
ABSTRACT

Title of dissertation: BUFFER-ON-BOARD MEMORY SYSTEM

Elliott Cooper-Balis,
Doctor of Philosophy, 2012

Dissertation directed by: Professor Dr. Bruce Jacob
Dept of Electrical & Computer Engineering

The design and implementation of the commodity memory architecture has re-

sulted in significant limitations in a system’s speed and capacity. To circumvent these

limitations, designers and vendors have begun to place intermediate logic between the

CPU and DRAM. This additional logic has two functions: to control the DRAM and

to communicate with the CPU over a fast and narrow bus. The benefit provided by

this logic is a reduction in pin-out to the memory system from the CPU and increased

signal integrity seen by the DRAM, granting faster clock rates while increasing ca-

pacity. This new design is reminiscent of the FB-DIMM memory system yet makes

key changes to its architecture including the use of existing DIMMs to reduce cost, a

reduction in power (relative to FB-DIMM), and a more stable request latency. The

problem is that the few vendors utilizing this design have the same general approach,

yet the implementations vary greatly in their non-trivial details.

A hardware verified simulation suite is developed to accurately model and evaluate

the behavior of this buffer-on-board memory system. A study of this design space is

performed to determine optimal use of the resources involved. This includes DRAM

and bus organization, queue storage, and mapping schemes. Various constraints based

on implementation costs are placed on simulated configurations to confirm that these

optimizations apply to viable systems. Finally, full system simulations are performed

with MARSSx86 to better understand how this memory system interacts with a

CPU, cache, and operating system executing an application. Full system simulations

uncover behaviors not present in simple limit-case simulations such as the impact of

address and channel mapping schemes or the organization of ports and the associated

buffers. When applying insights gleaned from these simulations, optimal performance

can be achieved while still considering outside constraints (i.e., pin-out, power, and

fabrication costs).

BUFFER–ON–BOARD MEMORY SYSTEM

by

Elliott Cooper-Balis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:

Professor Dr. Bruce Jacob, Chair/Advisor

Professor Dr. Manoj Franklin

Professor Dr. Gang Qu

Professor Dr. Alan Sussman

Professor Dr. Donald Yeung

c©Copyright by

Elliott Cooper-Balis 2012

This dissertation is dedicated to,

my family, Judith Cooper, Frank Balis, and Will Cooper-Balis

and

Paul Rosenfeld

For their help and support along the way

ii

Contents

1 Background 1

1.1 Introduction . 1

1.2 Past, Present and Future Memory Systems 5

1.2.1 Double Data Rate Synchronous DRAM 5

1.2.2 Registered & Load Reducing DIMM 12

1.2.3 Fully Buffered DIMM . 14

1.2.4 IBM Power 7 . 17

1.2.5 Intel Scalable Memory Interface 19

1.2.6 AMD G3 Memory Extender 21

2 Buffer-On-Board Memory System 23

2.1 Architecture Overview . 24

2.2 Main BOB Controller . 26

2.3 Simple Controller . 28

2.4 Packets . 31

3 BOB Simulation Suite 33

3.1 Simulation Framework . 33

3.2 Hardware Verification . 35

4 Simulation Results 38

4.1 Limit-Case Simulations . 39

4.1.1 Simple Controller & DRAM Efficiency 40

iii

4.1.2 Link Bus Configuration . 47

4.1.3 Peak Possible Bandwidth . 56

4.1.4 Multi-Channel Optimization 58

4.1.5 Cost Constrained Simulations 72

4.1.6 Ports . 76

4.2 Full System Simulations . 81

4.2.1 System Performance & Power Trade-offs 84

4.2.2 Latency Analysis . 93

4.2.3 Address Mapping . 101

4.2.4 Read Return Queue . 120

4.2.5 Port Parameters & Heuristics 132

5 Conclusion 148

5.1 Future Work . 152

6 Appendix A 154

iv

List of Figures

1 DRAM Signal Integrity Degradation 3

2 Trends In Commodity DRAM . 4

3 Modern DRAM Device . 7

4 JEDEC DDR Memory System . 10

5 Ganged vs. Unganged Memory . 12

6 LR-DIMM . 14

7 FB-DIMM Memory Architecture . 16

8 IBM Power7 Memory Architecture 19

9 Intel SMI/SMB Architecture . 20

10 AMD G3MX . 22

11 BOB Memory Architecture . 25

12 Main BOB Controller . 27

13 Simple Controller . 29

14 BOB Packet Definition . 31

15 ModelSIM Verification . 36

16 ModelSIM In Action . 37

17 Varying Rank Depth . 41

18 Varying O–O–O Depth . 42

19 RRQ Depth and Response Width - DDR3-1066 44

20 RRQ Depth and Response Width - DDR3-1333 44

21 RRQ Depth and Response Width - DDR3-1600 45

v

22 Varying Response Link Bus . 46

23 Impact of tFAW on Data Burst . 47

24 Link Bus Configurations - DDR3-1066 50

25 Link Bus Configurations - DDR3-1333 51

26 Link Bus Configurations - DDR3-1600 51

27 Impact of Read–Write Mix on Performance 54

28 Latency Components in Different BOB Configurations 55

29 Varying Number of BOB Channels 57

30 Multi-Channel Arbitration . 59

31 4-to-1 Multi-Channel Configuration 61

32 Multi–Channel Bandwidth with DDR3-1066 62

33 Multi–Channel Bandwidth with DDR3-1333 63

34 Multi–Channel Bandwidth with DDR3-1600 64

35 Read Return Queue In Multi-Channel Configurations - DDR3-1066 . 69

36 Read Return Queue In Multi-Channel Configurations - DDR3-1333 . 70

37 Read Return Queue In Multi-Channel Configurations - DDR3-1600 . 71

38 Pareto Frontier Analysis . 74

39 Varying Port Width and Depth . 78

40 Utilization of Port Resources . 80

41 Pareto Frontier Analysis - mcol . 82

42 Pareto Frontier Analysis - mg . 83

43 Pareto Frontier Analysis - sp . 83

44 Pareto Frontier Analysis - STREAM 84

vi

45 Full System Simulation - facesim . 88

46 Full System Simulation - fluidanimate 89

47 Full System Simulation - mcol . 89

48 Full System Simulation - mg . 90

49 Full System Simulation - Sandia GUPS 90

50 Full System Simulation - sp . 91

51 Full System Simulation - STREAM 91

52 Latency Components - STREAM . 94

53 Latency Components - mcol . 95

54 Per Channel Latency Components - facesim 99

55 Per Channel Latency Components - fluidanimate 99

56 Per Channel Latency Components - mcol 99

57 Per Channel Latency Components - mg 100

58 Per Channel Latency Components - Sandia GUPS 100

59 Per Channel Latency Components - sp 100

60 Per Channel Latency Components - STREAM 101

61 Impact of Channel Mapping - facesim 106

62 Impact of Channel Mapping - fluidanimate 107

63 Impact of Channel Mapping - mcol 108

64 Impact of Channel Mapping - mg . 109

65 Impact of Channel Mapping - STREAM 110

66 Address Mapping - fluidanimate . 115

67 Address Mapping - Sandia GUPS . 116

vii

68 Address Mapping - mcol . 117

69 Address Mapping - sp . 118

70 Address Mapping - STREAM . 119

71 Impact of Return Queue Depth - fluidanimate 123

72 Impact of Return Queue Depth - mcol 124

73 Impact of Return Queue Depth - mg 125

74 Impact of Return Queue Depth - sp 126

75 Impact of Return Queue Depth - STREAM 127

76 Impact of Return Queue on Latency 129

77 Impact of Port Configuration - STREAM (A) 136

78 Impact of Port Configuration - STREAM (D) 137

79 Impact of Port Configuration - STREAM (G) 138

80 Impact of Port Configuration - STREAM (I) 139

viii

List of Tables

1 Response Packet Transmission Times 49

2 Multi-Channel Link Bus Utilization - DDR3-1066 62

3 Multi-Channel Link Bus Utilization - DDR3-1333 63

4 Multi-Channel Link Bus Utilization - DDR3-1600 64

5 Configuration Parameters for Cost-Constrained Systems 74

6 MARSSx86 Configuration . 81

7 Normalized Power Consumption of Benchmarks 92

8 Bit Field Naming Conventions . 103

9 Channel Mapping Schemes . 103

10 Channel Mapping - Bandwidth & Execution Time - facesim 106

11 Channel Mapping - Bandwidth & Execution Time - fluidanimate . . 107

12 Channel Mapping - Bandwidth & Execution Time - mcol 108

13 Channel Mapping - Bandwidth & Execution Time - mg 109

14 Channel Mapping - Bandwidth & Execution Time - stream 110

15 DRAM Mapping Schemes . 112

16 DRAM Mapping - Bandwidth & Execution Time - fluidanimate . . . 115

17 DRAM Mapping - Bandwidth & Execution Time - Sandia GUPS . . 116

18 DRAM Mapping - Bandwidth & Execution Time - mcol 117

19 DRAM Mapping - Bandwidth & Execution Time - sp 118

20 DRAM Mapping - Bandwidth & Execution Time - STREAM 119

21 Impact of Return Queue Capacity on Bandwidth 131

ix

22 Port Configuration Results - A . 136

23 Port Configuration Results - D . 137

24 Port Configuration Results - G . 138

25 Port Configuration Results - I . 139

26 Port Buffer Utilization - A . 143

27 Port Buffer Utilization - D . 144

28 Port Buffer Utilization - G . 145

29 Port Buffer Utilization - I . 146

x

1 Background

1.1 Introduction

The modern memory system has remained essentially the same for almost 15 years.

