accomplishes this by implementing, in hardware, 

a few of the common RTOS operations that are performance bottlenecks: 

task scheduling, time management, and event management. By performing 

these operations in hardware, their inherent parallelism can be exploited 

more efficiently. Thus, the RTM is able to complete these RTOS operations 

in a trivial amount of time.

Through extensive analysis of several realistic models of real-time sys-

tems, the RTM is shown to be highly effective at minimizing RTOS perfor-

mance loss. It decreases the processing time used by the RTOS by up to 

90%. It decreases the maximum response time by up to 81%. And it 

decreases the maximum real-time jitter by up to 66%. Therefore, the RTM 

drastically reduces the effects of the RTOS performance bottlenecks.
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CHAPTER 1

INTRODUCTION

1.1 Modern Embedded Systems

Embedded devices are often designed to serve their purpose while bring-

ing as little attention to their presence as possible, however, their effect on 

society can hardly go unnoticed. From cell phones and MP3 players to 

microwave ovens and television remote controls, almost everyone interacts 

with embedded systems on an every day basis. This influence has been on 

the increase in recent years and the trend is not slowing down. On the hori-

zon are several devices that are far more interactive, such as electronic 

clothing [14, 16], and implantable artificial hearts [8]. This rapid evolution 

of the embedded system industry is largely due to numerous advances in 

technology and ever changing market conditions.

An embedded system is a computing system that is designed to solve a 

specific problem. These systems usually include one or more microproces-

sors, some I/O devices, and some memory—both RAM and ROM. As 

opposed to general-purpose computers, the software that embedded sys-

tems run is static, and it is sometimes referred to as firmware. The embed-
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ded system, including the firmware, must be carefully designed, because 

any mistake may require a recall. It is also important to minimize both the 

manufacturing and the operating costs of the system. This is achieved by 

minimizing several aspects of the design, such as the die area, the amount 

of memory, and the power consumption. These are the defining characteris-

tics of an embedded system.

As microcontroller and DSP processing power have increased exponen-

tially, so have the demands of the average application [11]. Embedded 

devices have been heading in the directions of greater algorithm intricacy, 

higher data volume, and increased overall functionality. This trend has 

resulted in the industry producing more complicated systems that meet 

these growing requirements. This complexity occurs at the chip-level hard-

ware, the board-level hardware, and the embedded software as well.

Today’s embedded market place is booming, due to less expensive elec-

tronic components and new technologies. The prices of processors, memo-

ries, and other devices have been dropping, while their performance has 

been on the rise [5]. This has made the implementation of many applica-

tions possible, when only a few years ago they were not. Several key tech-

nologies—the Internet, MPEG audio and video, GPS, DVD, DSL, and 

many more—have further expanded the realm of possibility and created 

new market sectors. These lucrative new opportunities have caught the 
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attention of countless corporations and entrepreneurs, creating competition 

and innovation. This is good for the consumer, because the industry is 

under a great deal of pressure to develop products with quick time-to-mar-

ket turnaround and to sell them as inexpensively as possible.

The increased complexity of embedded applications and the intensified 

market pressure to rapidly develop cheaper products have caused the indus-

try to streamline software development. Logically, embedded software 

engineers have looked at how this problem has already been addressed in 

other areas of software development. One obvious solution has been the 

increased use of high-level languages, such as C, C++, and Java. Surpris-

ingly, low-level assembly is still heavily used today, mostly because of sim-

plistic applications, compiler inefficiency, and poor compiler targetability, 

due to complicated memory models and application specific instructions, 

such as the multiply-and-accumulate (MAC) instruction. However, these 

factors are no longer holding back high-level languages as applications 

become more complex, compiler technology evolves, and processor archi-

tects eliminate poor compiler targetability. The emergence of powerful 

integrated development environments (IDEs) for embedded software has 

significantly contributed to making software development faster, simpler, 

and more efficient [19]. Software development has been further stream-

lined with the advent of purchasing third party software modules, or intel-
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lectual property (IP), to perform independent functions required of the 

application, thereby shortening time-to-market. Finally, software develop-

ment has been made simpler, quicker, and even cheaper with the incorpora-

tion of embedded operating systems. Unfortunately, operating systems do 

introduce several forms of overhead that must be minimized. This overhead 

will be discussed in Section 1.2.

Real-time systems are embedded systems in which the correctness of an 

application implementation is not only dependent upon the logical accu-

racy of its computations, but its ability to meet its timing constraints as 

well. Simply put, a system that produces a late result is just as bad as a sys-

tem that produces an incorrect result [21]. Because of this need to meet 

timing requirements, implementations of real-time systems must behave as 

predictably as possible. Thus, their supporting software must be written to 

take this into account. The operating systems used in real-time systems—

real-time operating systems (RTOSes)—are no exception. Therefore, in 

addition to their need to minimize overhead, RTOSes also have the goal of 

maximizing their predictability. Whether or not an RTOS can be used for a 

particular application depends upon its ability to optimize these constraints 

to within specified tolerance levels. This can prove to be quite difficult with 

modern embedded processor and RTOS designs.
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1.2 Real-Time Operating Systems

RTOSes have become extremely important to the development of real-

time systems. It has been projected that over half a billion dollars in ship-

ments of RTOSes will be sold in 2002 and this number is on the rise. Figure 

1.1 illustrates this point. This has been increasing the pressure to optimize 

the efficiency of RTOSes by maximizing their strengths and minimizing 

their weaknesses. A closer look at their advantages and disadvantages, both 

with the development and the performance of real-time systems, will help 

to illustrate these issues.

Figure 1.1: RTOS Shipments Forecast ($ million). The 
annual trend for the millions of dollars spent on 
RTOSes.
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1.2.1 Development

RTOSes affect the real-time system development process in numerous 

ways. Some of the effects include hardware abstraction, multitasking, code 

size, learning curves, and the initial investment in the RTOS. None of these 

factors should be taken lightly.

Hardware abstraction, or the mapping of processor dependent interfaces 

to processor independent interfaces is one advantage of RTOSes. For exam-

ple, most processors include hardware timers. Each processor may have a 

completely different interface for communicating with their timers. Hard-

ware abstraction will include functions in the RTOS that interface with the 

hardware timers and provide a standard API for the application-level code. 

This reduces the need to learn many of the details of how to interface with 

the various peripherals attached to a processor, thereby reducing develop-

ment time. Hardware abstraction makes application code more portable.

Multitasking is an extremely useful aspect of RTOSes. This is the ability 

for several threads of execution to run in pseudo-parallel. On most proces-

sors, only one task can be executing on a processor at a time. Multitasking 

is achieved by having a processor execute a task for a certain small interval 

of time and then execute another, and so forth, as seen in Figure 1.2. This is 

known as time-division multiplexing. The effect is that each task shares the 

processor and uses a fraction of the total processing power. If an RTOS 
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supports preemption, then it will be able to stop or preempt a task in the 

middle of its execution and begin executing another. Whether or not an 

RTOS is preemptive has a large influence on the behavior of the real-time 

system. However, in some systems, preemption may cause problems 

known as race-conditions, which can lead to data corruption and deadlock. 

Fortunately, these problems can be solved with careful software develop-

ment, so they are not a focus of this study. Whether preemption is sup-

ported or not, multitasking allows for the application to be divided into 

multiple tasks at logical boundaries, resulting in a system model as shown 

in Figure 1.3. This vastly simplifies the complexity of programming the 

application.

Figure 1.2: Multitasking. Tasks share the processor by using time-division 
multiplexing.

Task A Task CTask ATask A

time

Task BTask B Task C

Task Task Task Task

RTOS

Embedded Processor

Embedded

S/W

Embedded

H/W

Figure 1.3: Model of a Real-Time System With an RTOS. A 
number of tasks are managed by an RTOS; all of which run 
on a microprocessor.
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The code size must be taken into account when developing real-time sys-

tems. RTOSes often introduce quite a bit of code overhead to the system. 

Fortunately there are several different RTOSes available with many differ-

ent footprint sizes. Also, there are many RTOSes that are scalable, creating 

a variable sized footprint, depending on the amount of functionality 

desired.

Unfortunately, there are other overheads associated with RTOSes. There 

are several different operating systems, each supporting a limited number 

of processors and each with its own API to learn. The learning curve will 

increase development time whenever an RTOS is used that the developers 

are unfamiliar with. Also, if a proprietary one is used, it must be initially 

developed. If it is developed by a third party, it must be paid for, either on a 

one-time or per-unit basis. 

These factors must each be taken into consideration when choosing an 

appropriate RTOS for a given design. Any one of them can have an 

extremely significant effect on the development process.

1.2.2 Performance

The use of RTOSes has several drastic effects on the performance of real-

time systems. Namely, they have great influence upon processor utilization, 
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response time, and real-time jitter. All of these issues must be taken into 

consideration, before an RTOS is chosen.

The processor utilization refers to the fraction of available processing 

power that an application is able to make use of. RTOSes often increase 

this fraction by taking advantage of the otherwise wasted time while a task 

is waiting for an external event and running other tasks. However, in order 

to provide the services available to a particular RTOS, including multitask-

ing, preemption, and numerous others, a processing overhead is introduced. 

It is important to note that although this processing overhead may be signif-

icant, the services provided by the RTOS will simplify the application-level 

code and reduce the processing power required by the application. This 

will make up for some of the RTOS overhead. Also, many RTOSes are 

scalable, but they cannot be perfectly optimized for every application with-

out devoting a significant amount of development time to them. In other 

words, since most RTOSes are designed to be general-purpose to at least 

some degree, they will introduce a processing overhead due to the func-

tions they perform that are suboptimal or unnecessary for the given appli-

cation. This is an unavoidable performance hit.

The response time is defined as the time it takes for the real-time system 

to response to external stimuli. As with an aperiodic server model, this is 

defined as the time between the occurrence of an interrupt signal and the 
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completion of a user-level response task, as illustrated in Figure 1.4. The 

response task is generally triggered by an interrupt service routine (ISR). 

This delay is highly dependent on several factors, including whether or not 

the RTOS is preemptive and whether polling or interrupts are used to sense 

the stimulus. With preemption and interrupts, the system will have a much 

shorter average response time, because the current task does not have to 

complete before the response occurs. Without preemption, the system will 

have a widely distributed response time, but a smaller minimum response 

time, because there is less task state to maintain. The exact effects of 

RTOSes on response time are widely varying, but, in general, RTOSes 

increase response time to at least some degree. This is due to the additional 

processing the RTOS performs that is required to maintain the precise state 

of the system, including the status of each task. However, the magnitude of 

this effect can be reduced if the RTOSes have been optimized for response 

time.

Interrupt

ISR Response Task

Figure 1.4: Response Time. The interrupt is serviced by its ISR as soon as 
interrupts are enabled. The ISR then triggers the response task, which the 
RTOS will execute as soon as it can.

Response Time
time
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Several definitions of real-time jitter exist, most of which are based upon 

the variation in the execution times of a given periodic task. This variation 

is caused by interference with interrupts and other tasks, as shown in Fig-

ure 1.5. A great deal of this jitter is caused by the nature of the application-

level code and is unavoidable. However, the RTOS can significantly 

increase the amount of jitter and reduce the predictability of the real-time 

system’s behavior. This lack of predictability is due to portions of the 

RTOS code that are called frequently and with execution times that are 

quite large or that change with respect to variable system parameters. This 

reduced predictability may prohibit an application from meeting its design 

constraints.

When an RTOS is being evaluated for a design, its performance effects 

must be carefully considered. A real-time system’s behavior can almost 

completely depend on the design of the RTOS.

P P – ∆P + ∆

Task A

Figure 1.5: Real-Time Jitter. The execution of Task B pushes back the 3rd 
execution of Task A, causing the task completion times to deviate from their 
ideally periodic nature.

Task ATask ATask A

Late

time

Task B
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1.3 Addressing the Performance Problem

The negative effects of RTOSes on the performance of real-time systems 

can be, in some cases, unacceptable. The drawbacks affecting the develop-

ment process can be quite serious as well. However, they are not absolutely 

prohibitive. They can be compensated for in several ways, such as provid-

ing training for the software developers or by increasing the amount of 

memory in the hardware design itself. In order to decrease processor over-

head, response time, and real-time jitter, much more significant design 

modifications are required. The most straightforward solution would be to 

increase the processing power of the system by using a faster processor. 

Unfortunately, this may be cost prohibitive or even impossible with the pro-

cessor currently available. Therefore, it would be highly advantageous to 

analyze the sources of the decreased performance and formulate a possible 

solution.

1.3.1 Bottlenecks within RTOSes

In order to propose a solution to the problem of decreased performance 

when using RTOSes, it is necessary to analyze the problem at a finer level 

of detail, identify the root of the problem, and characterize its nature. This 

analysis has been accomplished in this study by using several techniques, 

including: (1) examining traces of the execution of various real-time appli-
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cations using a sample set of RTOSes, (2) from these traces, observing 

which RTOS functions are causing the performance of the system to 

degrade, and (3) for each of these functions, determining how often it is 

called and for how long it executes. Through this analysis, it has become 

apparent that the source of much of the decreased performance can be 

traced to a small subset of functions. These functions happen to execute 

most of the core operations of RTOSes, namely task scheduling, time man-

agement, and event management. A further analysis of these functions 

reveals that they are executed very frequently, that many of them perform 

highly inter-related actions, and that these actions exhibit a fundamental 

parallelism. However, this parallelism has not been exploited, due to the 

inherent limitations associated with implementing the functions completely 

in software. This underlying parallelism is the key to solving the problem 

of the decreased performance associated with RTOSes. More details on 

these bottlenecks can be found in Chapter 2.

1.3.2 Real-Time Task Manager

Using hardware to optimize embedded processors for a specific purpose 

is a growing trend for several reasons. Although adding extra hardware 

does not come for free, it is becoming less costly. Also, software suffers 

from several design constraints, such as the inability to perform a simple 
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operation on an array of data in a constant amount of time. The implemen-

tation of a hardware solution allows for these sometimes severe design con-

straints to be circumvented. By taking advantage of the benefits of a 

hardware solution, the RTOS performance problem can be reduced.

Adding hardware has some drawbacks. Not only will it increase the cost 

of the initial investment into the design, it, more importantly, leads to 

increasing the die area on every processor, thereby increasing the cost for 

every unit shipped. And the more complex the hardware is, the more the 

cost will be. This increased cost could prevent the manufacturer from keep-

ing up with its competitors. Fortunately, the cost of logic has been dropping 

at the fast rate of approximately 25-30% per year [7]. This has significantly 

influenced the trend to put more custom hardware on embedded proces-

sors.

The performance improvements of a hardware implementation comes not 

only from the optimized logic, but from the elimination of the fundamental 

limitations of sequential programming. While software is very efficient at 

performing intrinsically sequential operations, it is not able to quickly carry 

out many naturally parallel actions. Hardware, however, has almost no lim-

itation on the amount of available parallelism that can be taken advantage 

of. For instance, a hardware implementation could determine the maximum 

value from a set of N integers in a relatively small constant time. On the 
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other hand, a software implementation would have to serialize this process 

by using a loop to compare each value to a running maximum, resulting in 

a slow O(N) execution time. This is a limitation of the architecture of mod-

ern microprocessors, which are merely machines that execute lists of rela-

tively simple commands. This makes them highly flexible, but not always 

efficient for every task. This software limitation has contributed to the 

move towards custom hardware.