Decisions made in the past, when the disparity between the CPU and memory clock

were not considered to be an issue, are now preventing the memory system from pro-

viding the capacity and bandwidth that today’s systems and applications demand.

Unless modifications are made, the memory system will become an even greater bot-

tleneck than it is now, further impeding performance gains in modern systems.

Unfortunately, alterations to the memory system are met with significant resis-

tance for numerous reasons. First, the fact that the profit margins on memory devices

are relatively small (compared to that of a CPU) prevents manufacturers from ac-

cepting even modest changes due to the risk of possible failure. Second, any change

that is not transparent to the rest of the system also requires support from man-

ufacturers of other system parts. For example, if a new memory module needs to

change size or pin-out to support a new feature, this would require cooperation from

motherboard manufacturers, CPU and chipset manufacturers, and possibly even op-

erating system and application developers. Lastly, the average consumer is unaware

of the importance of the memory system and does not see the benefit when faced

with increased costs. In the end, the consumer will typically purchase whatever is

cheapest, regardless of the benefit seen by using better products.

To support some level of memory system customization and expandability, com-

modity DRAM memory is purchased on a PCB, called a dual in-line memory module

1

(DIMM), which uses physical contact (i.e., pins that plug into a motherboard slot)

to provide electrical connectivity with the rest of the system. This physical contact

is sufficient for electrical signals that operate at low speeds (<100MHz), but as the

memory clock has increased to maintain pace with the CPU, this solution is proving

to be less than ideal. The signal integrity at these physical contacts is greatly de-

graded as the memory clock is increased. This issue is exacerbated as more DIMMs

are placed in a channel and the further a particular DIMM is located from the memory

controller’s signal driver [24, 21].

This can be seen in Figure 1 where the signal integrity of the DRAM bus is

displayed for a system that has two (Figure 1(a)) and four (Figure 1(b)) DDR2-

400 DIMMs. While only two DIMMs are attached to the bus, the data eye is clearly

defined. A well defined data eye means that there is a clear differentiation between

high and low voltages, and that the signal rise and fall time is short. This makes

it easier to interpret what value these signals represent. The data eye is drastically

reduced once the DRAM bus has four DIMMs attached, making it more difficult to

determine what value is being sent on the bus and increasing the likelihood of errors.

The degradation of signal integrity is a result of several factors. The additional

DIMMs cause an increase in load seen by the signal drivers, an increase in signal

cross-talk, and an increase in signal reflection [40].

2

(a) Signal integrity seen by two DDR2 DRAM
DIMMs

(b) Signal integrity seen by four DDR2
DRAM DIMMs

Figure 1: Signal integrity degradation seen on DRAM bus when increasing the number
of DIMMs (Original images from [40])

As a result of these issues, when manufacturers increase the memory clock, they

must reduce the number of DIMMs allowed in a channel to avoid extraneous costs

of mitigating these signal integrity issues. This severely limits the total capacity

supported in a system. For example, the original DDR SDRAM standard allowed

four DIMMs in a channel, while DDR2 allowed two, and the higher-speed DDR3

variants (i.e., DDR3-1600) only allows a single DIMM of depth [21, 22]. While it is

possible to place higher capacity DIMMs in the channel, the overall rate of increase

in capacity of a DIMM has slowed due to the difficulties in decreasing the size of

a DRAM cell’s capacitors. Figure 2(a) shows indirect evidence of this effect as

the size of available DIMMs has remained at a 16 GB ceiling for the last five years.

Unfortunately, the cost of these high-capacity DIMMs does not scale proportionally

with their capacity, as can be seen in Figure 2(b).

3

(a) Release dates of various sized DIMMs (b) Cost per GB of various sized DIMMs

Figure 2: Trends In Commodity DRAM

The FB-DIMM memory system was originally introduced to solve the issues out-

lined above. Each FB-DIMM uses standard DDRx DRAM devices and has additional

logic called the advanced memory buffer (AMB). The AMB allows each memory chan-

nel to operate on a fast and narrow bus by interpreting a new packetized protocol

and issuing DRAM specific commands to the DRAM devices. Unfortunately, the high

speed I/O on each AMB resulted in unacceptable levels of heat and power dissipation

[24, 7]. The inclusion of the AMB also resulted in more expensive DIMMs relative

to similar capacity DDRx DIMMs. These issues ultimately led to the failure of the

standard.

To fill the void left by FB-DIMM, vendors such as Intel, AMD, and IBM have

devised new architectures to try and resolve the memory capacity and bandwidth

issues. Although similar, these new architectures make key changes that prevent the

issues that plagued an FB-DIMM system: while each memory channel still operates

on a fast, narrow bus, it contains a single logic chip per channel as opposed to one logic

chip per module. This allows the new architecture to use of existing low-cost DIMMs,

4

prevents excessive power and heat in the logic, and reduces variance in latency.

While this buffer-on-board memory system has already been implemented in a

small number of high-end servers, the problem exists that each of these implementa-

tions differs in non-trivial details. The contribution of the present work is an exami-

nation of this new design space to determine optimal use of the resources involved and

the exploration of performance enhancing strategies. This includes proper bus con-

figurations for various types of DRAM, necessary queue depths to reach peak DRAM

efficiency, and address and channel mappings to ensure an even request spread in

order to reduce resource conflicts.

1.2 Past, Present and Future Memory Systems

The past five years have seen numerous efforts to devise a next-generation memory

system. While many ideas have been proposed, no clear solution has been widely

adopted.

1.2.1 Double Data Rate Synchronous DRAM

The most ubiquitous form of memory in use today is the JEDEC standardized dou-

ble data-rate (DDR) synchronous DRAM. For the past 15 years, this has been the

dominant form of commodity memory, eventually breaking into mobile and supercom-

puting markets due to an overwhelming abundance of parts. The widespread success

of DRAM is attributed to the standardization of the device packaging, pin-out, and

operating protocol.

A modern DDR SDRAM device (Figure 3) contains numerous arrays of capac-

5

itive cells used to store bits of data. Each of these arrays is typically 256Kb each

[16, 26]. These arrays are organized into larger banks which operate in parallel and

independent of one another; a DDR3 SDRAM device has eight banks [11]. Banks

are composed of smaller arrays to prevent extraneous control lines which would span

the entire length a row or column resulting in an unnecessary load on the control

circuitry.

The data stored in each bank is accessed using separate row and column addresses

which are sent to the device using separate commands on different cycles. These

commands are sent via the device’s command bus in conjunction with a row or column

address which are sent via the address bus. The row address is sent to the device

first with the ACTIVATE (ACT) command. Upon receiving the ACT command, the

entire row of the bank is sent to the sense amplifier. Each bank has its own sense

amplifier which is responsible for interpreting the minuscule charge that is stored in

a cell’s capacitor.

Once this operation has been completed, data may be read out of or into the sense

amplifier with a column access command (READ or WRITE). The amount of time

between an ACT and READ or WRITE is dictated by the tRCD (Row to Column

Delay) timing constraint.

6

Figure 3: The modern DDR SDRAM Device architecture

Once the data has finished being read from or written to the sense amplifier, the

PRECHARGE (PRE) command is responsible for resetting the sense amplifier and

bit lines to prepare for another row access. The amount of time it takes to perform

this action is dictated by the tRP (Row Precharge) timing constraint. The point at

which this command is issued is dictated by the row buffer management policy. If

the PRE command is issued immediately after a column access, then the operation is

referred to as a closed page policy. Conversely, if the precharge command is not issued

immediately, the sense amplifier retains the row data, which can be advantageous in

the case that subsequent requests access this same data. This will mitigate the power

and time costs of precharging and re-activating the same row; such a policy is referred

to as open page and is used in situations of high address space locality.

Even once the row has been precharged, there are other important timing con-

straints which must be adhered to before a new row may be activated. For instance

the tRC (Row Cycle) constraint dictates the amount of time between subsequent

7

ACT commands to the same bank. The tFAW (Four Activation Window) is a tim-

ing constraint used to restrict the current draw from a particular device by dictating

the amount of time in which a maximum of four ACT commands may be issued.

Due to the nature of the capacitors used to store individual bits of data, the repre-

sentative charge leaks over time, and the intended value dissipates beyond recognition.

The REFRESH (REF) command resolves this issue by reading a row and placing it

back into the data array, thereby refreshing the charge in each cell’s capacitor. This

is done once every 64 ms. Thus, in a device with 8192 rows, a REF command is

typically issued every 7.8 microseconds [28]. The amount of time a refresh operation

takes is dictated by the tRFC (ReFresh Command) timing constraint. This specifies

the length of time between a REF and another REF or a subsequent ACT command.

Power consumption within a DRAM device comes from several distinct sources:

• Background Power - Regardless of the operation currently taking place, there

is always a constant dissipation of background energy which is used to operate

the control circuitry. This value can vary depending on whether or not a row

is currently activated and being held within the sense amplifiers or whether the

device is in low power mode.

• Activation and Precharge Power - The power to activate and precharge a

row within the data array is one of the main sources of power consumption in

a DRAM device. As previously stated, when a row is activated, the entire row

of the data array is sent to the sense amplifier regardless of how much data is

actually needed. At some point subsequent to the activation, the sense amplifier

8

must be precharged to prepare for a new request. Under heavy utilization, these

operations can account for the majority of the power consumed by the DRAM

device [18].

• Burst Power - This component of a device’s power consumptions accounts

for each time data is transmitted on the data bus from a read or write request.

The relative size of this component varies with memory system utilization.

• Refresh Power - This is the power consumption from refreshing the rows of

the DRAM data array. This is normally a constant power draw as the operation

is performed at regular periodic intervals.

The ratio of these various sources of power consumption is dependent on how the

memory system is being used. An idle memory system’s power consumption will be

dominated by background power and refresh power. Conversely, in a highly utilized

memory system, the activation and precharge power will dominate. The row buffer

management policy will also have an impact on the ratio of these sources of power

consumption. For example, with an open page management policy, it is possible to

mitigate some of the activate and precharge power by leaving a row open, therefore

causing the read and write burst power to be greater than the activate and precharge

power. When all of these sources are accounted for during “high usage” situations

of 80% bus utilization, a single DDR SDRAM device consumes approximately 689.5

milliwatts [1], a DDR2 DRAM device consumes approximately 340.1 milliwatts [2],

and a DDR3 DRAM device consumes approximately 435.9 milliwatts [4]. These

values will vary depending on device capacity, clock rate, and utilization.

9

The JEDEC standardized DDR SDRAM device described above is used within

the standardized memory system seen in Figure 4. This memory system contains

one or more channels composed of a command and address bus and a 64-bit wide

data bus. Each of these channels may have one or more ranks of DRAM. A rank of

memory is a group of DRAM devices connected in parallel that operate in lockstep

by receiving and handling the same requests, at the same time. Each of the device’s

data buses (which range from 4 to 16 bits) are aggregated together to form the 64-bit

data bus. Since DRAM devices do not have a set data bus width, the number of

DRAM devices which are used to form a rank can vary. The memory controller,

now typically located on the CPU die, is responsible for issuing the DRAM-specific

commands detailed above. When reading or writing data out of the device, data

is driven on both rising and falling edges of the memory clock, which is where the

double data rate nomenclature arises.

Figure 4: JEDEC standardized memory system architecture

10

As previously mentioned, increasing the clock rate with each successive generation

of the DDR standard has limited the number of DIMMs allowed in each memory

channel. To circumvent this limitation, most major manufacturers have modified the

architecture and widened the memory bus to increase capacity as opposed to relying

on additional rank depth. These architectures, called dual- or triple-channel, have

two and three DRAM buses, respectively, which can be ganged or unganged.

In a ganged architecture, each 64-bit rank receives the same request at the same

time as if the DRAM data bus is actually double or triple the size of the rank’s data

bus. In an unganged configuration, each 64-bit DRAM channel acts independently

of the others. While an unganged architecture will allow for greater concurrency and

fewer resource conflicts, it requires duplicate logic within the controller to operate

each channel independently. Both of these modified architectures do permit higher

capacity at the same time as increasing the clock rate, yet the required pin-out (one

of the most significant costs to chip manufacturers) on the processor is incredibly

high. A modern Intel i7 processor uses over 350 pins for a triple-channel memory

system [14]. The current generation (DDR3) can support transfer rates of up to a

theoretical 12.8GB/s while operating at 1600Mbit/s [11]. The next generation of

DDR SDRAM (DDR4) is expected to be widely available by 2012 [33] yet still faces

the same limitations as previous generations and is simply a temporary solution, in

that it will still use a wide, multi-drop bus that will still have the speed and capacity

issues explained above.

11

(a) Ganged ranks (b) Unganged ranks

Figure 5: The differences between ganged and unganged ranks or DRAM

1.2.2 Registered & Load Reducing DIMM

Another modification to the DDR SDRAM architecture is the introduction of the

Registered DIMM (RDIMM) and Load Reducing-DIMM (LR-DIMM) [27] standards.

The RDIMM standard was introduced first and alleviated some of the signal integrity

issues of high-speed memory modules. These DIMMs use standard DDR3 DRAM

devices but place a register between the devices and the main memory controller.

This register is responsible for latching all control signals, such as the bank address

lines, address bits which address the columns and rows, CAS and RAS signals, and

power-down control lines [29]. These modules came at a higher cost; this is due to a

lower manufacturing volume relative to unbuffered DIMMs and not due to higher part

costs, which comprise a simple buffer. A major benefit to this modification is that it

12

maintains both the interface and protocol of the existing standard, thereby allowing

consumers and system manufacturers to retain old hardware while still having the

benefit of the increased performance provided by these new DIMMs.

Similar to the RDIMM standard which buffers the control and address signals,

an LR-DIMM places a memory buffer (MB) [30] on all of the signals between the

CPU and DRAM (Figure 6). This includes the entire data bus and data strobe

lines, along with the control and address lines. This provides an even greater boost in

signal integrity and reduction in load on the main controller relative to an RDIMM

because there is now only a single load per DIMM as opposed to a load equal to the

number of DRAM devices. Again, this allows a faster memory clock with an even

greater number of DIMMs possible in a single channel. This is aided even further by

the inclusion of a phase-lock loop circuit which re-drives the clock signal, allowing it

to be run at a higher frequency without fear of noise or signal degradation.

As with RDIMMs, these modifications have no impact on the existing interface

or protocol, making the LR-DIMM attractive to both the memory manufacturers

who are wary of costly modifications and to the consumers and vendors who are not

required to make modifications to existing systems. The only noticeable difference

seen to the system is a one cycle increase in latency to account for the latching of

signals and data before it is sent to the DRAM device or memory controller. While

this modification will extend the life of the DDR SDRAM architecture, it is still a

temporary fix to the underlying issues facing modern memory systems. LR-DIMMs

with a capacity of 16GB and 32GB are expected to be released to market at some

point in 2011.

13

Figure 6: The LR-DIMM architecture

1.2.3 Fully Buffered DIMM

In 2004, an entirely new memory architecture standard was adopted that was intended

to alleviate the problems with the current design. The new design, called fully buffered

DIMM (FB–DIMM), uses the same DRAM devices as DDR2 and DDR3 SDRAM

DIMMs, but operates on a faster and more narrow bus relative to the standard DDR

architecture [6]. This was made possible by the inclusion of a small controller on

each DIMM called the advanced memory buffer (AMB) [10]. The AMB is responsible

for interpreting the packetized protocol and controlling the DRAM devices located

on each DIMM. The standard defines a point-to-point interface between DIMMs,

which causes the memory system to appear as a multi-hop store & forward network

[22]. This architecture allows a much higher capacity (up to 768 GB per system) and

significantly higher bandwidth per pin due to its increased clock.

14

An FB–DIMM memory channel operates on two separate logical buses: the north-

bound channel and the southbound channel [24, 22]. These channels are different

widths to account for the disparity between reads and writes during typical oper-

ation; the northbound channel (going toward the CPU) is 14 data lanes and the

southbound channel (going away from the CPU) is 10 data lanes [9] (Figure 7). The

resulting peak bandwidth achievable by each bus is dependent on the DRAM devices

used on the module. A multiple of the DRAM reference clock is used as the frequency

for the northbound and southbound bus and results in the ability to transfer twice as

many reads as writes [23]. For example, when an FB-DIMM uses DDR2-667 devices,

the channel can support peak bandwidth of 8 GB/s.

To account for such narrow buses, requests and responses are encapsulated in pack-

ets or frames. As these frames are transmitted on their respective channel, the AMB

interprets the contents to determine proper routing or to generate standard DRAM

commands for local DRAM devices. To accommodate proper packet transmission,

each of these channels operates at speed exactly six times that of the DRAM devices

which populate the DIMM (i.e., DDR3-1333 with a 667MHz clock rate operates on

FB–DIMM channels of 4GHz).

15

Figure 7: The FB-DIMM memory system

A southbound frame consists of up to three independent commands or a single

command and 72 bits of write data (64 data bits and 8 ECC bits). In a frame made

up of three separate commands, each command is destined for a different DIMM

within the channel. These commands can either be a typical read or write requests

(which are then interpreted by the AMB into standard DRAM commands like ACT,

READ, WRITE, or REFRESH) or channel commands which are used to manage

operating conditions within the FB–DIMM channel [24]. These commands include

debug operations, channel syncing operations, reset commands, and control register

setting commands. Scheduling at the DRAM level is still handled by the main memory

controller with the AMB simply interpreting the frames it receives into DRAM based

commands.

A northbound frame consists of 144 data bits retrieved from the DRAM as a result

of a previous request (128 data bits and 16 ECC bits). The 128 data bits corresponds

to the data retrieved from a single DRAM device cycle where 64 bits are transmitted

16

on each clock edge.