One must also consider how often these operations are going to be per-

formed. The performance gain that can occur from moving an operation 

from software to hardware is directly dependent upon the frequency at 

which the operation is performed. Many of today’s embedded processors 

are designed for embedded applications in general. Each application that 

uses such a processor may perform a particular operation at completely dif-

ferent frequency. This makes it very difficult to optimize the performance 

of a processor for every application. However, there is a trend to build more 

application specific processors [23]. These processors are customized for 

various application areas, such as video processing, telecommunications, 

and encryption. Processor manufacturers can estimate, with more certainty, 

the types of operations that applications will be performing on them. This 

allows for frequently used functionality to be put in hardware, which is 
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another reason why it is more common to see custom hardware in modern 

processors.

These factors and the nature of the causes of RTOS performance loss sug-

gest that RTOSes would greatly benefit from a custom hardware solution. 

This is the motivation for the Real-Time Task Manager (RTM), a hardware 

module designed to optimize task scheduling, time management, and event 

management—the main sources of performance loss in real-time operating 

systems. The RTM is designed to be an extension to the processor that 

makes several common functions available in more efficient hardware 

implementations, for an RTOS to take advantage of. The RTM is also 

designed to be compatible with as many RTOSes as possible, not with just 

a select few. It is intended to reduce the common problems associated with 

RTOSes—increased processor overhead, response-time, and real-time jit-

ter. The details of the RTM are located in Chapter 3.

The effectiveness of the RTM has been determined in a formal manner. 

Measurements have been taken of the performance impact of the RTM, by 

analyzing accurate models of realistic real-time systems. These measure-

ments show that processor utilization is reduced by up to 90%, maximum 

response time by up to 81%, and maximum real-time jitter by up to 66%.
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1.4 Overview

The remainder of this thesis is organized into several chapters. In Chapter 

2, an analysis of the performance bottlenecks for real-time operating sys-

tems is presented. In Chapter 3, the behavior and architecture of the Real-

Time Task Manager is described. In Chapter 4, the experimental method is 

fully detailed. In Chapter 5, the experimental results are presented and ana-

lyzed. In Chapter 6, related work is explained. Finally, in Chapter 7, the 

RTM is summarized and future work is highlighted.
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CHAPTER 2

BOTTLENECKS IN REAL-TIME OPERATING SYSTEMS

Real-time operating systems do have several advantages, but they can 

also have significant negative effects on sensitive performance issues, 

including processor utilization, response time, and real-time jitter. These 

weaknesses may lead to serious problems in the design of real-time sys-

tems. Therefore, it would be beneficial to reduce or eliminate them. In 

order to accomplish this, a complete analysis of the causes of these weak-

nesses is necessary. It has been determined that these causes are primarily 

isolated to three key areas: task scheduling, time management, and event 

management.

To better understand what these bottlenecks are, it is necessary to intro-

duce a few key concepts. Every RTOS maintains a list in some sort of data 

structure, with one task per entry, known as the task control block (TCB) 

list. Most or all of the information that an RTOS has about each task is 

located in this list. For the most part, each task is in one of a few different 

states at any given time: ready, waiting for time to elapse, or waiting for 

interprocess communication. On a uniprocessor system, only one task can 
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be executing at any given time. One of the core components of an RTOS is 

the task scheduler, whose purpose is to determine which of the ready tasks 

should be executing. If there are no ready tasks at a given time, then no task 

can be executed, and the system must remain idle until a task becomes 

ready. Another central part of an RTOS is keeping track of time. Time man-

agement is the part of the RTOS that precisely determines when those tasks 

waiting for time to elapse have finished waiting, therefore becoming ready 

tasks. Precise and accurate timing is crucial to the most common type of 

task in real-time systems—periodic tasks. Finally, interprocess communi-

cation is a powerful capability present in every true RTOS. IPC allows for 

the details of communication amongst tasks to be passed to the scheduler. 

This provides a clean interface between tasks that allows them to effec-

tively sleep until their desired synchronization events or data arrive. With-

out IPC, the software development required to guarantee logical accuracy 

in an application implementation would be far more difficult, if not impos-

sible. A necessary part of IPC, called event management, can be a severe 

performance hindrance. All three of these major components of RTOSes 

cause performance limitations.

The remainder of this chapter will present analyses of these bottlenecks. 

The RTOS components, along with any necessary background information, 

will be described in detail. Then they will be characterized in terms of the 
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complexity of the operations that implement them and the frequency at 

which these operations are performed. Finally, the effects of these charac-

teristics on the processor utilization, response time, and real-time jitter will 

be presented.

2.1 Task Scheduling

One of the most highly researched topics in RTOS design is task schedul-

ing [17]. This is defined as the assignment of tasks to the available proces-

sors in a system [13]. In other words, it is the process of determining which 

task should be running on each processor at any given time. In general, a 

real-time system may include several microprocessors, however, the 

remainder of this analysis will assume a uniprocessor system. Scheduling 

is a very broad subject that needs to be described in detail.

There are many different types of task scheduling. The three most com-

mon types are clock-driven, round-robin, and priority-driven. Clock-driven 

schedulers use precomputed static schedules indicating which tasks to run 

at specific predetermined time instants. This scheduling algorithm mini-

mizes run-time overhead. Round-robin schedulers continuously cycle 

through all ready tasks, executing each one for a predetermined amount of 

time. This basic algorithm is easy to implement and fair, in terms of the 

amount of processing time allotted to each task. Priority-driven schedulers 
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require that each task has an associated priority level. The scheduler always 

executes a ready-to-run task with the highest priority. This is the most com-

mon form of task scheduling in real-time systems and will be the scheme 

targeted for the remainder of this analysis.

Priority-driven scheduling can be further sub-classified into static and 

dynamic priority categories. Static priority scheduling means that the prior-

ity of each task is assigned at designed time and remains constant. The 

most common method of determining the static priority to assign to each 

task is the rate-monotonic algorithm (RMA) [12], in which a periodic 

task’s priority is proportional to the rate at which it is executed. Conversely, 

dynamic priority schedulers are those that change the priorities of tasks 

during run-time. A well-known dynamic-priority scheduling scheme is the 

earliest deadline first (EDF) algorithm [12], in which task priorities are 

proportional to the proximity of their deadlines. Dynamic priority schedul-

ing can result in a greater utilization of the processor; however, it intro-

duces a larger computational overhead and less predictable results. In fact, 

many of the most popular commercial RTOSes use static-priority schedul-

ing and do not provide sufficient support for dynamic priority scheduling 

[13]. The remainder of this study only deals with systems that use static 

priority scheduling.
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The complexity of static priority scheduling, as with many operations, 

varies widely with the exact implementation. There are many possible 

implementations for this type of task scheduling. The brute force way is to 

walk through the TCB list and find the task with the highest priority that is 

ready-to-run. The complexity of this method scales linearly with the num-

ber of tasks. An obvious improvement would be to keep a separate list of 

just the tasks that are ready-to-run, sorted by their priorities. However, this 

improvement just moves the complexity of walking through the list to 

inserting tasks into the sorted list. In the case where all tasks have a unique 

priority, an innovative optimization is to maintain a bit-vector in which 

each bit indicates whether the task with a specific priority is ready or not, 

as illustrated in Figure 2.1. By associating the bit position with the priority, 

the highest priority ready task can be determined by calculating the least 

Figure 2.1: Bit-Vector Scheduling Example. 
Each bit indicates whether or not the task 
with that priority is ready, where a 1 means 
ready and a 0 means not ready. In this 
example of an 8-bit bit-vector, the tasks with 
priorities 1, 3, 4, and 7 are ready. By 
determining the least significant bit that is set 
to one in the bit-vector, the highest priority 
ready task will be found, which, in this case, 
is the task with priority 1.

0101 1001

0124 3567
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significant bit that is set high [9]. This can be done in constant time, if the 

processor has a count-leading-zeros instruction, or by using a lookup table. 

However, the size of a lookup table scales exponentially with the maximum 

number of tasks allowed in the system. Static priority task scheduling may 

be simpler than dynamic priority scheduling, but it is still a non-trivial task.

The frequency that the task scheduler is invoked can be quite high. The 

scheduler is initiated when the application makes various system calls that 

change the status of a task, such as creating and deleting tasks, changing 

task priorities, delaying a task, and initiating interprocess communication. 

Nothing can be said in general about the rate at which these calls occur, 

except that it depends only upon how much the application uses them. 

Other situations in which the scheduler is initiated depend upon whether or 

not the RTOS supports preemption. For a preemptive RTOS, after every 

interrupt, including the timer tick interrupt, the scheduler is initiated. This 

allows for a newly readied task to preempt the currently executing one. 

This component of the scheduling frequency scales linearly with the fre-

quency of the timer tick interrupt, as well as with that of all other inter-

rupts. For non-preemptive RTOSes, scheduling occurs at specified 

scheduling points within the task, as well as after every interrupt that 

occurs during time intervals when the processor is idle. Because the sched-

uling behavior of non-preemptive systems depends on whether or not the 
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system is idle, this component of the scheduling frequency scales partially 

with the frequency of the interrupts and partially with the frequency at 

which scheduling points are reached. The frequency that task scheduling is 

performed can become quite large.

The scheduling functions performed by an RTOS cause the real-time jit-

ter of the system to be increased in all but the simplest applications. The 

more frequently the scheduler is invoked, the more frequently real-time jit-

ter will be higher. So as any of the previously mentioned factors increase 

the scheduling frequency, the average jitter will increase too. Any differ-

ences in the processing time required to perform scheduling will add to the 

real-time jitter that the tasks will experience. This processing time may 

increase linearly with the number of tasks, causing the real-time jitter to do 

the same. If the number of tasks in the system is not known ahead of time, 

this will amplify the problem by adding uncertainty to what one can say 

about how much jitter the real-time system will exhibit. This increased and 

less predictable jitter may be unacceptable for a given real-time applica-

tion.

The effects of scheduling on response time depend heavily upon whether 

or not the RTOS is preemptive. When an aperiodic interrupt occurs and 

schedules a task, a portion of the response time is equal to the time it takes 

to schedule the task. Again, this may vary with the number of tasks, possi-
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bly adding to the lack of predictability of the response time of the system. 

However, this is only a portion of the response time. When an aperiodic 

interrupt occurs during the execution of a critical section of code, interrupts 

will be disabled and it will not be serviced right away, thus adding to 

response time. Most of the core functions of the RTOS, including task 

scheduling, require interrupts to be disabled, so as to prevent the system 

from entering an invalid state. Therefore, the longest time that it takes to 

perform task scheduling or any other critical section of code adds to the 

maximum response time; and the longer and more frequent that they take in 

general, the greater the average response times will be. For preemptive sys-

tems, these are the only effects of scheduling on the response time. There-

fore, because the time it takes to perform task scheduling may scale 

linearly with the number of tasks, the response time may do the same for 

preemptive systems.

For non-preemptive systems, there may be another component to the 

response time. This additional component is not present when the proces-

sor is idle. It is only encountered when the processor is executing a task. It 

is a result of the fact that the system must reach a scheduling point before 

the response task can run. So the length of the periods in between schedul-

ing points greatly influence the response time for the non-preemptive case. 

Because these periods between scheduling points are usually much longer 
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than the duration of critical sections and much longer than the time it takes 

to perform task scheduling, they dominate the response time when they are 

encountered. Thus the response time for interrupts that occur when the pro-

cessor is executing a task in a non-preemptive system is generally not 

affected by task scheduling. When the processor is idle, however, the 

response time of a non-preemptive system has the same characteristics as a 

preemptive one. Overall, the increase and lack of predictability in the 

response time can exceed the tolerance of the application.

Additionally, an overall performance hit is incurred simply because per-

forming task scheduling consumes processing time. The processor utiliza-

tion of the RTOS due to task scheduling is proportional to both the 

frequency and complexity of the scheduling. Since both of these compo-

nents may increase linearly with the number of tasks, there may be a qua-

dratic relationship between the number of tasks in the system and the 

processor utilization due to task scheduling. This overhead can quickly get 

out of hand and cause the system to slow down significantly.

It is quite clear that task scheduling is a bottleneck to the performance of 

RTOSes. The potentially high complexity and frequency of task scheduling 

are the underlying causes of the bottleneck. The result is reduced predict-

ability, in terms of real-time jitter and response time, as well as increased 



27

processing overhead. It is for these reasons that task scheduling is an 

important factor in RTOS design.

2.2 Time Management

One of the defining characteristics of an RTOS is its ability to accurately 

and precisely keep track of time. For the remainder of this analysis, time 

management will be used to refer to the RTOS’s ability to allow tasks to be 

scheduled at specific times. This is achieved by having the tasks block for a 

specific amount of time, after which they will become ready-to-run. The 

issues involved with time management must be described in detail in order 

to understand why it is a bottleneck.

The need for timing services comes from the fundamental nature of real-

time systems. As previously mentioned, the success or failure of a real-time 

system is not only based on the logical correctness of its output, but its abil-

ity to satisfy its predetermined timing requirements. To elaborate, the basic 

model for a real-time system includes a collection of tasks, each of which is 

assigned pairs of release times and deadlines [13]. A release time denotes 

the earliest moment at which a task is allowed to start a calculation. Like-

wise, a deadline is the latest time at which a task is allowed to finish the 

calculation. Each release time is associated with a deadline, the two of 

which denote a timing constraint. Tasks may have several pairs of release 
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times and deadlines, as in the case of periodic tasks. In all cases, it is the 

job of the RTOS’s time manager to ensure that all timing constraints are 

met. This is not always a simple undertaking.

There are several requirements for an RTOS to implement time manage-

ment. First of all, there needs to be some sort of hardware that provides a 

means to accurately keep track of time. This could be in the form of an 

external real-time clock that interfaces with the processor. The most com-

mon scenario is that the processor has one or more internal hardware tim-

ers. Whatever the case, the timing device needs to provide some way of 

communicating to the software how much time has elapsed. This may be 

done by allowing the RTOS to read a counter register from the device. 

More commonly, the timer can be programmed to trigger precise periodic 

interrupts. These interrupts let the RTOS know that one clock tick (not to be 

confused with the CPU’s clock) has elapsed. Timer interrupts are necessary 

for preemptive RTOSes, because there needs to be some way of stopping a 

task from running in the middle of its execution. It would be impossible to 

service a clock tick interrupt every clock cycle, so the timer is programmed 

with a much larger period, on the order of hundreds of microseconds to 

milliseconds [13]. The period of the clock tick is an RTOS parameter that 

determines the resolution or granularity at which it has a sense of time. If 

the granularity is increased, the application will have more flexibility with 
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the scheduling patterns of its tasks. Most real-time applications require a 

high level of clock tick resolution. All modern methods of implementing 

time management are based upon this basic model.

Like task scheduling, the complexity of the time manager also depends 

upon how it is implemented. One method that is used is to maintain a 

counter for each entry in the TCB list that indicates the number of timer 

interrupts to wait until that task should become ready-to-run. Whenever a 

clock tick is processed, the TCB list must be traversed and the counter for 

each task that is waiting for its next release time must be decremented. 