Unfortunately, an unforeseen consequence of the FB–DIMM architecture’s point-

to-point nature and the use of high speed I/O in each AMB caused unacceptable

levels of heat and power dissipation. Under heavy load, a fully populated FB–DIMM

channel of 8 DIMMs (totally 32 GB) requires over 90 watts while under moderate load

[8, 3], which is on par with CPUs at the time. Tests have shown that an FB-DIMM

system consumes over 800% more power than a comparable DDR2 memory system

[17]. Because of this issue, adoption of the standard slowed, and FB-DIMM was

eventually removed from all major technology roadmaps. While no clear successor to

FB–DIMM has been proposed, major vendors have taken it upon themselves to find

solutions to the capacity and bandwidth issues. They have done this by designing

new architectures which, like FB–DIMM, use existing DRAM devices attached to

intermediate logic, operating on a relatively narrow, high-speed bus. These new

architectures are simply organized in a different fashion.

1.2.4 IBM Power 7

IBM’s new 8-core Power7 processors (Figure 8) have implemented a novel memory

system which increases DRAM capacity to up to 256 GB per CPU socket (and up to 8

TB in a system using a Power795 processor) with an access rate of 1066MHz [12]. All

Power7 CPUs have two on-die memory controllers each with 8 KBytes of scheduling

window [25]. The memory controller communicates with 4 logically independent

channels, for a total of 8 memory channels per CPU socket. Unlike a standard DDR3

memory system, a channel is now two logically separate, uni-directional buses which

17

are faster and more narrow than the standard DRAM bus. Like FB-DIMM, this is

possible through the utilization of an advanced buffer chip which is placed between

the CPU and DIMMs.

Each of the advanced buffer chips communicates with the on-die memory controller

via a 6.4 GHz channel which has 8 data lanes towards the DIMM and 16 data lanes

towards the CPU. With 8 of these channels, a CPU has a total of 136.44 GB/s of

available memory bandwidth [12]. Unlike the FB-DIMM standard where an AMB is

responsible for communicating with other AMBs in a channel, the advanced buffer

chip used in the Power7 memory architecture is only responsible for communicating

with a single DIMM. This alleviates some of the issues with the FB-DIMM design,

such as excessive power dissipation within the AMB due to constantly communicating

with other DIMMs in the channel and variable latencies caused by a multi-hop store

& forward network. The design of the advanced buffer chip is propriety to IBM [25]

so the protocol used to communicate with the CPU is unavailable. Due to the widths

and operating frequency of each channel, it would be impossible to use the FB-DIMM

protocol.

18

Figure 8: IBM’s Power7 memory architecture

1.2.5 Intel Scalable Memory Interface

After it was clear that FB-DIMM had failed, Intel decided to modify the architecture

slightly to alleviate the issues with the design instead of abandoning it completely.

At one point called FB-DIMM2 [15], Intel’s Scalable Memory Interface (SMI) is a

memory system architecture for Nehalem EX processors and has recently been im-

plemented into IBM’s System X and BladeCenter systems [37]. The block diagram

for this system can be seen in Figure 9. Similar to both the Power7 memory system

and FB-DIMM, this design is made possible by a logic chip attached to each channel.

The logic chip used in this system is called the Scalable Memory Buffer (SMB) and

is placed between standard DDR3 RDIMMs and the CPU that it communicates with

over the SMI buses.

The SMI interface between the Nehalem-EX processor and SMB consists of two

uni-directional buses with 9 southbound data lanes (+1 for CRC) for requests and 12

northbound data lanes (+1 for CRC) for responses. The rate at which these buses

are operated is dependent on the CPU currently in the socket and includes 4.8 Gb/s,

19

5.86 Gb/s, or 6.4 Gb/s [13]. The SMB is also responsible for operating two logically

independent, JEDEC standardized channels of DDR3 RDIMMs where each channel

is allowed up to two DDR3 RDIMMs. Each Nehalem-EX processor has four SMIs,

thereby providing a total capacity of up to 256 GB per CPU socket and a total

memory channel bandwidth of 67.2 GB/s when clocked at 6.4 Gb/s.

As with IBM’s Power7 systems, Intel’s architecture is differentiated from the FB-

DIMM standard by using the SMB to only communicate with the DIMMs as opposed

to other logic. This alleviates many of the issues with the FB-DIMM design such as

unacceptable heat and power dissipation and variance in latency. Again, similar to the

Power7 memory architecture, the SMI and SMB are both propriety, and therefore the

communication which occurs over each SMI bus to the SMB is unknown. A protocol

similar to FB-DIMM is likely since Intel developed the original standard, yet they

specifically state that the original FB-DIMM protocol is not supported within an

SMI/SMB system [13].

Figure 9: Intel’s Xeon 7500 memory architecture

20

1.2.6 AMD G3 Memory Extender

AMD had also proposed a similar solution to the issues facing current memory sys-

tem design. Just like IBM and Intel, they proposed placing a piece of logic called the

Socket G3 Memory Extender (G3MX) between an Opteron CPU and either DDR3

UDIMMs or RDIMMs. Each Opteron CPU would have an on-die memory controller

communicating with four G3MX devices over separate channels. Each of these chan-

nels are made up of two logically separate and uni-directional buses with a request

bus of 13 data lanes and a response bus of 20 data lanes (Figure 10). This leads to a

memory channel which only uses 66 pins (when differentially signaled), far less than

the previous Opteron DDR memory channel. Therefore, with the same number of

pins as a DDR memory channel, the system’s memory capacity could be more than

doubled.

The G3MX would be responsible for controlling up to 4 standard DDR3 U/RDIMMs

giving each processor a total of up to 16 DIMMs per socket (as opposed to the 8 DIMM

limitation of previous Opteron based systems). The architecture is similar to IBM

and Intel’s architectures detailed above; it places logic between the CPU and DIMMs,

and communicates over fast and narrow buses of unequal widths. The only discrep-

ancies between all three of these designs are the widths of the respective request and

response buses and the amount of DRAM allowed on the far side (relative to the

CPU) of the logic. AMD officially canceled the G3MX memory system in 2008, and

they have yet to announce a replacement [35].

21

Figure 10: AMD’s G3MX memory architecture

22

2 Buffer-On-Board Memory System

It is clear that with Intel’s SMB/SMI systems, AMD’s G3MX, IBM’s Power7, and

even JEDEC’s LR-DIMM, near-term memory system design is heading in a similar

direction: numerous concurrent channels of DRAM which have logic (either a con-

troller or buffer) located between the DIMMs and the CPU, with communication

provided over a narrow and fast bus. The architecture solves all the issues facing

commodity memory system design today - it increases capacity, increases aggregate

bandwidth, increases speed, and allows for far greater concurrency without increasing

pin count. These benefits are a result of the introduced logic which improves signal

integrity when faced with physical contact based electrical connections and reduces

the required CPU pin-out to the memory system, allowing operation at a higher

frequency.

This architecture also alleviates many of the issues that plagued the FB-DIMM

memory system. The excessive heat and power dissipation that resulted from commu-

nication between chained AMBs is no longer an issue as this new design only utilizes

the intermediate logic to communicate with the CPU and DIMMs. There is no longer

an issue with large variance in request latency which resulted from chained AMBs

and FB-DIMM channels containing a large number of DIMMs. Lastly, the high costs

involved with FB-DIMMs can be circumvented as the logic can now placed on the

motherboard, allowing standard DIMMs to be used instead.

While a number of influential vendors are currently working on the concept, few

systems have actually been implemented, and those which have, all vary in their

23

specifics, such as bus speed and width or rank depth. Therefore, while the architecture

is still young, an examination of the design space is necessary.

2.1 Architecture Overview

The generalized form of this buffer-on-board (BOB) memory system architecture can

be seen in Figure 11. It consists of DRAM channels populated with commodity

DIMMs which are composed of standard DDR devices. These DIMMs can be un-

buffered, registered, or even load-reducing DIMMs. Each of these BOB channels could

be considered identical to a regular, JEDEC-standardized memory system. The con-

trol and data bus, operating protocol, and timing constraints are the same ones used

in a normal memory system. The simple controller in each BOB channel operates

as the intermediate logic located between the DIMMs and the main, on-die memory

controller.

Each simple controller is responsible for controlling the DRAM, as well as receiving

requests and returning data back to the main memory controller (as opposed to the

DRAM talking directly to the main memory controller). Communication between

the simple controller and the CPU occurs over a link bus which is narrower and faster

than the DRAM bus which communicates with the DIMMs. Unlike the DRAM bus,

which has separate control and data signals, the lanes which comprise a link bus are

for general purpose communication. The link bus is full–duplex where the request

(towards the DRAM) and response (towards the CPU) data lanes may be different

widths and operate at some speed faster than the DRAM.

24

Figure 11: The BOB memory system architecture

The BOB architecture has an interesting characteristic of having three separate

clock domains - the CPU clock (which also corresponds to the main BOB controller

clock), the link bus clock between the BOB controller and simple controller, and the

DRAM clock between the simple controller and the DIMMs it controls. The DRAM

clock is defined by the type of DIMM which populates a channel (i.e., if DDR3-1066

DIMMs are used, then the DRAM clock is 533MHz). The link bus clock needs to

be faster than the DRAM clock to account for the narrower bus. Obviously, the

CPU clock is determined by the CPU. The ratio of each of these clock rates is an

important factor in the behavior of each portion of the BOB memory system. Such

an architecture provides a chance to optimize in multiple dimensions. Depending

25

on a system’s purpose, the optimal organization of a BOB memory system might

vary. Only through an accurate and detailed model and precise simulation can these

optimizations be determined.

2.2 Main BOB Controller

The main BOB controller (Figure 12) that resides on the CPU die is an essential

aspect of the architecture. The BOB controller is responsible for the typical functions

of a commodity memory controller, such as address mapping and returning data to

the cache. The address mapping that takes place within the BOB controller uses the

address of a request to determine which BOB channel should receive said request.

Like the address mapping in a commodity system, a particular portion of the bits

which make up the address are used to determine this mapping.

Communication with the cache and CPU is executed over the main BOB con-

troller’s ports, which are logically separate, full-duplex lanes. Each port has a corre-

sponding input and output buffer which store requests and responses while awaiting

arbitration. The width of each port is on the order of magnitude similar to that of

the data bus used to operate the cache. The speed of each port is dictated by the

frequency of the CPU. A cross-bar switch is used to route requests and responses to

and from port buffers to ensure that a request from any port is capable of being sent

to any link bus. The width of this cross-bar switch is the same as each port to ensure

an unimpeded flow of requests and data.

Unlike a commodity memory controller, the BOB controller is also responsible for

26

packetizing requests and interpreting response packets sent to and from the simple

controllers over the narrow link bus. Since the link bus is narrower than the DRAM

bus, requests and responses must be encapsulated within a packet. These packets

are then sent over the link bus during multiple clock cycles. This is accomplished

with a serialize-deserialize (SerDes) interface and associated buffer for the request

and response path of each link bus. These buffers are written into by either the cross-

bar switch when issuing requests or the response link bus when returning a response

packet. Items are removed from the SerDes buffers when the destination port is free

and there is room in that port’s buffer, while ensuring that a request is returned to

the same port which it was received. When removing items from a SerDes buffer to

send via its respective port, a round-robin scheme is used to ensure starvation does

not occur.

Figure 12: The main BOB controller’s block diagram

27

2.3 Simple Controller

The added logic placed between the main BOB controller and the JEDEC compliant

DRAM channels is referred to as the simple controller (Figure 13). The simple

controller has two main functions: controlling the DIMMs using the standard DRAM

interface and sending and receiving request and response packets back to the main

BOB controller over the request and response link buses, respectively. Upon receiving

a request packet, the simple controller must translate the packet into a series of DRAM

specific commands such as ACTIVATE, READ, or WRITE. This process also involves

address mapping similar to that which takes place in a commodity memory system

by a normal memory controller. Particular portions of the address in a request are

used to determine the rank, bank, row, and column that will service this request.

The address of each resource is then paired with the appropriate command (i.e., row

address with ACTIVATE, column address with READ or WRITE, etc.).

Once the address has been mapped to the appropriate resources, and the cor-

rect DRAM commands have been created, they are placed in the simple controller’s

command queue. The command queue is searched out of order to find any possible

command which may be issued while still respecting all timing constraints imposed

by the DRAM devices. The simple controller is also responsible for keeping track of

and issuing REFRESH commands to the DRAM, in order to prevent data loss from

capacitive leakage.

Upon the completion of a READ’s data burst from the DRAM to the simple

controller, the data must be stored within the simple controller while it is packetized

28

and returned to the main BOB controller. This data is stored in the read return

queue. This is an essential new portion of the architecture and was not necessary in

a commodity memory controller. It allows the operation of the DRAM to continue

while data is being returned to the main BOB controller on the response link bus.

If this queue is full, commands can not be issued to the DRAM. If data were to be

returned to the simple controller from the DRAM when there is no space in the queue,

the data would be lost. With no assurance as to the point in the future when space

will be available in the queue, the DRAM must be immediately stalled until space is

available.

Figure 13: Simple controller block diagram

Similar to a commodity memory controller, the simple controller is responsible for

the row buffer management policy. This policy dictates at which point a row of the

DRAM should be precharged following a column access. In a BOB memory system,

the simple controller uses a closed-page row buffer management policy. With this

policy, a PRECHARGE command is issued to the DRAM as soon as possible (while

29

still adhering to timing constraints) following a column access (either a READ or

WRITE). A closed-page policy is used for three important reasons.

First, the closed-page policy favors systems with large processor counts such as

servers which typically use this policy by default. With a large number of processors

executing numerous threads concurrently, the intermingling of request streams issued

to the memory system will tend to negate any address space locality [24]. Therefore,

the likelihood of having subsequent column accesses to the same row is greatly reduced

making an open page policy ineffective. Since the BOB memory system is targeted

at server-based systems, the same principles apply.

Secondly, one of the main benefits of the implementation of a BOB memory system

is the increased concurrency available within the memory. This reduces the likelihood

of a resource conflict. At the same time, using a greater number of logically indepen-

dent DRAM channels will reduce the likelihood of subsequent requests being mapped

to the same row, thus reducing the overall effectiveness of an open page policy even

further.

Lastly, the logic required to implement an open page row buffer management policy

is significantly more complex than a closed-page policy. A greater amount of state

is necessary to ensure adherence to all timing constraints, and various heuristics are

required to prevent request starvation and refresh timing violations. This would

therefore make the simple controller more expensive to implement and require a

greater amount of power to operate. One of the main reasons FB-DIMM failed was

because the introduced logic (AMB), which facilitated the use of narrow buses, also

required excessive power and generated excessive heat. Increasing the complexity and

30

power consumption of the simple controller could result in similar issues in a BOB

memory system.

2.4 Packets

Due to the relatively narrow width of each link bus used within the BOB memory

system, a packetized interface is required between the main BOB controller on the

CPU and each simple controller. Two types of packets are used: a request packet and

a response packet. Each packet is sent on the corresponding link bus (i.e., request

packets are sent on the request link bus and response packets are sent on the response

link bus) over multiple clock cycles. The format and total size of these packets is

important for the generalized model as it determines the amount of time it takes a

request or response packet to traverse each link bus. The format for these packets

can be seen in Figure 14. While certain fields within the packet might not be fully

utilized, it is important that the total size of the packet be some even factor of its

respective link bus’s width to ensure that link bus cycles are not wasted sending only

a portion of the packet.

Figure 14: BOB packet definition

A request packet being sent on the request link bus must contain the request’s

address, the request type, and the data if said packet is a write request. The type

of request can either be a read or write. The amount of data included in a write

31

request packet is always 64 bytes since the DRAM attached to each simple controller

are commodity devices which expect that amount of data. When a write request is

received, this data is stored in a queue while awaiting the WRITE command to be

issued to a particular rank of DRAM.

A response packet will contain data requested by a READ command as well as

the address of the initial request for identification purposes. This is necessary due to

out-of-order issuing of requests both within the BOB controller and simple controller,

and may be completed at different times. The order of requests to the same address

is always maintained.

32

3 BOB Simulation Suite

To properly evaluate this new architecture, a simulation suite is developed with a

strong focus on hardware verification and comprehensive, detailed system modeling.

Two separate simulators are used in this suite: a BOB memory system simulator

developed at the University of Maryland, and MARSSx86 [31], a multi-core x86 sim-

ulator developed at SUNY-Binghamton. Together, they create an accurate model of

a processor which boots an operating system, launches an application, and interacts

with the cache and memory system.

3.1 Simulation Framework

The BOB memory system model is a cycle-based simulator written in C++ that

encapsulates the main BOB controller, each BOB channel, and their associated link

bus and simple controller. Each of the major logical portions of the design have

a corresponding software object and associated parameters that give total control

over all aspects of the system’s configuration and behavior. Some simple examples

include the type of DIMMs and number of ranks within an individual BOB channel,

the total number of BOB channels, or speed and width of each link bus. The BOB

simulator may be run in one of two modes – a stand-alone mode where requests from a

parameterizable, random address generator are issued directly to the memory system

or a full-system simulation mode where the BOB simulator receives requests from

MARSSx86. A google-perftools analysis and call-graph can be seen in Appendix A.

Simulating a BOB memory system in stand-alone mode may provide many insights

33

into a system’s behavior, yet a full-system simulation is the most ideal situation as it

will show important interactions and behaviors which might not have been obvious

otherwise. In order to perform a full system simulation, an accurate CPU and cache

simulator must be selected and integrated. After considering several CPU simulators,

MARSSx86 is selected. MARSSx86 merges the highly detailed, out-of-order x86

pipeline models from PTLSim [41] with the QEMU emulator. MARSSx86 augments

the original PTLSim models with multi-core simulation capability and a configurable

coherent cache hierarchy.

The ability to simulate multi-core environments is critical since multithreaded

workloads are quickly becoming the rule rather than the exception. Additionally, it

is difficult to imagine a single threaded application being able to take full advantage of

the tremendous bandwidth provided by a BOB memory system. MARSSx86 provides

a full system simulation capabilities that allow the simulator to capture the effects of

the cache, virtual memory, and kernel interaction. These things are key factors in the

efficient operation of the memory system. The CPU models are highly configurable,

and it is possible to change the internals of the CPU or behavior of caches to take

advantage of new features (for example, replacing a traditional memory bus with a

number of ports).