When a counter reaches zero, then the task status is set to ready-to-run. The 

complexity of this method scales linearly with the number of tasks and can 

become quite large. Another common method of implementing time man-

agement is to maintain a queue of software timers, in which each element 

indicates when the specified task should be made ready-to-run. Each ele-

ment does not contain the absolute number of clock ticks to wait, but the 

number of clock ticks in addition to those of all previous elements in the 

queue, as illustrated if Figure 2.2. This queue of time deltas, also known as 

the UNIX callout table [2], makes it only necessary to decrement the 

counter at the head of the queue. On the other hand, it becomes more com-

plex to initiate a delay, because the queue must be traversed to insert a data 

structure representing the delay for a specified task, instead of just initializ-
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ing a counter. Also, the maximum amount of time that it takes to process a 

clock tick is not constant, because there may be entries in the queue with a 

time delta of zero, meaning that they should be made ready-to-run at the 

same clock tick as the previous task in the queue. This results in a nonde-

terministic amount of time to complete this operation. Unfortunately, there 

is no great way to implement time management in software alone.

The rate at which RTOS time-keeping operations are performed can 

become extremely high. Exactly when they are performed depends entirely 

upon whether or not the RTOS supports preemption. By definition, pre-

emptive systems allow for higher priority tasks that become ready to pre-

empt or stop the execution of lower priority tasks. Consider a scenario in 

which a low priority task is running when a high priority task is waiting for 

one clock tick to elapse. When the next clock tick interrupt occurs, a pre-
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Figure 2.2: Software Timer Queue Example. a) In this example, 
tasks A and B will be released after three clock ticks, task C will be 
released after four clock ticks, and task D will be released after six 
clock ticks. b) Each queue entry indicates the task to release and 
the number of additional clock ticks to wait.
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emptive RTOS should be able to perform a context switch and execute the 

high priority task. Therefore, preemptive RTOSes must perform all time 

management operations in the clock tick interrupt handler. So the fre-

quency that the time management operations are executed is equal to the 

granularity of the clock tick. This can become extremely expensive, 

because many real-time applications require a very high level of granular-

ity. Alternatively, a non-preemptive RTOS does not need to determine 

which task to run next until the currently executing task reaches a task 

scheduling point. Therefore, the clock tick interrupt handler for non-pre-

emptive RTOSes only needs to increment a counter. The RTOS must then 

process all the new clock ticks that have elapsed when a task scheduling 

point is reached. An exception to this rule is when the processor is idle, 

during which the RTOS needs to process every clock tick interrupt immedi-

ately. In the non-preemptive case, the frequency of the time management 

operations scales with both the frequency of the interrupts and the fre-

quency at which scheduling points are reached. Although the time monu-

ment operations are less frequent for non-preemptive RTOSes, they still 

occur quite often.

The time management operations that RTOSes need to execute in the 

background negatively affect the real-time jitter of the system. Increased 

jitter is inevitable due to the fact that the amount of time that it takes to per-
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form any software implementation of the time-keeping operations varies 

with the system state. If, for example, a software timer queue is used, the 

amount of time that it takes to insert an entry into the queue depends upon 

how many tasks have entries already in the queue, and what their time del-

tas are. Also, whether software timers are used or not, the time it takes to 

process a clock tick is nondeterministic because the number of tasks that 

will become ready-to-run due to each clock tick depends upon the number 

of tasks to schedule each tick. Unfortunately, this type of information is 

generally not predetermined, so few guarantees can be made about the 

amount of real-time jitter a system will experience. The nature of the afore-

mentioned complexity of the time management operations cause the mag-

nitude of the real-time jitter to increase linearly with the number of tasks in 

the system when time-keeping operations interrupt task executions. Simi-

larly, the frequency of this increased real-time jitter increase linearly with 

the frequency of the time management operations, mentioned above. These 

effects may cause the system to fail to meet the timing constraints of the 

application.

Like task scheduling, the effects of time management on response time 

depend heavily on whether or not the RTOS is preemptive. As described in 

section 2.1, the response time for non-preemptive systems when the pro-

cessor is executing a task is dominated by the lengths of the intervals 
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between scheduling points. Thus, as with scheduling, time management 

generally does not significantly affect the response time for interrupts that 

occur during the execution of a task in non-preemptive systems. For the 

preemptive case, however, time management operations do have a consid-

erable effect. There are only two scenarios in which time-keeping opera-

tions affect the response time in preemptive systems: (1) responses to 

interrupts that occur during the execution of these operations are delayed, 

because interrupts are disabled throughout their execution; and (2) clock 

tick interrupts that occur just after the occurrence of another interrupt delay 

the corresponding response, because clock tick interrupts have higher pri-

ority. In either case, the response time is increased by part or all of the time 

taken to perform the time-keeping operation. Because the time needed to 

perform this operation increases linearly with the number of tasks in the 

system, so does the response time, for preemptive RTOSes. Also with a 

preemptive system, the higher the clock tick granularity, the more often 

these cases will occur. In fact, time management is often the dominant fac-

tor in response time delay for such systems.

As with all RTOS operations, a performance overhead is introduced 

because of the processing time used to execute time-keeping operations. 

The processor utilization of the RTOS due to time management is propor-

tional to both the frequency and complexity of the operations that imple-
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ment it. Because all implementations of time management operations 

traverse a list, the complexity always increases linearly with the number of 

tasks. Furthermore, increasing the clock tick granularity increases the fre-

quency. These factors can easily cause the overhead to become too much 

for the system to handle.

Time management is definitely a bottleneck to the performance of 

RTOSes. The particularly high frequency and complexity of time-keeping 

operations are the underlying causes of the bottleneck. As with task sched-

uling, time management results in reduced predictability, in terms of real-

time jitter and response time, as well as increased processing overhead. 

Therefore, the efficiency of the time management implementation is a key 

element of every RTOS’s performance.

2.3 Event Management

Most real-time operating systems today integrate communication and 

synchronization between tasks—known as interprocess communication 

(IPC)—into the RTOS itself. Such services often include support for sema-

phores, message queues, and shared memory. This allows for the applica-

tion development to be simplified and for the scheduler to make better 

decisions about which task to run. Applications access these integrated ser-

vices through the RTOS’s API. A major component of IPC involves keep-
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ing track of which tasks are waiting for IPC and determining which tasks 

should accept IPC. This component of IPC is referred to in this analysis as 

event management. Although RTOS support for IPC has numerous advan-

tages, event management may become a hindrance to the performance of 

the system. The factors which cause this performance loss must be charac-

terized, if a solution is to be proposed.

Most services categorized as IPC perform event management. This RTOS 

operation is what mediates access to resources. This is done when tasks 

make requests for access to resources and, conversely, when tasks release 

access to resources. The request may not be fulfilled immediately, in which 

case the task is said to block, or wait for the requested resource to become 

available. The scheduler has knowledge of which tasks are blocked and 

does not consider those tasks for execution; when a task blocks, another 

task will be executed. When a resource does become available, it is 

released, or made accessible to any tasks that may be blocking on it. If 

tasks were blocked while waiting for this particular resource, the one such 

task with the highest priority is unblocked and will again be considered for 

execution by the scheduler. If the priority of the recently unblocked task is 

higher than the priority of the currently executing task, a context switch 

will occur, and the unblocked task will resume execution. Most RTOSes 

use this model of event management.
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Again, the complexity of the event management operations depends com-

pletely upon the implementation. One approach is to include an event iden-

tifier field in the TCB of each task that indicates what specific resource the 

task is blocking on, if any. When a task blocks, this field is simply written 

with the appropriate identifier, and the task status is set to indicate that the 

task is pending on IPC. This operation can be performed in a relatively 

small constant time. However, when the resource is released, the entire 

TCB list must be traversed to find the task with the highest priority that is 

pending on IPC and has the corresponding event identifier in its TCB. This 

operation scales linearly with the number of tasks in the system. Another 

method is to maintain a data structure for each resource that requires IPC 

services, and include in this data structure a list of all tasks pending on the 

corresponding resource, sorted by task priorities. This would eliminate the 

need to traverse the list on a release, since the task at the head of the list 

will always be the one chosen to be unblocked. However, this just moves 

the complexity from unblocking a task to blocking it, because the task list 

would still have to be traversed during a block to keep it sorted by priority. 

Also like with task scheduling, the task list could be implemented as a bit 

vector. This optimization makes the operation take a constant amount of 

time to complete, however, it may still be large enough to cause significant 



37

performance loss. Whatever the implementation, the complexity may make 

event management too much for the system to handle.

These event management operations may occur very frequently in some 

applications. However, the only times that they actually do occur are when 

a task explicitly calls an IPC function. The frequency at which tasks make 

these function calls depends completely upon the application. Therefore, 

the only general statement that can be made about the frequency of event 

management operations is that the rate at which application makes use of 

IPC completely determines the frequency of event management operations. 

Some applications may use none, while others may use so much IPC that 

event management becomes the major source of RTOS performance loss. 

Because IPC can become used often in some cases, it is important to ana-

lyze the effects of event management.

Real-time jitter may be considerably increased because of the event man-

agement operations. Since the amount that IPC is used depends completely 

upon the application, the extent to which event management contributes to 

jitter is heavily reliant upon the application as well. However, the relation-

ship between the complexity of event management operations and the num-

ber of tasks in the system also influences this source of jitter. In the case of 

this relationship being linear, the amount of jitter due to event management 

will also increase linearly with the number of tasks. Therefore, the 
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increased real-time jitter due to event management may also cause the tim-

ing constraints not to be met.

As with the previous bottlenecks, whether or not the RTOS is preemptive 

drastically changes the effects of event management on response time. As 

with task scheduling and time management, event management generally 

does not affect the response time for non-preemptive systems when the pro-

cessor is executing a task. Again, this is because the lengths of the intervals 

between task scheduling points dominate the response time. However, 

assuming the application makes use of IPC, event management will affect 

the response time for preemptive systems. In such systems, event manage-

ment operations affect response time when an interrupts occurs and these 

operations are executing. This is because event management operations are 

critical sections; so they disable interrupts and there is no response until 

interrupts are re-enabled. Therefore, the average response time is increased 

by a fraction of the time taken to perform the event management operation. 

The time it takes to complete this operation may increase linearly with the 

number of tasks in the system, so the response time may as well. If this 

operation is constant, the response time will be more predictable, but it will 

still be increased. The response time may become unacceptable in systems 

that heavily use IPC.



39

Once again, a performance overhead is introduced because of the pro-

cessing time used to perform event management operations. The processor 

utilization of the RTOS due to event management is proportional to both 

the frequency and complexity of the operations that implement it. The 

complexity may increase linearly with the number of tasks. More impor-

tantly, the processor utilization is extremely dependent upon the extent to 

which the application uses IPC. Therefore, depending on how event man-

agement is implemented and how much the application uses IPC, the pro-

cessor utilization due to event management can become quite high.

Event management may definitely be an RTOS performance bottleneck. 

This is because many applications use a great deal of IPC, and event man-

agement can be a costly operation. The effects are, again, reduced predict-

ability, in terms of real-time jitter and response time, as well as increased 

processing overhead. Consequently, quick and efficient event management 

mechanisms are necessary to minimize performance loss due to the RTOS.

Task scheduling, time management, and event management are all 

sources of performance loss due to RTOSes. Reducing the effects of these 

bottlenecks would increase the determinism and processing power of the 

real-time system. This would allow developers to benefit from the advan-
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tages inherent in using a real-time operating system, such as reduced devel-

opment time, without suffering from too great a performance loss.
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CHAPTER 3

REAL-TIME TASK MANAGER

The performance loss associated with using an RTOS in a real-time sys-

tem is unacceptable. What is needed is a new approach that would drasti-

cally reduce these negative performance side effects. This is the purpose of 

the Real-Time Task Manager (RTM). In order to achieve its goal, the RTM 

must increase the predictability and usable processing power of systems 

using RTOSes. As is described in Section 3.1, the RTM is able to do this by 

adding architectural support for some of the RTOS functionality to the pro-

cessor. There are, however, other factors that need to be taken into consid-

eration before the exact design is finalized.

There are numerous RTOSes available in today’s embedded market, each 

of which has widely varying characteristics and implementations. If the 

RTM is to be successful, it must be compatible with most, if not all of 

them. Otherwise, processor manufacturers would be limiting the amount of 

interest in the RTM; and it would not be worth their time and money to 

integrate it into their products. This imposes the requirement that the RTM 

must be robust enough to be beneficial to as many RTOSes as possible.
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Also, if the RTM requires too much change to the real-time system, it 

will not be useful. This is due to the costs associated with the initial proces-

sor and RTOS development, as well as the increased die area. Also, an 

excessively sophisticated design may require so much logic that it would be 

impractical to implement. Although the RTM requires some additions to 

the processor architecture and some changes to the RTOS software, they 

must be kept as minimal as possible.

Unfortunately, the performance loss problem cannot be completely 

solved. As described in Chapter 2, the bottlenecks are caused by both the 

complexity of a few basic RTOS operations and the frequency at which 

they are executed. The complexity may be optimized, however, the fre-

quency cannot be reduced at all. To do so would mean significantly chang-

ing the RTOS. Therefore, the RTM must be completely focused on 

minimizing the processing time of each basic RTOS operation.

Taking these issues into consideration, the RTM intends to reduce the 

performance loss associated with using an RTOS. This would remove a 

major limitation associated with RTOSes, allowing more real-time systems 

to take advantage of their benefits. The remainder of this chapter will 

describe the design and architecture of the RTM.
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3.1 Design

The RTM is a hardware module that implements the key RTOS opera-

tions that are performance bottlenecks: task scheduling, time management, 

and event management. Because it is not restricted by the processor’s 

instruction set, as with software algorithms, it is able to exploit the intrinsic 

parallelism in these RTOS operations with custom hardware. This allows 

for the RTM to perform these operations in a trivial and constant amount of 

time. Because these operations are underlying causes of RTOS perfor-

mance loss, the RTM will significantly reduce this problem.

Before the details of the functions performed by the RTM are described, 

it is important to understand its software interface. Not unlike an L1 cache, 

the RTM resides in the same chip as the processor and interfaces directly 

with the processor core. The RTM communicates with the core with a 

memory-mapped interface using the address and data buses. In fact, the 

RTM is an internal peripheral, like an internal hardware timer, so its inter-

face is the same as other internal devices. The purpose of this is to help 

keep the development cost down, which is necessary for the RTM to be 

successful.

To perform its functions, the RTM needs to maintain its own internal data 

structure. This data structure, illustrated in Figure 3.1, contains all the 

information it needs to perform the RTOS operations. It consists of a small 
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hardware database, where each record contains information about a single 

task in the system. Because the RTM is accessed through the global address 

space, each record can be read from or written to as if it were any other 

array of structures. A record is composed of four individually addressable 

fields. This information is a subset of the usual contents of a TCB. Each 

record contains a status field, containing several bits that describe the status 

of the corresponding record. The valid bit is necessary to indicate if that the 

record is used by a task. The delayed bit indicates that the task is waiting 

for the amount of clock ticks specified by the delay field before being 

ready-to-run. The event bit indicates that the task is pending on the event 

with the identifier specified by the event ID field. The suspended bit indi-

cates that the task has been suspended and should not be considered for 

Status Priority Event ID Delay

Valid Delayed Event Suspended

Figure 3.1: General RTM Data Structure. The RTM is composed of an array of 
records, each describing a different task. The records include status, priority, 
event ID, and delay fields. The status field contains valid, delayed, event, and 
suspended bits.
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scheduling until this bit is cleared. If the valid bit is set, but the delayed, 

event, and suspended bits are clear, then the task is ready-to-run. Finally, 

the priority field indicates the task’s priority. Also, the maximum number 

of records is some fixed constant, such as 64 or 256. Therefore, this is the 

maximum number of tasks that the RTM can handle. This maximum 

should be set high enough to accommodate any practical number of tasks 

for a given processor, or the RTM will not be useful. This data structure 

allows the RTM to easily implement the RTOS operations.

The RTM implements priority-driven scheduling by performing a calcu-

lation on its internal data structure. Although the priorities of each task can 

be changed by the software, it is not done automatically by the RTM. 

Therefore, the RTM fully implements static-priority scheduling, but it does 

not determine the priority to assign to each task for dynamic-priority 

scheduling. The RTM is able to query its data for the highest priority ready 

task. The result is returned to the RTOS when it reads a memory-mapped 

register from the RTM. This calculation is completed by comparing, in par-

allel, the priority fields of every record for which the status field indicates 

that the task is ready-to-run; and, in doing so, determining which has the 

highest priority. This calculation can be done when the RTOS requests the 

index of the highest priority ready task. However, if this query takes several 

cycles to compute, the RTOS would have to remain idle while it waits for 
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the result. On the other hand, it can also be done whenever a change is 

made to the task status or priority; and the result can be stored for any 

future queries. This would allow the query to take several cycles without 

stalling the RTOS, unless a query is made before the result is ready. So long 

as the delay is not too great, most RTOSes can easily be written to avoid 

this situation.

Time management is somewhat similar to implement, because there are 

no interdependencies amongst records. It is performed when the RTOS 

processes clock ticks. The RTOS may process multiple clock ticks that 

have accumulated over a period of time, as is the case with non-preemptive 

systems. Therefore, the RTOS must write to a control register that indicates 

the number of ticks. The RTM then decrements the delay fields of all 

records by the given number of ticks. For every record in which the delay 

field is then less than or equal to zero, its delayed bit is cleared. This rela-

tively simple operation takes much longer to perform in a software.

Event management is very similar to static-priority scheduling. Instead of 

querying its data structure for the highest priority ready task, it queries for 

the highest priority task that is pending on a given event identifier. In other 

words, the calculation is made by comparing, in parallel, the priority fields 

of every record for which the status field indicates that the task is pending 

on an event and that the event identifier matches the given one; and, in 
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doing so, determining which has the highest priority. This operation 

requires that the event identifier is written to a control register before the 

calculation can be made. Therefore, before the index of the unblocked task 

is read back from the RTM, the RTOS has to remain idle for however many 

cycles it takes to perform the calculation. Fortunately this delay will be 

small or zero if the limit on the number of tasks is reasonable.

The RTM is designed to reduce the performance loss associated with 

using an RTOS. Because it is not affected by the restrictions of software, 

the RTM is able to perform each of task scheduling, time management, and 

event management in a small constant time. Because these operations are 

the main sources of RTOS performance loss, the RTM will achieve its goal.

3.2 Architecture

It is of fundamental importance that the RTM is not so complicated that it 

is impractical or impossible to implement in real hardware. For this reason, 

a reference architecture is presented here. It should be noted that this refer-

ence design has not been optimized. It is merely presented to illustrate the 

complexity and scalability of implementing the hardware architecture of 

the RTM. Estimations are given of the amount of hardware components 

necessary for the storage elements themselves, as well as the combinational 

logic that implements the RTOS operations.



48

The parameters of this reference design, shown in Figure 3.2, are chosen 

to represent the requirements of a common real-time system. It has 64 

records, so it holds a maximum of 64 tasks. The priority field is 8 bits wide, 

allowing for 256 priority levels. The event ID field is also 8 bits wide, per-

mitting up to 256 different resources to be accessed using IPC. The delay 

field is 16 bits wide, so, for example, with a 100 µs timer interrupt period, 

the period of a periodic task can be up to 6.6 seconds. Finally, there are four 

status bits per record. The resulting total number of flip-flops is 2304, 

which is small enough to easily be implemented. These parameters are 

based on common limits and are sufficient for the majority of real-time 

applications, but may be adjusted to accommodate more demanding sys-

tems.

Status (8) Priority (8) Event ID (8) Delay (16)

Valid Delayed Event Suspended

Figure 3.2: Reference RTM Data Structure. The reference RTM architecture 
has 64 records. The status field is padded to fill 8 bits. The priority and event 
ID fields are each 8 bits wide and the delay field is 16 bits wide.

Reserved (4)

0
1

2

63
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Task scheduling is somewhat more complicated. It is performed using 64 

ready-test cells and a binary tree of 63 priority-test cells, as shown in Fig-

ure 3.3. The ready-test cells simply determine which tasks are ready-to-run 

with three inverters and an AND gate. Each priority-test cell determines the 

highest priority ready task, based upon the two task priority and ready 

inputs. Each priority-test cell also indicates whether or not either of the two 

input tasks are ready. These cells then output the priority and index of the 

highest priority ready task, if any, as well as whether or not there is such a 

task. The first order priority-test cells compare the priorities of adjacent 

pairs of records, using the result of the ready-test cells. The second order 

cells use only the output of the first order cells, the third order cells use 

only the output of the second order cells, and so on, until the single sixth 

order cell outputs the index of the overall highest priority ready task, if any. 

Because the number of bits required to store the index increases by one 

after each stage of the binary tree, the complexity of these cells slightly 

increases from one stage to the next. Each Nth order priority-test cell con-

tains an 8-bit comparator, an 8-bit 2:1 MUX, an (N-1)-bit 2:1 MUX, an OR 

gate, an AND gate, and a NAND gate. The amount of logic required for 

this method of implementing task scheduling scales more or less linearly 

with the number of records in the RTM (e.g. for a 16 entry RTM, 16 ready-

test cells are required and 15 priority-test cells are required; for a 32 entry 
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RTM, 32 ready-test cells are required and 31 priority-test cells are required, 

etc.). The computational delay, however, is proportional to the logarithm of 

the number of records. So long as the number of records is reasonable, as 

with this reference design, this implementation of task scheduling will be 

fast enough and small enough to use in a real system.

Time management, on the other hand, is far less involved. In order to 

implement this, 64 delay decrement cells are all that is required, as shown 

in Figure 3.4. Delay decrement cells consists of a simplified 16-bit ALU 

and an AND gate. The ALUs must simultaneously perform a subtraction 

and a greater-than comparison. This allows the delay field to be decre-

mented and the delay bit to be cleared when necessary. In this implementa-

tion, the amount of logic scales linearly with the number of records; 

however, the computational delay is a constant.

The event management is almost exactly the same as task scheduling. 

The only difference is that instead of ready-test cells, it has event-test cells, 

as seen in Figure 3.5. This allows the binary tree of priority-test cells to be 

Figure 3.4: Reference RTM Time Management Architecture. a) Topology 
(note: for clarity, not all interconnects are shown). b) Delay Decrement Cell.
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Figure 3.5: Reference RTM Event Management Architecture. a) Topology 
(note: for clarity, not all interconnects are shown). b) Event-Test Cell. c) Nth 
Order Priority-Test Cell.
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used for both scheduling and event management. The event-test cells just 

check if the event bit is set and if the event ID of the resource being 

released matches the event ID in a specific record. They each use an 8-bit 

equality comparator and an AND gate. The amount of combinational logic 

required for event management scales linearly, except that the majority can 

be shared with the task scheduler. Also, the computational delay is 

O(log(n)), as it is with scheduling.

The amount of die area that the RTM needs is important in determining 

its feasibility. Based on existing area models for register files and caches 

[15], the RTM reference architecture requires approximately 2600 register-

bit equivalents (RBEs). This is roughly equivalent to the amount of die area 

used by a 32-bit by 64-word register file. Therefore, the RTM can easily be 

implemented in hardware.

Both the amount of logic and the latency of this reference architecture are 

acceptable. Neither the storage elements nor the RTOS operations impose 

requirements that would make the RTM impossible or undesirable to 

include in the design of a processor intended for real-time systems. This 

reference model demonstrates that the RTM is well suited for hardware 

implementation.
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The Real-Time Task Manager is a valid solution to the problem of perfor-

mance loss due to real-time operating systems. By implementing task 

scheduling, time management, and event management in hardware, the 

RTM is able to eliminate much of the major performance bottlenecks in 

RTOSes. The RTM is easily integrated into most processors and RTOSes 

without having to invest an excessive amount of resources into the develop-

ment process. Also, the RTM is simple enough for its architecture to be 

easily implemented without drastically increasing the amount of logic. 

Clearly, the RTM can be very beneficial to real-time systems.
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CHAPTER 4

EXPERIMENTAL METHOD

In order to formally justify the use of the Real-Time Task Manager in 

actual real-time systems, an accurate quantification of the effects that it has 

on performance is necessary. This is achieved by analyzing models of real-

time systems that use RTOSes. These modeled systems are configured so 

that they represent as large a percentage of those found in industry as possi-

ble. Performance measurements are then taken from the models both with 

and without the use of the RTM. These measurements allow its perfor-

mance effects to be accurately characterized.

The real-time system models all adhere to the same hierarchical struc-

ture, shown if Figure 4.1. At the lowest level, there is a powerful host work-

station, upon which the software that actually does the modeling runs. The 

next level up is a cycle-accurate RTL-level simulator of the embedded pro-

cessor used in the modeled real-time system. The simulator is capable of 

loading the same executable binary files that run in actual systems and exe-

cuting them exactly as they would on a real processor. This simulator 

allows changes to be easily made to the behavior of the processor being 
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modeled. Next is the RTOS that is used in the model. The services provided 

by a particular RTOS significantly influence the performance of the real-

time system. Finally, at the top of the hierarchy are the application tasks, 

which define the role of the real-time system being modeled. These tasks 

are important, because they determine the workload of the entire system. 

Through the use of this general modeling structure, the system’s behavior 

is accurately characterized.

It is important that the results gathered from these models are as realistic 

as possible. Therefore, the various configurations of the real-time systems 

must represent a wide range of real systems currently being developed. 

This is achieved by selecting processors, RTOSes, and benchmarks that are 

Task Task Task Task

RTOS

Embedded Processor Simulator

Embedded

S/W

Host

S/W

Figure 4.1: Structure of Real-Time System Models. 
A host workstation runs an embedded processor 
simulator. The simulator runs an RTOS and 
application tasks.

Host Workstation
Host

H/W
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as similar as possible to those used in industry. This ensures that the results 

are representative of a wide range of realistic scenarios.

In order for this model to be useful, measurements are taken of the per-

formance of the system. These measurements are carried out by the simula-

tor. Specifically, the simulator takes measurements of the aspects of the 

system’s performance that are affected by RTOSes: real-time jitter, 

response time, and processor utilization. These measurements are the nec-

essary pieces of information required to accurately describe the perfor-

mance of real-time systems.

By comparing the performance measurements of systems both with and 

without using the RTM, its effects are clearly illustrated. For this reason 

and because these systems are representative of actual modern real-time 

systems, the RTM’s ability to solve the performance loss problem caused 

by RTOSes is accurately quantified.

4.1 Processor

Just as the processor that is chosen for a real system design greatly influ-

ences its performance, the processor that is simulated significantly affects 

the performance of a modeled system. Due to the difficulty of creating an 

accurate simulator, the same processor simulator is used for every sample 

real-time system in this analysis. To maintain as fair a representation of 
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actual systems as possible, a very commonly used processor has been cho-

sen. The Texas Instruments TMS320C6201 is a high-performance 32-bit 

VLIW fixed-point DSP with a 200 MHz clock that can issue eight 32-bit 

instructions per cycle [22]. The C6201’s substantial processing power 

makes it ideal for high-bandwidth processing, commonly found in telecom-

munications, video processing, and encryption applications. This DSP is 

used in many modern commercial applications. Therefore, it is the proces-

sor that is used for the real-time system models in this study.

The simulator is an efficient program that correctly implements the 

C6201 ISA and provides precise and detailed measurements of the execu-

tion of the embedded software. The simulator is written in the C program-

ming language, allowing for very fast simulations. It accurately simulates 

the pipeline, register files, interrupts, and timers; all of which are necessary 

to execute an RTOS [4]. Numerous options make the simulator a flexible 

tool, capable of producing information such as cycle-by-cycle pipeline reg-

ister dumps and individual function execution details. In fact, the simulator 

provides enough information to make almost any type of performance mea-

surement. Also, an implementation of the RTM is built in to the simulator 

so that its effects on the performance of the real-time system can be 

observed. 
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There is one obvious simplification in the simulator’s behavior, which is 

that memory latencies are not simulated accurately. All memory accesses 

have been simulated as if they are as fast as accesses to the internal pro-

gram and data memories without any bank conflicts. This is a reasonable 

estimate. However, the effects of the memory system are not the focus of 

this research, so this inaccuracy is acceptable.

Overall, the simulator is a powerful tool that is used to assess the perfor-

mance of real-time systems that use the high-performance C6201 DSP. It 

allows for the effects of the RTM to be formally characterized.

4.2 Real-Time Operating Systems

The RTOSes used in this analysis are definitely major influences on the 

performance of the real-time system. Some RTOS design choices that have 

a large effect on performance are whether or not the RTOS supports pre-

emption. If it does not, then the location of the scheduling points within the 

application tasks will have a sizable impact. Also, the way that the func-

tions performed by the RTOS have been implemented will significantly 

influence the performance. Thus, in order to come to a general conclusion 

about the success of the RTM, it is necessary to model systems with widely 

varying RTOS behavior. Therefore, two vastly differing RTOSes have been 



60

used in this study: µC/OS-II, a popular commercial preemptive RTOS; and 

NOS, a “homegrown” non-preemptive RTOS.

4.2.1 µµµµC/OS-II

µC/OS-II, which stands for MicroController Operating System Version 2, 

is a powerful preemptive RTOS that has been used in hundreds of commer-

cial applications [9]. It is freely distributed for educational use, but a per 

product licensing fee is required for commercial applications. It allows for 

up to 63 static priority tasks and has been optimized for deterministic tim-

ing behavior. µC/OS provides a few forms of IPC, including message mail-

boxes, message queues, and semaphores. This RTOS is representative of 

those used in a large number of real-time systems. The way that µC/OS 

implements the basic operations of scheduling, time management, and 

event management without the RTM must be considered when analyzing 

the simulator’s measurements.

µC/OS uses a two-level bit-vector implementation of task scheduling as 

shown in Figure 4.2. Tasks are put into one of eight groups, based on their 

Group = LSBHighTable [GroupBitVector]
Task = LSBHighTable [TaskBitVector [Group]]

Figure 4.2: µC/OS-II Task Scheduling Pseudocode. 
Using a lookup table, the highest priority group that 
has a ready task is extracted from the first-level bit-
vector. Then, using the same lookup table, the 
highest priority task that is ready is extracted from 
the corresponding second-level bit-vector.
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priorities. There is an 8-bit first-level bit-vector that indicates which of 

these priority groups contains a task that is ready-to run. µC/OS uses a 256 

entry lookup table to determine the highest priority ready group that has 

ready tasks. There is also one 8-bit second-level bit-vector for each priority 

group, which indicates the tasks within that group that are ready-to-run. 

µC/OS uses the same 256 entry lookup table to determine the highest prior-

ity ready task within each ready group. This implementation has the advan-

tage of executing in a deterministic amount of time, however, the amount of 

memory required for the lookup tables may be too large for some real-time 

systems.