To attach the BOB memory system model to the MARSSx86 simulator, the mem-

ory controller class in MARSSx86 is modified to reroute requests and responses. As

requests arrive at the memory controller within MARSSx86, they are sent to the

main BOB controller’s ports. The heuristic for assigning requests to specific ports

can be altered – for example, requests could round robin over all ports, or a specific

34

set of cores might always use a specific port. The implications of this concept is fully

explored in the full-system simulation section (4.2). If there are no available ports,

or all port buffers are full, the CPU will be stalled until requests can be issued.

The MARSSx86 memory hierarchy contains a clock signal which is used to drive

the clock of the BOB simulator. Since a BOB memory system contains multiple clock

domains, the clock provided by the MARSSx86 simulator is multiplied or divided to

create the correct frequency for each portion of the architecture. Once a memory

request is complete and finished being sent out of the main BOB controller’s port,

the data is returned to the MARSSx86 memory controller using a callback function.

The memory controller then sends the completed requests back up the cache hierarchy

to the CPU.

Just as in a real CPU, thread execution is stalled while waiting for a memory

request to complete. This interaction between the CPU and memory system is key

because it shows the impact of an optimally configured memory system and the

impact the memory system can have on a program’s execution. DRAMSim2 uses a

similar method to connect to MARSSx86 [32], which makes it easy to run the same

workloads in both simulators to compare the system level benefits of a BOB memory

system over a traditional DDR2/3 memory system.

3.2 Hardware Verification

An important aspect of this simulation framework is its ability to validate simulated

behavior against that of actual hardware. Since the DIMMs used in a BOB memory

35

system utilize the same DRAM devices, same interface, and same timing constraints

as those in a commodity system, validating this portion of the simulator can be

achieved in a manner similar to that of DRAMSim2 [32]. Micron Technology publicly

provides Verilog HDL models for each of the DRAM devices that it produces. These

models determine whether or not a timing constraint has been violated based on a

series of inputs from a hardware behavioral simulator like ModelSim. Therefore, with

simple Python scripts to massage simulator output, the validity of the simulation can

be confirmed.

Figure 15: The verification process using ModelSIM

During a BOB memory system simulation, each DRAM channel produces a bus

trace file consisting of a command (i.e., ACTIVATE, READ, WRITE, PRE) or data

and the cycle on which it was issued. This file is post-processed by a separate Python

script that generates a series of Verilog compatible commands. These Verilog com-

mands are used in conjunction with ModelSim and the Micron HDL models to ensure

the timing of both commands and data issued on the bus are cycle accurate at the

36

DRAM level. The parameters used in each simulation are parsed out of the global

BOBSim header file (which defines all parameters in a simulation) and are placed in

a Verilog header file that tells ModelSIM specifics about the device it is simulating. A

block diagram of this process can be seen in Figure 15. The BOB simulator uses tim-

ing and device parameters from a Micron DDR3-1066 device (MT41J512M4-187E), a

DDR3-1333 device (MT41J1G4-15E), and a DDR3-1600 device (MT41J256M4-125E),

yet any JEDEC standard device will work.

The specific signals which are used in this verification are the signals which make

up the command bus (RAS, CAS, WE), the address bus (for bank, row and column),

and the data bus. For all simulations, the first one million DRAM cycles are verified

with the above technique; all are always successful. While the overall purpose of

utilizing ModelSIM’s behavioral modeling abilities is to ensure timing constraints are

not violated within BOBSim, it also provides the ability to visualize the operation of

the DRAM. In Figure 16, a read and write are issued and the corresponding signals

are shown accordingly.

Figure 16: A read and write cycle shown in ModelSIM

37

4 Simulation Results

When evaluating the characteristics and behavior of this new architecture, we per-

formed two experiments: a limit-case simulation where a random address stream

is issued into a BOB memory system as fast as possible and a full system simula-

tion where an operating system is booted on an x86 processor and applications are

executed. The limit-case study is useful for identifying the achievable maximum sus-

tained bandwidth and the behavior of the system in extreme situations. Many server

and HPC applications generate address streams that have little locality (temporal

or spatial) and appear random. In contrast, a full system simulation gives a much

more realistic picture of the new memory system’s interaction with the cache and

processor, operating system, and actual applications.

A host of benchmarks are selected with an emphasis on multi-threaded workloads

to demonstrate the types of request streams the BOB memory system is likely to en-

counter. It is necessary to have a wide variety of benchmarks because variations in the

memory request stream cause vastly different behaviors and subsequent performance.

The list of benchmarks is:

• The PARSEC benchmark suite is a set of multi-threaded benchmarks designed

by Princeton aimed at testing shared-memory CMPs. The memory intensive

benchmarks of the suite include fluidanimate, facesim, and bodytrack.

• The STREAM benchmark is a memory bandwidth test designed to demonstrate

real world achievable performance via software. This benchmark is run for 10

iterations and uses a two million element array.

38

• GUPS (Giga-Updates Per Second) is a benchmark designed to mimic the com-

putational and memory behavior of sparse matrix updates, graph traversals,

and cryptographic algorithms. This benchmark performs 256M updates on a

1GB array with a 64-byte element size.

• Sandia National Lab’s implementation of GUPS. This benchmark uses a 4GB

array size and performs 2 million updates.

• The NAS parallel benchmark suite is a set of fluid dynamics computations

released by NASA.

• MCOL is a benchmark which scans over a matrix in memory. It uses eight

threads to perform 25 iterations over a 64MB array.

When considering the cost of a particular system’s implementation, design trade-

offs that are considered include total pin count required by the CPU, power dissipa-

tion of both DIMMs and simple controllers, and the physical space required (or total

DIMM count).

4.1 Limit-Case Simulations

For the limit-case simulations, the BOB simulator is run in a stand-alone mode where

memory transactions are added directly to the BOB controller via an execution wrap-

per. This wrapper is also responsible for collecting and analyzing useful statistics.

The generated request stream can be tailored to issue at a specific frequency or read-

write ratio. For these simulations, requests are issued as soon as possible with a mix

39

of 2/3 reads and 1/3 writes.

4.1.1 Simple Controller & DRAM Efficiency

Commodity memory system design has been examined and analyzed extensively

[20, 24, 39, 19]. Because each BOB channel uses commodity DIMMs, operates on

the same data and command buses, and requires the same operating protocol and

timing constraints, it stands to reason that the previous insights, optimizations and

analysis targeting commodity systems should apply here as well. When observing an

individual BOB channel’s behavior, the simulations confirm and reinforce these previ-

ous insights. For example, the impact of an increasing number of ranks of DDR3-1066,

DDR3-1333, and DDR3-1600 on the DRAM bus efficiency can be seen in Figure 17.

Efficiency begins to drop after two and four ranks due to the increased necessity of

idling the data bus for arbitration when switching between the ranks. While the use

of 8 and 16 ranks of DRAM is uncommon due to electrical constraints, this shows

that even the logical behavior of the system displays a decrease in performance when

faced with an increasing number of ranks. The peak efficiency achieved is also verified

by manufacturers results [5] and prior research [36].

40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

Number of Ranks

DRAM Bus Efficiency in BOB Channel

DDR3-1066

DDR3-1333

DDR3-1600

Figure 17: Increasing number of ranks in memory system has a negative impact on
DRAM bus efficiency

In a similar vein, the simple controller in each BOB channel is comparable to a

typical memory controller in a standard memory system. Therefore, characteristics

and optimizations which have been previously identified in commodity memory con-

trollers should apply here as well. Parameters such as address mapping and queue

depths have shown to have a significant impact on performance [39], which is also

the case in BOB systems. Increasing the out-of-order depth and command queue size

allows the simple controller to more easily find commands to issue (while still adher-

ing to the timing constraints), thereby increasing the DRAM bus efficiency (Figure

18). The increased queue depth and search facility will increase costs such as die size

and power consumption. Therefore, an appropriate out-of-order queue depth can be

determined either by the required performance or outside constraints, such as target

power consumption or transistor count. Given this, there are still diminishing returns

after a depth of eight; doubling the queue to 16 only increases DRAM efficiency by

approximately 5% in all cases.

41

Changing some parameters within the simple controller will have no impact on the

performance during a limit-case simulation due to the random nature of the address

stream. Parameters such as the address mapping scheme, which normally have a

significant impact on performance, will not have any effect due to the equal likeliness

of all bit combinations within the address. Other parameters, such as the return

queue depth will have different behaviors under the limit-case compared to that of a

full-system simulation, since the random address stream ensures an equal spread of

requests both spatially and temporally. These parameters are explored further when

simulations are run in full system mode with MARSSx86.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 8 16 32

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

Out-Of-Order Search Depth

DRAM Bus Efficiency in BOB Channel

DDR3-1066

DDR3-1333

DDR3-1600

Figure 18: Increasing the out-of-order search depth increases DRAM bus efficiency

The simple controller must also have features that differentiate it from a commod-

ity memory controller as a result of serializing communication on the link bus. The

read return queue within each simple controller is responsible for storing requested

data before it is packetized and transferred out on the response link bus back to the

main BOB controller. If this queue is full, no further read or write commands will be

issued to the DRAM until there is space within this queue. While write commands

42

do not require space in this queue, they are still stalled to maintain proper request

ordering. It is possible to continue issuing ACT commands to prepare rows for access,

although this will increase background power consumption since rows will be left open

for a longer amount of time (within limit-case simulations, the ACT commands are

continually issued when possible).