The time management operation is performed the brute-force way, as 

illustrated in Figure 4.3. On every clock tick, the entire list of TCBs is tra-

versed and a counter is decremented for each task that is waiting for its next 

release time. This is an extremely time consuming operation that scales 

with the number of tasks and is the largest performance bottleneck for this 

RTOS.

for each task
if TCB[task].Status == DELAYED

TCB[task].DelayCounter = TCB[task].DelayCounter - 1
if TCB[task].DelayCounter == 0

TCB[task].Status = READY
end if

end if
end if

Figure 4.3: µC/OS-II Time Management Pseudocode. The TCB 
list is traversed and the delay counter is decremented for all 
tasks waiting on clock ticks. When a counter reaches zero, that 
task is ready-to-run.
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The task unblocking operation of event management is similar to task 

scheduling. Each resource that is accessed using IPC maintains its own set 

of two-level bit vectors. However, the bits indicate the highest priority 

group or task that is waiting for the resource to be released. Again, the 256 

entry lookup table is used to determine which task to unblock when the 

resource is released. Again, this implementation has the advantage that it is 

performed in a deterministic amount of time, but, the amount of memory 

required for the lookup tables may be too large for some real-time systems.

In order to test the effects of the RTM, it must be integrated into µC/OS. 

Thus, modifications have been made to µC/OS so that it uses the RTM for 

task scheduling, time management, and event management, instead of the 

software implementations described above. The performance of real-time 

systems using the modified version of the RTOS is then compared to the 

performance of those using the unmodified version. 

4.2.2 NOS

The next RTOS analyzed in this study is NOS, which is an acronym of 

Not an Operating System. The reason for its name is that it only provides a 

subset of the services provided by a complete RTOS. For example, there is 

no support for IPC. It is non-preemptive and does not perform context 

switches in the traditional sense. In fact, NOS is more of just a real-time 
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scheduler than an RTOS. However, for the purposes of this analysis, it is 

referred to as an RTOS. NOS is not used in any commercial applications 

and was developed entirely for the purposes of this study. The reason that it 

is used in this analysis is that over 25% of RTOSes, like NOS, are merely 

subsets of complete RTOSes [5]. An RTOS such as this is usually devel-

oped only by the company which intends on using it, and is sometimes 

referred to as homegrown. These RTOSes may not be full-featured, but 

they should not be ignored. It is important that they be represented in this 

analysis.

NOS does nothing more than execute function calls after their specified 

release times. This imposes the requirement that periodic tasks are com-

posed of a function that executes one iteration and then reschedules itself 

for the next iteration. For example, if a task is to perform a computation 

every millisecond, then the task will consist of a function that performs just 

one computation. This function must re-schedule itself for execution one 

millisecond later. NOS has no way of stopping a function once it starts. 

Each function must run to completion before any other is called. Thus, the 

scheduling points occur when these functions return. In fact, the core of 

NOS is merely an infinite loop that executes the highest priority ready 

task’s function, if any, and then processes any clock ticks that may have 

occurred during that time. This loop is referred to as the polling loop.
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In NOS, task scheduling is achieved by maintaining a queue of ready-to-

run tasks, sorted by their priorities. Computation of the highest priority 

ready task is performed by simply examining the first entry in the ready 

queue, which is completed in a constant amount of time. The sorting opera-

tion occurs not when the highest priority ready task is requested, but when 

a task becomes ready-to-run. As can be seen by the pseudocode in Figure 

4.4, this operation scales with the number of tasks. This can become a 

costly operation.

The time management operations are also accomplished with a queue. 

Like the software timer queue illustrated in Figure 2.2, NOS maintains a 

queue of tasks that are waiting for their next release time. Each entry in the 

queue contains the number of clock ticks that must elapse, in addition to 

the clock ticks of all previous entries. The pseudocode for this operation is 

shown in Figure 4.5. As can be seen, the time required to complete the time 

management operation varies with the number of tasks that are released 

during the operation.

SortedTask = ReadyQueue.Head
while SortedTask.Priority <= NewTask.Priority

SortedTask = SortedTask.Next
end while
Insert NewTask in ReadyQueue before SortedTask

Figure 4.4: NOS Task Scheduling Pseudocode. 
The ready queue is traversed until a task is found 
with a higher priority. The new task is inserted at 
this position in the queue.
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As previously mentioned, NOS does not have any support for IPC. One 

of the biggest advantages of IPC is that it can be used to eliminate race-

conditions, which are situations in which data can be corrupted or deadlock 

can occur. Race-conditions are a much bigger problem for preemptive 

RTOSes. Since NOS is a non-preemptive RTOS, IPC does not have as 

many advantages. Because event management is only used for IPC, it is not 

present in NOS either. Therefore, a portion of the RTM goes unused for 

systems using NOS. This is perfectly acceptable because one of the goals 

of the RTM is to be compatible with as many RTOSes as possible, regard-

less of what services they provide.

The RTM must be integrated into NOS so that its effects on performance 

can be quantified. Therefore, a modified version of NOS has been created 

in which the software task scheduling and time management implementa-

tions described above have been replaced with the RTM’s implementations. 

This allows for the two versions of NOS to be compared to each other, thus 

characterizing the effects of the RTM.

while DelayQueue.Head.Delay <= TicksEllapsed
TicksEllapsed = TicksEllapsed - DelayQueue.Head.Delay
Dequeue from DelayQueue
Call scheduler for dequeued task

end while
DelayQueue.Head.Delay = DelayQueue.Head.Delay - TicksEllapsed

Figure 4.5: NOS Time Management Pseudocode. Tasks are 
dequeued from the delay queue repeatedly until all the clock ticks 
have been accounted for. The dequeued tasks are scheduled as in 
Figure 4.4, but scheduling is not part of the time management 
operation.
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4.3 Benchmarks

The systems that are modeled in this study must have workloads similar 

to those of systems commonly developed by the real-time system industry. 

This is achieved with the use of standard benchmarks consisting of applica-

tions common to real-time systems. Several applications from the Media-

Bench suite [10] are used in this analysis. These benchmarks have widely 

varying workload characteristics and are all representative of common real-

time system applications. Descriptions of the benchmarks used in this 

study are presented below.

4.3.1 GSM

GSM 06.10 is the standard for full-rate speech transcoding for European 

mobile telephone networks, as defined by the European Telecommunica-

tion Standard Institute (ETSI). GSM originally stood for Groupe Spécial 

Mobil, but it now stands for Global Systems for Mobile Communications. 

It uses residual pulse excitation and long term prediction algorithms to 

transcode between a raw 128 kbps (8 kHz stream of 16-bit audio samples) 

and a compressed 13 kbps (50 Hz stream of 260-bit frames). Both the com-

pression and decompression algorithms are used as benchmarks for this 

study.
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4.3.2 G.723

G.723 is an international telecommunications standard for digital coding 

of analog signals. The standard was defined by the International Telegraph 

and Telephone Consultative Committee (CCITT), which is now part of the 

International Telecommunications Union (ITU). It uses adaptive differen-

tial pulse code modulation (ADPCM) to compress a 128 kbps raw audio 

stream to a 24 kbps or 40 kbps stream. The 24 kbps compression and 

decompression algorithms are used in this study.

4.3.3 ADPCM

ADPCM is another benchmark from MediaBench similar to G.723, 

except that it is much simpler, and faster. This coder/decoder (CODEC) 

compresses audio to 32 kbps. This algorithm is not an industry standard, 

but it is similar to the processing done on many common formats of audio 

files used in personal computers. Again, both the compression and decom-

pression algorithms are used in this study.

4.3.4 Pegwit

Pegwit is a benchmark capable of public key encryption and authentica-

tion. It has many advanced cryptographic capabilities, such as elliptic 

curves over GF(2255), SHA1 for hashing, and the symmetric block cipher 
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square for encryption [20]. In this study, the encryption and decryption 

algorithms are used to process data at a rate of 1.6 Mbps.

4.4 Tasks

All real-time applications that make use of RTOSes consist of a number 

of tasks, each of which is intended to accomplish a subset of the objectives 

of the entire system. In general, each task has its own thread of control and 

it is the RTOS’s job to determine which task runs when. This allows the 

duties of an application to be divided up at logical boundaries and assigned 

to tasks, which may execute independently from each other. Unfortunately, 

this is not how the benchmarks in the MediaBench suite have been written. 

The algorithms in these benchmarks are used to provide the real-time sys-

tem models with realistic workload characteristics. However, a task struc-

ture for their use in real-time applications is required.

In this study, the task structures used in all system configurations being 

tested are based on the same model. This is possible because all the bench-

marks used in this analysis are similar, in that they process streams of data. 

Each system configuration will process a specific number of these data 

streams. In other words, the applications will process multiple channels of 

data. Two tasks are assigned to each data channel. One task is the process-

ing task, shown in Figure 4.6 (a), which reads from the input stream and 
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calls the benchmark algorithm to process the data. These tasks are what 

determine the workload of the system, since the data processing they per-

form dominates the processing time. The other task assigned to each data 

channel is the output task, shown in Figure 4.6 (b), which merely writes to 

the output stream at the appropriate rate. In µC/OS, semaphores are used to 

synchronize between the processing and output tasks for each data channel. 

In NOS, synchronization is achieved without the use of any RTOS services. 

Both the processing and output tasks are periodic and run every 20 milli-

Figure 4.6: Task Structure. a) Processing task. b) Output task. c) Noise 
task. d) Aperiodic task.
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seconds. A constant-size block or frame of data is read from the input 

stream and processed during each iteration. The output of the algorithm 

results in a frame of data of a constant-size as well. These frame sizes 

determines the data rates of the input and output streams, respectively. The 

key benefit of this model is that it allows for a different number of data 

channels in each system configuration.

At this point, the model is somewhat too simple. All task iterations will 

execute at exactly 20 millisecond intervals, because there is nothing to per-

turb them. However, in real systems, there are other periodic tasks running 

in the background with different frequencies, causing interference which 

leads to real-time jitter. For example, many systems have LCD displays 

which have to be periodically refreshed. This is often performed with a 

dedicated task, running at a frequency that differs from that of the other 

tasks in the system. Therefore, each system configuration that is modeled 

in this study also includes an additional periodic task referred to as the 

noise task. The noise task, shown in Figure 4.6 (c), has a period of 32 milli-

seconds and each iteration lasts only a few microseconds. Its purpose is to 

insert the type of background noise commonly present in real-time applica-

tions.

The task structure is now more realistic, but it is not yet complete. There 

may be task interference in the system, but it is not complex enough. Real 
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systems generally have not only periodic tasks, but aperiodic ones as well. 

These tasks might be used to respond to external stimuli, such as input 

from a keypad or packets arriving through a communications port. Typi-

cally, this sort of event has to be detected either by polling for the status of 

the corresponding device or by receiving an interrupt from it. In either case, 

the event would cause the performance of the system, in terms of real-time 

jitter and response time, to be non-deterministic. In many systems, the pre-

dictability is very important and must be within a given range in order to be 

a successful design. Therefore, in these models, aperiodic interrupts with 

geometrically distributed inter-arrival times are used to simulate this type 

of interference. The interrupts occur, on average, every 10 milliseconds, 

and are representative of any relatively high-speed asynchronous process-

ing, such as what would occur when external devices send packets of data 

to the DSP to be processed. The ISR responds by releasing a task, shown in 

Figure 4.6 (d), to deal with the event. This task, referred to as the aperiodic 

task, completes in a few microseconds. With the addition of the aperiodic 

task to all the models in this study, their behavior is representative of real-

time systems commonly being developed today.
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4.5 Measurements

For each one of the system configurations used in this analysis, detailed 

measurements of the performance must be made. This is easily achieved 

using some of the options of the C6201 processor simulator since it was 

designed specifically for this research. To summarize, the system configu-

rations tested for this study have been outlined in Table 4.1. Each configu-

ration is simulated with different numbers of data channels, ranging from 

one to as many as can be handled by the simulated processor and RTOS. 

Thus, a range of workload characteristics are analyzed. They are also simu-

lated with forty different random number seeds used by the simulator, so 

that the aperiodic interrupts occur at different times and their effects can be 

more accurately described. Each simulation runs for one second of simu-

lated time, which requires approximately fifteen minutes to run on a 750 

MHz Pentium III workstation. It takes ten such processors running simula-

tions continuously for about a month to get all the measurements used in 

this study.

Measurements have been taken to quantify the effects of RTOS perfor-

mance loss. Real-time jitter is measured by recording the amount of time 

that has elapsed between successive writes to the output stream of each 

data channel. Next, the intended period of twenty milliseconds is sub-

tracted from these numbers. Finally, their absolute values are taken. The 
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larger the values, the more the real-time jitter. If the results are all zeros, 

then no jitter has occurred in the system. Response time is easily measured 

by recording the amount of time that elapses between the occurrence of 

aperiodic interrupts and the beginning of the execution of their correspond-

ing aperiodic tasks. The processor utilization is measured by recording the 

amount of time that is spent executing RTOS functions out of the one sec-

ond that is simulated. This is then further subdivided into several main 

areas of RTOS functionality, such as scheduling, time management, IPC, 

and context switching, so that the bottlenecks can be clearly identified. 

Finally, certain key RTOS functions are analyzed in greater detail by mea-

suring and recording both the number of times it is executed and the dura-

tion of each execution. All of these measurements allow for the 

performance of the systems to be precisely characterized.

Processor RTOS

Implementation 
of Bottleneck

RTOS 
Operations

Benchmarks

C6201 µC/OS-II
NOS

Standard
RTM

GSM encode
GSM decode

G.723 (24 kbps) encode
G.723 (24 kbps) decode 

ADPCM encode
ADPCM decode
Pegwit encrypt
Pegwit decrypt

Table 4.1: Summary of Tested System Configurations. A configuration is defined 
by the selection of a processor, an RTOS, an implementation of bottleneck RTOS 
operations, and a benchmark; as well as the number of data channels in the 
system (not shown).
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By using accurate models of modern real-time systems that use RTOSes, 

the performance of actual systems that use the Real-Time Task Manager is 

estimated. The RTM’s effects are accurately quantified by comparing these 

estimates with those of systems that use the standard software implementa-

tions of the core RTOS operations. From this analysis, the overall effective-

ness of the RTM is determined.
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CHAPTER 5

RESULTS & ANALYSIS

The goal of the Real-Time Task Manager is to reduce the performance 

loss problem associated with RTOSes. In order to validate the success of 

the RTM, characterizations of its effects on processor utilization, response 

time, and real-time jitter are necessary. This has been achieved by taking 

accurate measurements of models of several configurations of realistic real-

time systems, both with and without using the RTM.

For the remainder of this chapter, the effects of the RTM on the perfor-

mance of real-time systems will be presented and analyzed in detail. Its 

effects on processor utilization, response time, and real-time jitter are 

treated individually and discussed in separate sections for clarity. Through 

this analysis, the effectiveness of the RTM will be formally established.

5.1 Processor Utilization

The processor utilization is also significantly affected by the use of the 

RTM. This is illustrated by the measurements of the real-time system mod-

els using both µC/OS-II and NOS. The effects of the RTM using each of 

these RTOSes and several benchmarks are analyzed in detail.
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5.1.1 µµµµC/OS-II

The RTOS processor utilization has been divided into five categories for 

system configurations that use µC/OS. Each of these categories represents 

the processing time spent executing a different RTOS operation. Figures 

5.1 and 5.2 show the percent of the total processing time spent executing 

the operations in each of these categories and how they vary with system 

load, for every benchmark tested, both with and without using the RTM. 

System load refers to the amount of processing power used by the applica-

tion, which, in this case, is determined by the number of data channels pro-

cessed in the application. Also, each value measured is represented by a 

circle, the area of which indicates the fraction of the jitter measurements 

that are equal to that value. As seen in the graphs, the RTOS processor uti-

lization can be quite significant. By analyzing the overhead from each cate-

gory separately, the effects of the RTM can be described in more detail.