The rate at which items are removed from this queue is determined by both the

width and speed of the response link bus. A parameter sweep is performed on both

the depth of the read return queue and the configuration of the response link bus to

detail the impact these decisions have on the achievable efficiency of different speeds

of DRAM. The results can be seen in can be seen in Figures 19, 20, & 21.

The efficiency of all DRAM speeds is greatly impeded when the read return queue

only provides storage capacity for a single response. To prevent overflowing the queue,

space in the queue is reserved for the incoming data upon issuing the READ command

to the DRAM. Therefore, when the queue depth is one, all subsequent requests are

stalled, not only while the response is being sent over the response link bus, but while

the data is being retrieved from the DRAM as well. Therefore, as soon as a single

READ command is issued, all requests are stalled until the data has been retrieved

from the DRAM and it has finished being sent back to the main BOB controller.

This situation is entirely too restrictive and performance can be more than doubled

by simply having a queue depth of two.

43

0%

20%

40%

60%

80%

100%

8 12 16 24 32

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

Response Link Data Lanes (6.4 Gbit/s)

Impact Of Response Width & Return Queue Depth

1

2

4

8

Read Return
Queue Depth

Figure 19: Response link and return queue depth impact on DDR3-1066 DRAM bus
efficiency

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

0%

20%

40%

60%

80%

100%

8 12 16 24 32

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

Response Link Data Lanes (6.4 Gbit/s)

Impact of Response Width & Return Queue Depth

1

2

4

8

Read Return
Queue Depth

Figure 20: Response link and return queue depth impact on DDR3-1333 DRAM bus
efficiency

44

0%

20%

40%

60%

80%

100%

8 12 16 24 32

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

Response Link Data Lanes (6.4 Gbit/s)

Impact of Response Width & Return Queue Depth

1

2

4

8

Read Return
Queue Depth

Figure 21: Response link and return queue depth impact on DDR3-1600 DRAM bus
efficiency

With a queue depth of two and four, the efficiency is significantly increased. The

increase in storage capacity allows a better utilization of the parallelism available

within modern DRAM devices. As the response link bus is widened, response packets

are removed more quickly thereby clearing room in the queue for subsequent requests.

With a depth of four, the DRAM is rarely stalled as a result of the read return queue

reaching maximum capacity. The gains seen by increasing the response link bus

width eventually taper off as the DRAM has already achieved maximum attainable

efficiency.

In Figures 19, 20, & 21, the link bus is clocked at 3.2 GHz and utilizes double

data rate transferring of packets (6.4 Gbit/s). If the link bus clock is increased, the

width of the bus becomes less of a determining factor in the efficiency of the DRAM.

When the link bus is clocked at 6.4 GHz (12.8 Gbit/s), 8 data lanes is already sufficient

to reach peak efficiency (Figure 22). While a 9.6 GHz link bus might not be feasible

45

now, if future technology enables this to be possible, the width of the link buses can

be reduced even further without any negative impact on performance. This would

greatly save on CPU pin-out costs, an important factor in chip fabrication.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 Bit Lanes 8 Bit Lanes

D
R

A
M

 B
u

s
Ef

fi
ci

e
n

cy

Response Link Bus Data Width

Impact of Response Link Bus
on DDR3-1600 Efficiency

3.2 GHz

6.4 GHz

9.6 GHz

Figure 22: Response link bus configuration’s impact on DRAM efficiency

It is possible to use parameters and behaviors of other parts of the system to

help quantify decisions about the read return queue and response link bus. The

DRAM timing parameter tFAW was introduced to prevent large current draw while

performing numerous concurrent row-activation operations. The timing parameter

dictates a sliding-window of time in which at most four ACTIVATE commands may

be issued. Indirectly, this also determines the longest possible period of uninterrupted

data being retrieved from the data bus (Figure 23). This situation can be used as

a lower bound for the read return queue capacity. Evidence of this can be seen in

Figures 19, 20, & 21. When the queue depth is four, the system is capable of

reaching peak efficiency once the response link bus bandwidth is capable of removing

the four requests fast enough. This is not the case for more shallow queue depths.

46

From the DRAM perspective, this is the worst case scenario for the read return queue

but will be explored in the context of the whole system in later sections.

Figure 23: The impact of tFAW on the DRAM operation and the longest period of
uninterrupted data retrieval

4.1.2 Link Bus Configuration

The overall performance of a BOB memory system is inherently linked with the

efficiency of each DRAM channel. Therefore, optimal system configurations are ones

in which the request link bus and response link bus do not negatively impact the

DRAM efficiency. The width and speed of these buses should be configured such that

request and response packets can be sent at a rate that does not stall the DRAM,

either due to a lack of available requests issuable to the DRAM or due to an inability

to clear the read return queue quickly enough.

As previously mentioned, the response link bus is responsible for removing re-

sponse packets from the read return queue. The fastest rate at which data from

the DRAM can be added to this queue is determined by the burst length (BL) and

tFAW DRAM timing constraints (Figure 23). As described above, it is possible to

calculate a first-order approximation for the necessary response link bus bandwidth

when taking into account the DRAM’s tFAW (37.5ns for DDR3-1066 and 30ns for

DDR3-1333 and DDR3-1600) and BL values (7.5ns for DDR3-1066, 6ns for DDR3-

1333, 5ns for DDR3-1600). This calculation can be seen in Equation 1 and dictates

47

how quickly the response link bus must transmit four requests in order to prevent

stalling the DRAM due to lack of space in the read return queue.

TimeToTransmit =
BL

2
× 4 × tCK + tRTRS × tCK (1)

This equation represents the length of time between the start of the longest possible

continuous data burst and the next possible chance for new data to arrive from the

DRAM (situation depicted in Figure 23). The first term (BL/2 × 4 × tCK) is the

total time (in nanoseconds) that these four continuous data bursts take to be retrieved

from the DRAM. The second term (tRTRS× tCK) is the time (in nanoseconds) that

it takes to switch between transmission sources – in this case, separate ranks attached

to the DRAM bus. When these terms are summed, the result represents the period

of time in which the greatest quantity of continuous data can return in the shortest

amount of time. This is solely a result of the tFAW timing constraint.

If the response link bus bandwidth is capable of transmitting four response packets

within this computed time, then, from the DRAM’s perspective, it would be impos-

sible to stall as a result of the return queue being full. Other parts of the system

may have an impact on this and will be explored in later sections. The length of time

to send a single 72B response packet for numerous response link bus configurations

can be seen in Table 1. When relating these values to the times computed with

Equation 1, it is clear that certain response link bus configurations would not be

able to remove response packets from the read return queue fast enough to prevent

it from reaching maximum capacity and thus causing the DRAM to stall.

48

Data Lanes 3.2 GHz 6.4 GHz 9.2 GHz
4 22.5 ns 11.25 ns 7.5 ns
8 11.25 ns 5.625 ns 3.75 ns
12 7.5 ns 3.75 ns 2.5 ns
16 5.625 ns 2.8125 ns 1.875 ns

Table 1: Time to transmit response packet over response link bus

The request link bus width and speed will have an impact on the DRAM efficiency

as well. In a BOB memory system, the request link bus is responsible for issuing read

request packets (8 bytes) and write request packets (8 bytes of overhead and 64 bytes

of data) to their respective simple controllers. The request link bus must be able to

send these packets at a rate which keeps the DRAM as busy as possible. When a

simple controller’s work queue is full, the issuing logic is more likely to find a command

which can be issued within the timing constraints imposed by the DRAM.

An accepted rule-of-thumb is that a typical request stream will have a read-to-

write request ratio of approximately 2-to-1. Implemented systems have accounted for

this fact by weighting response paths more than requests paths. This can be seen

starting from the FB-DIMM standard, which had the northbound bus (for responses)

40% larger than the southbound bus (for requests) [9]. The new architectures detailed

above adopt this convention as well with Intel’s SMI response bus 33% larger [13] than

the request bus, and IBM’s Power7 system whose response bus is twice as wide as

the request bus [12].

Limit-case simulations are performed with eight DRAM channels of various speed

grades that are attached to different request and response link bus configurations

(operating at 3.2 GHz). The results can be seen in Figures 24, 25, & 26. The

49

simulation results show a clear peak bandwidth where additional link bus bandwidth

has no impact on the overall performance. This is due to the link bus bandwidth

exceeding that which is required by the DRAM to reach its maximum attainable

efficiency.

4

8

12

16

24

0

10

20

30

40

50

60

70

4
8

12
16

24
Response Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

Impact of Request and Response Link Bus
8 Channels of DDR3-1066

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Figure 24: Sustained bandwidth of eight DDR3-1066 DRAM channels using various
link bus configurations

50

4

8

12

16

24

0

10

20

30

40

50

60

70

4
8

12
16

24
Response Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

Impact of Request and Response Link Bus
8 Channels of DDR3-1333

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Figure 25: Sustained bandwidth of eight DDR3-1333 DRAM channels using various
link bus configurations

4

8

12

16

24

0

10

20

30

40

50

60

70

4
8

12
16

24
Response Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

Impact of Request and Response Link Bus
8 Channels of DDR3-1600

Figure 26: Sustained bandwidth of eight DDR3-1600 DRAM channels using various
link bus configurations

51

To prevent the request and response link bus from having a negative impact on

DRAM performance, each must be capable of meeting bandwidth requirements dic-

tated by the DRAM and request stream. These requirements have several factors.