The RTOS operations in the miscellaneous category account for an insig-

nificant fraction of the processing time—less than a tenth of a percent—

and are barely visible on the graphs. The RTM is not used to optimize any 

of these operations, so there is no change in performance. Therefore, this 

category is not analyzed any further.

The RTOS operations that implement IPC consume a nontrivial fraction 

of the processing time. This category includes the event management oper-
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Figure 5.1: Processor Utilization Using µC/OS-II. 
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(a) GSM encode without the RTM
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(b) GSM encode with the RTM
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(c) GSM decode without the RTM
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(d) GSM decode with the RTM
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(e) G.723 (24 kbps) encode without the RTM
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(f) G.723 (24 kbps) encode with the RTM
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(g) G.723 (24 kbps) decode without the RTM
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(h) G.723 (24 kbps) decode with the RTM



78

Figure 5.2: Processor Utilization Using µC/OS-II (continued). 
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(a) ADPCM encode without the RTM
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(b) ADPCM encode with the RTM
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(c) ADPCM decode without the RTM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

System Load (number of data channels)

0

2

4

6

8

10

12

P
ro

ce
ss

or
 U

til
iz

at
io

n 
(%

)

Miscellaneous
Interprocess Communication
Processing Clock Ticks
Scheduling
Timer Interrupt Overhead

(d) ADPCM decode with the RTM
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(e) Pegwit encrypt without the RTM
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(f) Pegwit encrypt with the RTM
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(g) Pegwit decrypt without the RTM
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(h) Pegwit decrypt with the RTM
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ations, as well as all others needed to fully implement IPC. As can be seen 

in the graphs, without the RTM, the processor utilization of these opera-

tions increases linearly with system load at 0.014% per data channel. How-

ever, with the RTM, the processor utilization increases at 0.012% per data 

channel, for a 14% improvement. This is an improvement, however, it is 

small, because µC/OS already performs event management operations in a 

constant amount of time. Although this performance enhancement is small, 

it may become more important for applications that make heavy use of 

IPC.

Processing clock ticks uses a very large percentage of the processing time 

in µC/OS. This category includes the time management operations used to 

ready those tasks that reach their release times whenever a clock tick 

occurs. Systems that do not use the RTM suffer from a huge processing 

overhead in this category. The processor utilization increases linearly with 

system load at 0.28% per data channel. This drastically affects the amount 

of processing power available to the application. However, with the RTM, 

the processor utilization for time management is a constant 0.14%, for up 

to a 98% improvement. This is a large performance increase that is seen for 

every benchmark tested.

The RTOS operations in the scheduling category use a small, yet signifi-

cant portion of the available processing power. Without the RTM, the pro-



80

cessing time consumed by these operations increases slightly with system 

load, by 0.0059% per data channel. Also, the scheduling operations per-

formed by timer interrupts contribute 0.29% to this of overhead. However, 

the scheduling operations for those systems that use the RTM increases at 

only 0.0042% per data channel, with an additional 0.20% coming from 

timer interrupts. The result is approximately a 31% improvement. This is a 

small decrease in overhead that would be larger in more complicated appli-

cations in which the tasks experience more interference with each other or 

use more IPC.

Finally, the timer interrupt overhead accounts for another nontrivial frac-

tion of the processing time. This category includes the time spent branch-

ing to the ISR and preserving the context of the interrupted task. 

Unfortunately, the RTM is not capable of optimizing these operations, so 

this category accounts for a constant 0.34% of the processor utilization, 

both with and without the RTM. 

The basic RTOS operations that the RTM implements result in the pro-

cessing overhead required by µC/OS to be reduced by 60% to 90%. These 

operations, especially clock tick processing, are performed quickly enough 

by the RTM that the processor utilization becomes much less of a problem.
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5.1.2 NOS

For NOS, the processor utilization has been divided into six categories. 

Figures 5.3 and 5.4 show the percent of the total processing time spent exe-

cuting the operations in each of these categories and how they vary with 

system load, for every benchmark tested, both with and without using the 

RTM. As seen in the graphs, the RTOS processor utilization is not quite as 

large as it is for µC/OS, however, it is still enough so that it is worth opti-

mizing. Again, the overhead within each category is discussed separately, 

so that the effects of the RTM can be presented in more clearly.

The RTOS operations in the miscellaneous category account for an insig-

nificant fraction of the processing time—less than a hundredth of a per-

cent—and are not even visible on the graphs. The RTM is not used to 

optimize any of these operations, so there is no change in performance. 

This category is not analyzed any further.

Polling accounts for a large portion of the processing overhead in NOS. 

This is the processing done in the main loop that repeatedly calls the high-

est priority task’s function, if there is one, or enters the processor into idle 

mode, if there is not. When the processor is idle, polling operations occur 

periodically, whenever timer interrupts occurs. This ensures that the highest 

priority ready task is run as soon as possible. So when the processor is idle, 

a certain fraction of the processing time is still devoted to polling opera-
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Figure 5.3: Processor Utilization Using NOS. 
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(a) GSM encode without the RTM
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(b) GSM encode with the RTM
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(c) GSM decode without the RTM
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(d) GSM decode with the RTM
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(e) G.723 (24 kbps) encode without the RTM
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(f) G.723 (24 kbps) encode with the RTM
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(g) G.723 (24 kbps) decode without the RTM
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(h) G.723 (24 kbps) decode with the RTM
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Figure 5.4: Processor Utilization Using NOS (continued). 
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(a) ADPCM encode without the RTM
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(b) ADPCM encode with the RTM
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(c) ADPCM decode without the RTM
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(d) ADPCM decode with the RTM
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(e) Pegwit encrypt without the RTM
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(f) Pegwit encrypt with the RTM
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(g) Pegwit decrypt without the RTM
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(h) Pegwit decrypt with the RTM
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tions. This fraction is the same for every benchmark. Polling operations 

also occur after the completion of each task’s function, so that the next one 

can be executed. Thus, a fraction of time is also spent executing polling 

operations during periods when the processor is not idle. For more compli-

cated benchmarks, the processing tasks take longer to execute, and the frac-

tion of time spent executing polling operations when the processor is not 

idle is lower. This is because polling operations will occur less frequently 

when executing tasks than when idling. If the fraction of time spent execut-

ing polling operations is lower when the processor is not idle than when it 

is idle, then the processor utilization of polling operations decreases lin-

early with increases in system load. This is the case for most of the bench-

marks, as seen in the graphs, because most of them require enough 

processing time to keep the time spent polling during non-idle periods rela-

tively low. Conversely, if the fraction of time spent executing polling opera-

tions is higher when the processor is not idle than when it is idle, then the 

processor utilization of polling operations increases linearly with increases 

in system load. This occurs when the duration of the average task execution 

is lower than the time between timer interrupts. This is illustrated by the 

ADPCM encode and decode benchmarks, as seen in Figures 5.4 (a), (b), 

(c), and (d). The effects of the RTM on this category of the processor utili-

zation can be deceiving. Unfortunately, the RTM can increase the amount 
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of processing time consumed by the polling operations by up to 25%. This 

is because, without the RTM, polling is as simple as looking at the head of 

the ready queue, but with the RTM, most of communication with the RTM 

is performed while polling. This slight performance loss in terms of the 

polling overhead is compensated for in other categories, in which processor 

utilization is decreased.

The category of processing clock ticks consumes a sizeable fraction of 

the available processing power. There is no need to process a clock tick that 

occurs while a task is executing, since the task cannot be preempted. Thus, 

as with the polling overhead, this operation is only performed when tasks 

complete and after interrupts that occur during idle mode. Therefore, the 

same behavior is seen as is with polling. The processor utilization for pro-

cessing clock ticks either increases or decreases linearly with the system 

load, depending on the duration of the processing tasks in that system. 

However, in this case, the RTM is quite effective at reducing the magnitude 

of this overhead. As seen in the graphs, the RTM reduces this category’s 

processor utilization by over 85%. This performance enhancement is seen 

for every benchmark tested.

The percent of the time devoted to processing the release times can be 

quite significant in NOS. This operation records the next release time of a 

task in the RTOS’s internal data structure. Without the RTM, this operation 
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increases linearly with the number of tasks, because the software timer 

queue must be traversed. Also, this operation occurs more frequently as the 

number of data channels increases. Therefore, the processing time used by 

this operation increases quadratically with the system load for systems that 

do not use the RTM. However, the RTM performs this operation in a trivial 

and constant amount of time. Therefore, when the RTM is used, the pro-

cessing time consumed by processing release times increases linearly at 

only 0.00037% per data channel for up to a 95% decrease. This processor 

utilization is not even visible on some graphs.

The scheduling operation in NOS can easily consume a great deal of pro-

cessing power. As with processing release times, this operation increases 

linearly with system load in both complexity and frequency when the RTM 

is not used. However, when the RTM is used, the complexity of this opera-

tion becomes small and constant. As seen in the graphs, the scheduling pro-

cessor utilization for those systems not using the RTM increases 

quadratically with system load, and becomes a major component of the 

processing overhead for large numbers of data channels. On the other hand, 

the scheduling overhead for those systems that do use the RTM also scales 

linearly at only 0.00037% per data channel for up to a 98% decrease, and is 

almost nonexistent. The processing overhead is drastically reduced because 

of this improvement.
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Lastly, a lot of the processing time is devoted to the timer interrupt over-

head. This category includes the time spent branching to the ISR and pre-

serving the context of the interrupted task. Unfortunately, the RTM is not 

capable of optimizing these operations, so this category accounts for a con-

stant 0.13% of the processor utilization, both with and without the RTM.

The basic RTOS operations that the RTM implements result in the pro-

cessing overhead required by ΝΟS to be reduced by 20% to 65%. These 

operations are performed quickly enough by the RTM that the processor 

utilization becomes much less of a problem.

5.2 Response Time

The RTM has a large influence on response time. This is apparent from 

the measurements taken of models of real-time systems using both µC/OS-

II and NOS. The effects of the RTM using each of these RTOSes and sev-

eral benchmarks are analyzed in detail.

5.2.1 µµµµC/OS-II

For the system configurations that use µC/OS, the response time is deter-

mined by several factors. Each of these factors contributes to the response 

time in varying ways. Figures 5.5 and 5.6 show the different values of 

response time measured and how they vary with system load, for every 
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Figure 5.5: Response Time Using µC/OS-II. 
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(a) GSM encode without the RTM
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(b) GSM encode with the RTM
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(c) GSM decode without the RTM
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(d) GSM decode with the RTM
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(e) G.723 (24 kbps) encode without the RTM
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(f) G.723 (24 kbps) encode with the RTM
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(g) G.723 (24 kbps) decode without the RTM
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(h) G.723 (24 kbps) decode with the RTM
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Figure 5.6: Response Time Using µC/OS-II (continued). 
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(a) ADPCM encode without the RTM
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(b) ADPCM encode with the RTM
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(c) ADPCM decode without the RTM
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(d) ADPCM decode with the RTM
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(e) Pegwit encrypt without the RTM
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(f) Pegwit encrypt with the RTM
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(g) Pegwit decrypt without the RTM
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(h) Pegwit decrypt with the RTM
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benchmark tested, both with and without using the RTM. As seen in the 

graphs, the majority of the response time measurements are a constant 

value of 1.8 microseconds without the RTM and 1.4 microseconds with the 

RTM. This is because µC/OS is a preemptive RTOS. However, many of 

these measurements are not equal to this constant value. These deviations 

are due to the effects of interference with the timer interrupts and aperiodic 

interrupts, as well as the limitations of the C6201 processor itself.

The timer interrupts play the biggest role in causing increased response 

time. During the execution of the timer interrupt’s ISR, interrupts are dis-

abled, thus delaying the response to any aperiodic interrupt that may occur 

during this time. In fact, this does not just occur with the timer interrupt 

ISR, but any critical section of code in which interrupts are disabled. How-

ever, the timer interrupt ISRs are, by far, the longest and most frequent peri-

ods during which interrupt are disabled; and they dominate this type of 

increased response time. Because aperiodic interrupts occur at random, 

they occur at uniformly distributed random times during the execution of 

the timer interrupt ISRs. This leads to a uniform distribution of time, rang-

ing from zero to the execution time of the ISR, to be added to the response 

time measurements. When the RTM is not used, the execution time of the 

ISR is dominated by the time management operation, which scales linearly 

with the number of tasks. The effect on the response time, as seen in the 
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graphs, is a uniform distribution of values, ranging from the common 1.8 

microsecond value to an upper limit, which increases with system load, for 

up to 11.8 microseconds. However, by using the RTM, the time manage-

ment operation is always performed in a trivial amount of time. The effect 

of the timer interrupt on response time when using the RTM is a uniform 

distribution of measurements, ranging from 1.4 microseconds to 2.2 micro-

seconds, an 83% decrease. The timer interrupt can be an enormous 

response time bottleneck, but the RTM provides a huge improvement.

Other aperiodic interrupts can also influence response time. This happens 

when a second aperiodic interrupt occurs before the response is made to the 

first one. This adds to the response time of the first interrupt by the time it 

takes to execute the aperiodic interrupt ISR. Also, this situation actually 

decreases the response time of the second interrupt. This is because the sec-

ond interrupt’s ISR does not have to perform a context switch, since the 

response task is already running. This results in response time values occa-

sionally appearing about a microsecond above or below the range of the 

uniform distribution that was previously described. Unfortunately, the 

RTM does nothing to solve this problem.

The last factor that influences response time is a result of the way that the 

C6201 processor handles branch instructions. The C6201 is a VLIW pro-

cessor and, unlike superscalar processors, it does not perform any dynamic 



92

instruction re-ordering. All instruction scheduling is done at compile time. 

Because the first execute stage of the pipeline is six stages away from the 

first execute stage, it takes six cycles for a branch instruction to complete. 

In order to optimize instruction throughput, after every branch instruction 

there are five delay slots. As opposed to just stalling the pipeline, this 

allows for the compiler to schedule instructions after the execution of a 

branch instruction, but before the branch target executes. The problem is 

that only the program counter of the first execute stage is saved, so if an 

interrupt is handled before a branch delay slot, then the address of the 

branch target would be lost. This could be avoided by saving the program 

counter of every stage of the pipeline up to and including the first execute 

stage, but this would be very expensive. The C6201 solves this problem by 

automatically disabling all interrupts during branch delay slots. However, 

this leads to increased response time for every interrupt that occurs during 

branch delay slots. All the embedded software used in this study’s simula-

tions have been compiled so that there are never any overlapping branch 

delay slots. Therefore, up to five cycles, or 25 nanoseconds, of the response 

time may be due to branch delay slots. Benchmarks like Pegwit encrypt 

and decrypt, that have lots of branches in their instruction mix, will experi-

ence this slightly increased response time more often. As seen by the 

graphs for these benchmarks in Figure 5.5 (e), (f), (g), and (h), the constant 
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common case values of tends to slightly diverge into six values, each sepa-

rated by 5 nanoseconds higher than the previous. Again, the RTM can do 

nothing for this source of increased response time. Fortunately, it is such a 

small difference that it is virtually insignificant.

The timer interrupt, aperiodic interrupts, and branch delay slots can all 

increase the response time with µC/OS. Some affect it more than others. 

The RTM is able to reduce the effects of the largest source of increased 

response time—timer interrupts—and results in an 81% decrease in 

response time. This makes the response time bottleneck much less of a 

problem.

5.2.2 NOS

Unlike with µC/OS, the response time with NOS has little to do with the 

effects of the RTOS. Instead, the biggest determining factor has to do with 

the application code. Again, Figures 5.7 and 5.8 illustrate the different val-

ues of response time measured and how they vary with system load, for 

every benchmark tested, both with and without using the RTM. These 

graphs indicate a concentration of values close to zero and a uniform distri-

bution of values from this point to some limit that is only dependent upon 

the benchmark. The response time for systems using NOS is mostly depen-
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Figure 5.7: Response Time Using NOS. 
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(a) GSM encode without the RTM
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(b) GSM encode with the RTM
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(c) GSM decode without the RTM
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(d) GSM decode with the RTM
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(e) G.723 (24 kbps) encode without the RTM
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(f) G.723 (24 kbps) encode with the RTM
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(g) G.723 (24 kbps) decode without the RTM

1 2 3 4 5 6 7 8 9

System Load (number of data channels)

0

500

1000

1500

2000

2500

R
es

po
ns

e 
T

im
e 

(µ
s)

(h) G.723 (24 kbps) decode with the RTM
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Figure 5.8: Response Time Using NOS (continued). 
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(a) ADPCM encode without the RTM
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(b) ADPCM encode with the RTM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

System Load (number of data channels)

0

10

20

30

40

50

R
es

po
ns

e 
T

im
e 

(µ
s)

(c) ADPCM decode without the RTM
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(d) ADPCM decode with the RTM
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(e) Pegwit encrypt without the RTM
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(f) Pegwit encrypt with the RTM
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dent upon the application, but there are a few cases in which the RTOS has 

some influence.

Because NOS is a non-preemptive RTOS, the response time depends 

heavily on whether or not the system is idle. When the system is idle, the 

interrupt wakes the processor up out of idle mode and immediately exe-

cutes the ISR, followed by the response task. This is indicated on the 

graphs as the large concentration of values near zero, which is actually 1.4 

microseconds. The fraction of interrupts that occur when the system is idle 

decreases as the system load increases. Thus, the fraction of response time 

measurements at this value decreases with system load as well. Conversely, 

during the execution of a task, responses to interrupts cannot occur until 

that task reaches a scheduling point. In NOS, scheduling points are simply 

the return of a task’s main function. Therefore, an aperiodic interrupt that 

occurs during the execution of a task is not responded to until the current 

task completes its main function. The time spent executing tasks is domi-

nated by the processing tasks. Therefore, the response times for interrupts 

that occur during the execution of a task are distributed more or less uni-

formly from 1.4 microseconds, to the amount of time necessary to execute 

the processing task. This can be up to several hundreds of microseconds or 

more, depending on the application. Also, as the system load increases, the 

concentration of points within this region becomes more dense, because 
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more interrupts occur while the processor is executing tasks. The RTM can-

not prevent this large response time, because NOS is not capable of pre-

emption.

There are, however, some cases in which the response time can be 

affected by the operations of NOS. While the above analysis takes into con-

sideration the times in which the processor is idle or executing a task, it 

does not consider times in which it executes RTOS operations. This is 

acceptable, because the execution time of the processing task is usually 

much larger than that of any RTOS operation, and dominates the response 

time. But for benchmarks that are very computationally simple, in which 

the processing task executes much more quickly, the execution time of the 

RTOS operations becomes a more significant percentage of the response 

time. As seen in the graphs for ADPCM decode in Figure 5.8 (c), there are 

some response time values that lie outside the regions of the uniform distri-

bution. These points represent the response times for interrupts that occur 

while NOS is processing the clock ticks that causes the release of all the 

output tasks. NOS’s operation for processing clock ticks can increase the 

response time by several microseconds. This is relatively insignificant for 

most of the benchmarks, but for ADPCM decode, it is a nontrivial increase 

to the response time. Because the RTM performs this operation in a small 
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constant amount of time, this addition to the response time is effectively 

zero when it is used.

For most applications NOS has virtually no effect on the response time. It 

is the duration of the processing task and the system load that dictate the 

response time. However, for small applications, NOS does have an effect 

on response time, and the RTM is able to eliminate this increase.

5.3 Real-Time Jitter

The RTM has a significant impact on real-time jitter. This is evident from 

the measurements collected of models of real-time systems using both 

µC/OS-II and NOS. The effects of the RTM using each of these RTOSes 

and several benchmarks are analyzed in detail.

5.3.1 µµµµC/OS-II

For the system configurations that use µC/OS, there are numerous 

sources of jitter, each of which introduces jitter with very different charac-

teristics. Figures 5.9 and 5.10 show the different values of jitter measured 

and how they vary with system load, for every benchmark tested, both with 

and without using the RTM. The jitter values are shown on the graphs as a 

percentage of the application period (20 milliseconds). As seen in the 

graphs, the majority of the jitter measurements are zero. However, a signif-
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Figure 5.9: Real-Time Jitter Using µC/OS-II. 
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(a) GSM encode without the RTM
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(b) GSM encode with the RTM
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(c) GSM decode without the RTM
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(d) GSM decode with the RTM
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(e) G.723 (24 kbps) encode without the RTM
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(f) G.723 (24 kbps) encode with the RTM
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(g) G.723 (24 kbps) decode without the RTM
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(h) G.723 (24 kbps) decode with the RTM
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Figure 5.10: Real-Time Jitter Using µC/OS-II (continued). 
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(a) ADPCM encode without the RTM
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(b) ADPCM encode with the RTM
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(c) ADPCM decode without the RTM
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(d) ADPCM decode with the RTM
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(e) Pegwit encrypt without the RTM
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(f) Pegwit encrypt with the RTM
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(g) Pegwit decrypt without the RTM
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(h) Pegwit decrypt with the RTM
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icant portion of these measurements are not zero, and they exhibit many 

different patterns, because of the different sources of jitter. These widely 

varying characteristics are due to the interaction of the noise task, aperiodic 

interrupts, and timer interrupts with the processing and output tasks.

The fact that there are periodic tasks running with different frequencies 

always leads to some jitter. In the task structure used in these models, the 

noise task has a period of 32 milliseconds and all the processing and output 

tasks have a period of 20 milliseconds. Thus, the noise task will interfere 

with the execution of the other tasks in a periodic fashion, according to 

their hyper-period of 160 milliseconds. The interference pattern is such 

that, due to the execution of the noise task, all of the processing and output 

tasks are delayed once during each hyper-period. This means that one out 

of every eight executions of the processing and output tasks occurs later 

than normal. However, the jitter is not measured based on how late each 

execution is, but on the amount of time between successive completions of 

the output task. Using this definition, if one execution is late then the next 

will be relatively early. Therefore, the overall effect of the noise task on jit-

ter is that two out of every eight executions will always experience jitter. 

This can be seen in all jitter graphs for systems without using the RTM, as 

a row of values at 0.017% of the period that represents approximately 25% 

of the measurements. Unfortunately, this source of jitter is due to the nature 
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of the task interaction in this system and cannot be eliminated by RTOS 

enhancements alone. However, the RTM is still able to reduce this jitter 

from 0.017% to 0.015% of the period for a 6% decrease, because it is able 

to perform scheduling and time management operations more quickly than 

µC/OS can do in software. The noise task is the most common source of 

jitter in µC/OS and with the RTM, a minor reduction in its magnitude is 

achieved.

The effects of aperiodic interrupts on jitter are somewhat worse. The sim-

plest case is when an aperiodic interrupt occurs during the execution of an 

output task and it is immediately handled, causing jitter to be introduced 

for both that iteration and the next, as with the noise task. As with the 

effects of the noise task, this is due to the interaction of tasks in this system 

and cannot be eliminated by optimizing the RTOS. The graphs show the jit-

ter caused by the aperiodic interrupts for systems not using the RTM as a 

row of values at . Again, the faster RTOS operations of the RTM decrease 

this jitter by 15% from 0.014% to 0.012% of the period. However, since 

these interrupts occur at random, nothing definite can be said about how 

often this jitter will be introduced. Also, the jitter due to aperiodic inter-

rupts may occur at the same time as that of the noise task, as seen in graphs 

for systems without the RTM as a row of values at 0.030% of the period 

and in graphs for systems that use the RTM at 0.027% of the period for a 
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10% decrease. Furthermore, an aperiodic interrupt could occur just before 

the release time of an output task, thereby delaying its execution by a frac-

tion of the processing time required to handle the interrupt. Because aperi-

odic interrupts can occur at any time, this can introduce jitter of any value 

less than the aperiodic interrupt processing time. The aperiodic interrupts 

are the source of the least predictable form of real-time jitter and can be 

slightly lessened with the RTM.

Finally, the timer interrupt may be the most harmful source of jitter. With 

this task model, when the number of data channels processed in each appli-

cation exceeds about 25, the processing time required to execute the output 

tasks for every channel approaches the 100 microsecond timer interrupt 

period. In other words, the next clock tick after the output tasks are released 

will occur while one of the output tasks is still executing. The timer inter-

rupt alone is not the problem, because if the interrupt always occurs at the 

same point during the execution of the output tasks, there will be no jitter. 

However, its interaction with existing sources of jitter is a problem. When 

the noise task or aperiodic interrupts push the completion of the output task 

of one of the data channels past the occurrence of the timer interrupt, the 

task must wait until the interrupt handler completes before resuming execu-

tion. Therefore, the jitter due to the noise task and aperiodic interrupts can 

effectively be amplified by the timer interrupt. Also, the timer interrupt in 
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µC/OS performs a time management operation that scales linearly with the 

number of tasks in the system. The effect is that, for systems not using the 

RTM and with enough data channels, three more rows of jitter value are 

present, ranging from 0.068% to 0.079% of the period, and each with the 

same positive slope. These three rows correspond to the three rows of jitter 

values caused by jitter from the noise task, an aperiodic interrupt, and both 

the noise task and an aperiodic interrupt combined. The timer interrupt 

causes up to 0.9% of the jitter values to exhibit this pattern. For systems 

that use the RTM, however, there is virtually no performance hit from the 

timer interrupts, in terms of real-time jitter. This is because the RTM is 

capable of performing the time management operation orders of magnitude 

faster than µC/OS does in software. Therefore, as seen on the graphs, there 

is practically no jitter due to timer interrupts when the RTM is used.

The noise task, aperiodic interrupts, and timer interrupts are all sources of 

real-time jitter with very different characteristics. The RTM is capable of 

reducing the effects of each of them. Most importantly, it is able to practi-

cally eliminate the jitter caused by µC/OS’s timer interrupt, which is the 

largest source of jitter for larger and more complex systems. This allows 

for the maximum jitter to be reduced by up to 66%, which is extremely 

advantageous since many real-time applications need guarantees about the 



105

maximum amount of jitter that will be experienced. The RTM is very effec-

tive at minimizing real-time jitter in µC/OS.

5.3.2 NOS

There are also many sources of jitter with unique characteristics for sys-

tems that use NOS. Again, Figures 5.11 and 5.12 show the different values 

of jitter measured and how they vary with system load, for all the bench-

marks, both with and without using the RTM. Again, the jitter values are 

shown on the graphs as a percentage of the application period (20 millisec-

onds). As the graphs illustrate, NOS behaves quite differently when it 

comes to real-time jitter. As before, the sources of the jitter are each 

described separately. Largely because NOS is a non-preemptive RTOS, 

timer interrupts have little effect. Therefore, the main sources of real-time 

jitter are the noise task and aperiodic interrupts.

As with µC/OS, the noise task introduces the majority of the jitter in 

NOS. Again, the execution of the noise task pushes back the execution of 

every eighth execution of the output tasks, resulting in 25% of the output 

task executions to experience jitter. Also, because the amount of time spent 

inserting a task into the ready queue is proportional to the amount of ready 

tasks with higher priority, this jitter caused by the noise task increases lin-

early with the amount of data channels. The more interesting result, how-
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Figure 5.11: Real-Time Jitter Using NOS. 
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(a) GSM encode without the RTM
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(b) GSM encode with the RTM
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(c) GSM decode without the RTM
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(d) GSM decode with the RTM
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(e) G.723 (24 kbps) encode without the RTM
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(f) G.723 (24 kbps) encode with the RTM
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(g) G.723 (24 kbps) decode without the RTM
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(h) G.723 (24 kbps) decode with the RTM
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Figure 5.12: Real-Time Jitter Using NOS (continued). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

System Load (number of data channels)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
e

al
-T

im
e

 J
itt

e
r 

(%
 o

f P
er

io
d)

(a) ADPCM encode without the RTM
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(b) ADPCM encode with the RTM
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(c) ADPCM decode without the RTM
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(d) ADPCM decode with the RTM
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(e) Pegwit encrypt without the RTM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

System Load (number of data channels)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
e

al
-T

im
e

 J
itt

e
r 

(%
 o

f P
er

io
d)

(f) Pegwit encrypt with the RTM
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(g) Pegwit decrypt without the RTM
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(h) Pegwit decrypt with the RTM
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ever, is that the jitter values diverge in all cases, as the number of data 

channels increases. This is due to the fact that the time that it takes to insert 

a task into the software timer queue is proportional to the number of tasks 

that have release times less than or equal to that of the task being inserted. 

This causes variations in the time required to insert a task in the queue, 

which results in the divergence of jitter values. The jitter caused by the 

noise task in systems without the RTM is visible on the respective graphs 

as two dark bands of values. As can be seen, the lower band is bounded on 

the bottom by zero and on the top by a linearly increasing limit, whereas 

the upper band originates at 0.0084% of the period and is bounded on the 

top and bottom by linearly increasing limits, resulting in jitter up to 0.018% 

of the period. The RTM is able to significantly reduce the effects of the 

noise task on real-time jitter. By performing task scheduling and time man-

agement operations in a small constant amount of time, there is no relation-

ship between the jitter caused by the noise task and the system load. The 

divergence of values disappears completely, and the upper band is reduced 

to a constant row of jitter values at 0.0037% of the period, which is up to a 

79% decrease. The noise task will always introduce jitter, but the RTM is 

able to minimize it effectively.

Aperiodic interrupts are sources of jitter in NOS as well. Since NOS is 

non-preemptive, if an interrupt occurs during the middle of the execution of 
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a task, the response does not occur until the current task completes. The 

interrupt just inserts a response task at the head of the ready queue. This 

may occur during the execution of an output task, which introduces a con-

stant amount of jitter equal to 0.0045% of the period. The response task 

executes after the current task completes, thereby delaying the rest of the 

output tasks by an additional 0.0038% of the period, for a total of 0.0083% 

of the period. However, because the noise task causes jitter from the varia-

tion in time it takes to insert tasks into the software timer queue, the jitter 

caused by the aperiodic interrupts appears as a spectrum of values between 

the two dark bands mentioned above. Also, the aperiodic interrupts and 

noise task can both occur during the same cycle of output task executions. 

This results in all the jitter values above the upper band, which look like its 

shadow. In fact, these values exhibit the same properties as the upper band, 

namely the divergence and linear increase, except 0.0083% of the period 

larger in magnitude, resulting in jitter up to 0.0026% of the period. Aperi-

odic interrupts can also cause real-time jitter of any value less than the time 

required to process an interrupt, if it overlaps with the release times of the 

output tasks. The RTM, however, radically decreases the side-effects that 

aperiodic interrupts have on real-time jitter. The fast, constant-time RTOS 

operations that it implements have a direct effect on the jitter. Particularly, 

the response task only introduces jitter equal to 0.0063% of the period for a 
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21% decrease; and when the effects of the aperiodic interrupts combine 

with those of the noise task, jitter of only 0.010% of the period occurs for 

up to a 61% decrease. As seen in the graphs, the aperiodic interrupt intro-

duces several patterns of real-time jitter, all of which are reduced by the 

RTM.

The noise task and aperiodic interrupts are both sources of real-time jitter 

in NOS. Each of which exhibits very different attributes. However, the 

RTM reduces the jitter caused by both of them. The RTM reduces the max-

imum jitter experienced by 61%. With the use of the RTM, real-time jitter 

in NOS becomes much less of a problem.
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CHAPTER 6

RELATED WORK

6.1 Modeling of Real-Time Systems with RTOSes

There has been extensive research dealing with the modeling of real-time 

systems. However, there has been limited modeling of those that use real-

time operating systems.

The work of Dick, Lakshminarayana, Raghunathan, and Jha is the first 

published study of the power consumption of RTOSes in embedded sys-

tems [6]. They have achieved this by using an instruction-level simulator of 

the Fujitsu SPARClite processor, developed at Princeton. The embedded 

software that they analyze includes a few example embedded applications 

running µC/OS. With this testbed, they have taken measurements of the 

energy and processing time consumed by various categories of RTOS func-

tions. From these measurements, they have suggested ways in which to 

design application software so that the power consumption is minimized. 

They believe that their research will lead to formal power-aware system-

level design.
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Although the focus of this paper is on the power consumption of the 

RTOS and this thesis is focused on the performance effects of the RTOS, 

there are several similarities between the two. The likenesses are with the 

testbeds used in these two studies. Their simulator closely resembles the 

C6201 simulator used in this thesis, in terms of input, output, and detail. 

The benchmarks used in their study are indicative of the types of applica-

tions that run on the SPARClite, whereas the MediaBench suite used in this 

thesis represents a broad range of applications common to high-perfor-

mance DSPs. Finally, the manner in which they analyze the RTOS power 

consumption by breaking it down into categories very closely resembles 

the analysis of processor utilization in this thesis. These similarities dem-

onstrate that the method used to model real-time systems in this thesis has 

been well established.

Studies of the characteristics of RTOSes are becoming increasingly 

important. The complexity of real-time applications has been intensifying, 

causing more embedded system developers to turn to RTOSes. Through the 

work of Dick, et. al. and others, future real-time systems will be faster and 

more energy efficient.
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6.2 Hardware Support for RTOSes

There has been extensive research dealing with the hardware support for 

operating systems in desktop processors, but not for RTOSes in embedded 

real-time systems. However, there have been some studies focused on 

RTOSes in real-time systems.

Adomat, Furunäs, Lindh, and Stärner describes the Real-Time Unit 

(RTU)—a hardware module designed to perform RTOS functions [1]. The 

RTU is designed for single or multiprocessor systems. It has been imple-

mented as an external ASIC that interfaces with the processors via a VME 

bus. The RTU supports 64 tasks with 8 priority levels, as well as sema-

phores, watch dog timers, event flags, external interrupts, periodic release 

times, relative time delays, and task scheduling. It informs processors that 

they need to switch tasks by sending them interrupts. The processors com-

municate with the RTU by accessing registers through the shared bus. Their 

goal is to improve performance and predictability.

The RTU has lots of similarities with the RTM. Both are hardware mod-

ules designed to perform RTOS functions in order to increase performance 

and predictability. Both perform task scheduling, time management, and 

event management operations. There are, however, many differences. The 

main difference is that the RTU is a system-level module and the RTM is 

on the processor chip. Because the RTU is external to the processor, it has 
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several advantages and disadvantages. It is capable of supporting multiple 

processors and the same RTU can be used for different kinds of processors, 

without their modification. However, there is a communication overhead in 

arbitrating the bus and sending interrupts, which can actually decrease per-

formance. Also, the RTU will cost more, because of the significant increase 

in required hardware. The RTU implements closer to a complete RTOS 

than just the bottleneck operations. This may slightly increase perfor-

mance, but it does not allow for existing RTOSes to easily take advantage 

of its offerings. These differences illustrate that the RTU and RTM are two 

distinct solutions to just about the same problem.

It is becoming more and more apparent that hardware support for 

RTOSes is necessary. As application complexity increases, more real-time 

systems require the use of an RTOS without the usual performance hit. 

Through the efforts of Adomat, et. al. and others, future real-time systems 

will be faster and more predictable.
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CHAPTER 7

CONCLUSION

7.1 Summary

The goal of real-time system designers, like all engineers, is to build an 

inexpensive, marketable product that will not take too long to develop and 

that performs well enough to satisfy the consumers. This is a delicate bal-

ance and improving one area may be to the detriment of another. Real-time 

operating systems happen to allow for faster, cheaper development, but 

come at the price of increased real-time jitter, response time, and processor 

utilization. This performance decrease can be severe enough to rule out the 

use of RTOSes in many real-time systems.

The Real-Time Task Manager helps to solve this problem by consider-

ably reducing the performance loss associated with RTOSes. The RTM 

achieves this by implementing three common RTOS operations that are 

often major performance bottlenecks in hardware. These RTOS operations 

are task scheduling, time management, and event management. By imple-

menting them in hardware, the RTM can extract much more of their intrin-

sic parallelism. Thus, the RTM is able to perform the operations far more 
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quickly, resulting in significant improvements in the performance of the 

system.

A reference RTM architecture has been proposed that would be able to 

support practically every real-time application. The hardware implementa-

tion of the reference design has been described in detailed schematics. A 

die area estimation indicates that it would be feasible to implement the 

RTM. This reference architecture demonstrates that it is practical to use the 

RTM in real embedded processors.

The effects of the RTM have been estimated through the analysis of sev-

eral models of realistic real-time systems. Each model includes a processor 

simulator, an RTOS, and application tasks. The Texas Instruments 

TMS320C6201 DSP has been simulated and is used for all systems being 

modeled. This processor is commonly used in modern commercial applica-

tions. Two different RTOSes are used in these models: µC/OS-II and NOS. 

They are used to demonstrate of the effects of the RTM with two drastically 

different RTOSes. Several benchmarks from the MediaBench suite have 

been ported to a multitasking environment. These benchmarks define the 

function of the application tasks and provide realistic workload characteris-

tics. The models have been thoroughly analyzed with varying amounts of 

system load, both with and without the use of the RTM. This analysis 
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allows for the accurate characterization of the RTM’s effects on perfor-

mance.

The RTM drastically improves the performance of real-time systems. 

This improvement is due to the fact that, in software, the time it takes to 

execute a few key RTOS operations is quite large and may scale linearly 

with the number of tasks. However, the RTM performs these operations in a 

trivial amount of time. The results of the analysis clearly demonstrate the 

RTM’s effects. It reduces the maximum real-time jitter by up to 66% for 

µC/OS and up to 61% for NOS. It reduces the maximum response time by 

up to 81% for µC/OS, but not significantly for NOS because the applica-

tion, not NOS, determines its maximum response time. Lastly, it reduces 

the RTOS processor utilization by up to 90% for µC/OS and up to 65% for 

NOS. The RTM is highly effective at reducing the performance loss usually 

associated with using an RTOS.

The Real-Time Task Manager is a practical and effective solution to the 

RTOS performance loss problem. It is designed to be compatible with as 

many systems as possible and is feasible to implement in hardware. Using 

extensive formal analysis, the RTM has been shown to significantly reduce 

the performance degradation caused by the RTOS. Therefore, the RTM 

would allow more real-time systems to take advantage of RTOSes, making 

new systems less expensive and decreasing their development time.
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7.2 Future Work

As with all research, the analysis presented in this thesis can be extend 

and improve upon. There are three general areas that should be concen-

trated on to enhance this work: modeling the real-time system more accu-

rately; making the real-time system models more representative of modern 

real-time applications; and increasing the performance benefit of the RTM. 

Each of these enhancements would benefit this research.

The models are very accurate, however, they are not perfect. Most nota-

bly, the memory system could be fully simulated. Also, formal hardware 

verification of the simulator’s accuracy would be desirable. These improve-

ments would contribute to the significance of this research.

Although the models represent a wide range of modern real-time sys-

tems, they do not represent as many systems as they could. For instance, 

more processors should be simulated and more RTOSes should be tested. 

Also, benchmarks that were designed specifically to test embedded sys-

tems would better represent actual real-time systems. These enhancements 

would make the results of this research applicable to a broader range of 

real-time systems.

The RTM is very effective at improving the performance of RTOSes, but 

it could do more. Particularly, it could easily be modified to fully imple-

ment a dynamic priority scheduling algorithm, such as EDF. This algorithm 
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is used in some RTOSes today. While one of the goals of the RTM is to be 

compatible with as many RTOSes as possible, there is some RTOS specific 

functionality that could be included in the RTM that would significantly 

increase performance. For instance, the effects of the timer interrupt could 

be almost eliminated if the RTM was directly connected to a hardware 

timer. This would make it only necessary to service an interrupt in response 

to a clock tick when a context switch should occur, drastically reducing the 

performance effects of the RTOS. Furthermore, advanced features such as 

priority inheritance and deadlock detection would be advantageous. All of 

these capabilities would make the RTM more robust.

This research can be enhanced through more accurate modeling, more 

representative models, and more RTM functionality. These improvements 

are the future directions of the work presented in this thesis.



120

BIBLIOGRAPHY

[1] J. Adomat, J. Furunäs, L. Lindh, and J. Stärner. “Real-Time Kernel in 

Hardware RTU: A step towards deterministic and high performance 

real-time systems.” In Proceedings of Eighth Euromicro Workshop on 

Real-Time Systems, L'Aquila, Italy, June 1996, pp. 164-168.

[2] M. Bach. The Design of the UNIX Operating System. Prentice-Hall, 

Englewood Cliffs, NJ, 1986.

[3] M. Barr. Programming Embedded Systems in C and C++. O’Reilly & 

Associates, CA, January 1999.

[4] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. 

Zhang, and B. Jacob. “The Performance and ENergy Consumption of 

Three Embedded Real-Time Operating Systems.” In Proceedings of 

the 2001 International Conference on Compilers, Architecture, and 

Synthesis for Embedded Systems (CASES ’01), Atlanta, GA, Novem-

ber 2001, pp. 203-210.

[5] T. Coopee. “Embedded Intelligence.” InfoWorld, November 17, 2000.



121

[6] R. Dick, G. Lakshminarayana, A. Raghunathan, and N. Jha. “Power 

Analysis of Embedded Operating Systems.” In Proceedings of the 

37th Design Automation Conference, Los Angeles, CA, June 2000.

[7] International Technology Working Group. International Technology 

Roadmap for Semiconductors 2001 Edition: Executive Summary. 

Semiconductor Industry Association, 2001.

[8] Jewish Hospital, University of Louisville Health Sciences Center, and 

ABIOMED, Inc. “The Implantable Artificial Heart Project.” <ht-

tp://www.heartpioneers.com>, 2001.

[9] J. Labrosse. MicroC/OS-II: The Real-Time Kernel. R & D Books, 

Lawrence, KS, 1999.

[10] C. Lee, M. Potkonjak, and W. Mangione-Smith. “MediaBench: A 

Tool for Evaluating and Synthesizing Multimedia and Communica-

tions Systems.” In Proceedings of the 30th Annual International Sym-

posium on Microarchitecture (MICRO ‘97), Research Triangle Park, 

NC, December 1997.

[11] Y. Li, M. Potkonjak, and W. Wolf. “Real-Time Operating Systems for 

Embedded Computing.” In Proceedings of the 1997 International 

Conference on Computer Design (ICCD ’97), Austin, TX, October 

1997.



122

[12] C. Liu and J. Layland. “Scheduling Algorithms for Multiprogram-

ming in a Hard-Real-Time Environment.” Journal of the Association 

for Computing Machinery (JACM), Vol. 20, No. 1, January 1973, pp. 

46-61.

[13] J. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ, 

2000.

[14] K. Mackenzie, E. Hudson, D. Maule, S. Jayaraman, and S. Park. “A 

Prototype Network Embedded in Textile Fabric.” In Proceedings of 

the 2001 International Conference on Compilers, Architecture, and 

Synthesis for Embedded Systems (CASES ’01), Atlanta, GA, Novem-

ber 2001, pp. 188-194.

[15] J. Mulder, N. Quach, and M. Flynn. “An Area Model for On-Chip 

Memories and its Application.” IEEE Journal of SOLID-STATE Cir-

cuits, Vol. 26, No. 2, February 1991, pp. 98-106.

[16] S. Park and S. Jayaraman. “Textiles and Computing: Background and 

Opportunities for Convergence.” In Proceedings of the 2001 Interna-

tional Conference on Compilers, Architecture, and Synthesis for Em-

bedded Systems (CASES ’01), Atlanta, GA, November 2001, pp. 186-

187.



123

[17] K. Shin. “Current Status and Future Directions of Real-Time Comput-

ing.”

[18] A. Tannenbaum. Modern Operating Systems. Prentice Hall, Engle-

wood Cliffs, NJ, 1992.

[19] Texas Instruments. Code Composer Studio User’s Guide. February 

2000.

[20] B. Schneier. Applied Cryptography: Protocols, Algorithms, and 

Source Code in C. John Wiley & Sons, NY, 1996.

[21] D. Stewart. “Introduction to Real Time.” Embedded Systems Pro-

gramming, CMP Media, November 2001.

[22] J. Turley and H. Hakkarainen. “TI’s New ‘C6x DSP Screams at 1,600 

MIPS.” The Microprocessor Report, Vol. 11, 1997, pp. 14-17.

[23] C. Weaver, R. Krishna, L. Wu, T. Austin. “Application Specific Archi-

tectures: A Recipe for Fast, Flexible and Power Efficient Designs.” In 

Proceedings of the 2001 International Conference on Compilers, Ar-

chitecture, and Synthesis for Embedded Systems (CASES ’01), Atlan-

ta, GA, November 2001, pp. 181-185.




	Abstract
	Hardware Support for Real-Time Operating Systems
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	1.1 Modern Embedded Systems
	1.2 Real-Time Operating Systems
	1.2.1 Development
	1.2.2 Performance

	1.3 Addressing the Performance Problem
	1.3.1 Bottlenecks within RTOSes
	1.3.2 Real-Time Task Manager

	1.4 Overview

	Bottlenecks in Real-Time Operating Systems
	2.1 Task Scheduling
	2.2 Time Management
	2.3 Event Management

	Real-Time Task Manager
	3.1 Design
	3.2 Architecture

	Experimental Method
	4.1 Processor
	4.2 Real-Time Operating Systems
	4.2.1 mC/OS-II
	4.2.2 NOS

	4.3 Benchmarks
	4.3.1 GSM
	4.3.2 G.723
	4.3.3 ADPCM
	4.3.4 Pegwit

	4.4 Tasks
	4.5 Measurements

	Results & Analysis
	5.1 Processor Utilization
	5.1.1 mC/OS-II
	5.1.2 NOS

	5.2 Response Time
	5.2.1 mC/OS-II
	5.2.2 NOS

	5.3 Real-Time Jitter
	5.3.1 mC/OS-II
	5.3.2 NOS


	Related Work
	6.1 Modeling of Real-Time Systems with RTOSes
	6.2 Hardware Support for RTOSes

	Conclusion
	7.1 Summary
	7.2 Future Work

	Bibliography