First, the achievable DRAM bandwidth determined by the speed grade and the ex-

pected efficiency of that device is clearly a main factor in how each link bus should be

configured. Second, like FB-DIMM [22], the read-write ratio has a significant impact

on the utilization of each link bus (explored in detail later). Lastly, because the link

buses are responsible for transmitting packets and packet overhead as well as data,

this must be accounted for as well.

Incorporating all of the factors listed above leads to Equations 2 & 3; these

equations dictate the bandwidth required by each link bus to prevent them from

negatively impacting the efficiency of each channel. BWDRAM represents the peak

bandwidth of the DRAM devices in use and Efficiency is the peak expected effi-

ciency achievable by these same devices. The product of these two terms is the peak

bandwidth the DRAM is capable of achieving. The %Reads and %Writes terms rep-

resent the ratio of read and write requests within the request stream. These factors

are multiplied by the amount of data which must be moved to make these requests,

including the size of read request packets (ReadPacketSize), the overhead of a write

packet (WritePacketSize), the size of each request (RequestSize), and the overhead

for each response packet (ResponsePacketSize).

BWRequest = (BWDRAM × Efficiency)×
[
%Writes×

(
1 +

WritePacketSize

RequestSize

)
+%Reads×

ReadPacketSize

RequestSize

]
(2)

BWResponse = (BWDRAM × Efficiency)×
[
(%Reads×

(
1 +

ResponsePacketSize

RequestSize

)]
(3)

52

In Figures 24, 25, & 26, link bus configurations which have a bandwidth equal

to or greater than the values dictated by these equations are capable of achieving

the peak possible bandwidth for the simulated system. These results also confirm

the predictions made about the link bus in Equation 1; when the response link bus

is capable of moving requests comparable to this rate, maximum attainable DRAM

efficiency is achievable.

The unidirectional nature of each link bus causes sensitivity to the read-write

request mix similar to that seen in FB-DIMM [22]. While weighting the response

link bus more than the request link bus might be ideal for many application request

streams, performance will be significantly different as soon as the request mix changes.

Figure 27 shows the impact of different read-write request ratios on weighted and

unweighted link bus configurations during limit-case simulations. Intuitively, when

the request mix is weighted in the same fashion as the link buses, the DRAM can

reach maximum attainable efficiency. Unfortunately, this behavior is an unavoidable

side-effect of serializing the communication on unidirectional buses and a decision

should be made based on the most likely workload the memory system will see.

53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

D
R

A
M

 B
u

s
Ef

fi
ci

en
cy

% Reads In Request Stream

Impact of Read-Write Ratio on DRAM Efficiency

4 / 12

8 / 8

12 / 4

Link Bus Width
(Req/Resp)

Figure 27: The effect of the request stream mix on weighted and unweighted link bus
widths

While there are many benefits afforded by using a BOB memory system, such as

reduced pin-out of the CPU, higher possible bandwidth, and increased concurrency,

there is a drawback which has not yet been discussed : the latency penalty incurred

by serializing requests and responses and the transmission time over the request and

response link bus. Regardless of how fast or wide each of the link buses are, the

overall latency of a single request will always be longer than in a commodity memory

system. This phenomenon is similar to that seen in an FB-DIMM memory system,

which must also serialize requests and responses to account for the new protocol

and narrow buses. At lower utilization, requests in an FB-DIMM memory system

experience a 25% degradation in overall latency [22].

To analyze this latency penalty, the total latency of a request is divided into

components which correspond to the various parts of the system and the time a

54

request spends there (Note: In this analysis, only read requests are examined as the

latency of a write request is typically meaningless and difficult to measure). Aside

from the latency seen from retrieving the data from the DRAM which is dictated by

the standard DRAM timing constraints, other latency components now include time

spent on both the input and output ports, time spent on the request and response link

buses, and the time spent in the work queue and read return queue. To measure each

of these components, a single read request is issued to an empty memory system using

DDR3-1333 and the time spent at each point is recorded. The resulting latency seen

by a read request when being issued to BOB memory system with various request

and response link bus widths can be seen in Figure 28.

0

10

20

30

40

50

60

70

4
 /

 4

4
 /

 8

4
 /

 1
2

4
 /

 1
6

4
 /

 3
2

8
 /

 4

8
 /

 8

8
 /

 1
2

8
 /

 1
6

8
 /

 3
2

1
2

 /
 4

1
2

 /
 8

1
2

 /
 1

2

1
2

 /
 1

6

1
2

 /
 3

2

1
6

 /
 4

1
6

 /
 8

1
6

 /
 1

2

1
6

 /
 1

6

1
6

 /
 3

2

3
2

 /
 4

3
2

 /
 8

3
2

 /
 1

2

3
2

 /
 1

6

3
2

 /
3

2

La
te

n
cy

 (
n

s)

Request Link Bus Width / Response Link Bus Width

Latency Components of Read Requests

Response Link Bus

Request Link Bus

Output Port

Return Queue

DRAM Access

Work Queue

Input Port

Figure 28: Latency components of a single read request with various BOB system
configurations

As expected, the DRAM access time is uniform across all configurations. This

latency consists of the time between when the ACT command is issued and the end

of the resulting data burst from the column access. This latency will only change with

55

a different speed DRAM device or when the memory system is being heavily utilized

and column access commands are delayed to account for other timing constraints.

The latency component which has the largest impact on the overall latency is the

time spent on the response link bus. This is a result of the 72 byte response packet

generated by a read request that must be returned on the response link bus. As the

response link bus widens and provides additional bandwidth, a response packet can

be transferred back to the main BOB controller in less time. The request link bus

latency is not as much of a factor as the response bus latency but still has an impact;

in some cases it accounts for approximately 7% of the request latency. A read request

must only send an 8 byte request packet on the request link bus and can be sent in

far less time than the 72-byte response packet.

Due to the way these latencies were measured, the time spent in both the work

queue and read return queue does not provide any insight into a request’s overall

latency. The depth of these queues and the activity of the memory system will have

a significant impact on a request’s latency, but these times are meaningless in a limit-

case simulation. These values will be further explored with full-system simulations

when the request stream is the result of an actual application issuing requests to the

memory system.

4.1.3 Peak Possible Bandwidth

While other aspects of a BOB memory system have an impact on the overall perfor-

mance, the peak sustainable bandwidth is determined by the total number of con-

current and logically independent channels of DRAM. When other parameters are

56

configured in a way to ensure maximum DRAM efficiency, this peak bandwidth is

simply a product of the sustained DRAM bandwidths and the total number of chan-

nels. For example, if parameters are chosen such that the DRAM is not impeded in

any way, increasing the number of BOB channels makes it is clear that the sustained

bandwidth is simply the aggregate of the maximum sustained bandwidths across all

the DRAM channels (Figure 29).

1 2 4 8 16

0

20

40

60

80

100

120

140

160

Number of BOB Channels

Su
st

ai
n

ed
 B

an
d

w
id

th
 (

G
B

/s
)

Sustained Bandwidth

DDR3-1066

DDR3-1333

DDR3-1600

Figure 29: Sustained bandwidth with various numbers of BOB Channels

Unfortunately, increasing the total number of BOB channels to improve perfor-

mance in this fashion is expensive for multiple reasons. The most obvious constraint

is the physical space required to have numerous, concurrent DRAM channels, each of

which requires the wide, standardized DDR3 bus and attached DIMM slots. There

is also the cost of the pin-out required by the CPU to communicate over each of the

channel’s request and response link buses. While the link bus widths are insignificant

relative to the costs in pin-out of a standard DDR3 bus, the high-speed nature of the

lanes which comprise each link bus make it essential to differentially signal, and thus

double, the total pin out (not including additional power, ground, and CRC lanes).

57

Finally there are the costs involved with requiring a simple controller for each chan-

nel. These costs include the fabrication cost for each controller, the power involved

to operate them, and the physical space needed to place them on the motherboard.

The following section describes an optimization which can significantly reduce these

costs while maintaining acceptable performance and storage capacity.

4.1.4 Multi-Channel Optimization

If the link bus configurations provide bandwidth that can not be fully utilized by a

single logical channel of DRAM (and that exceeds the calculated values from Equa-

tions 2 & 3), it is possible for multiple, logically independent channels of DRAM

to share the same link bus and simple controller without negatively impacting per-

formance. This will reduce the costs detailed above. The pin-out of the CPU can

be reduced for an equivalent number of DRAM channels since fewer link buses are

required. This will also reduce the number of simple controllers, which will reduce

fabrication costs and the physical space necessary to place them on the motherboard.

While reducing these costs, it is important to note that the complexity of the

simple controller will increase at the same time. The pin-out of the simple controller

must be increased to support multiple DRAM channels, and the logic within must be

replicated for each of the logically independent channels (which will in turn increase

the power requirements of each controller). In order to implement a configuration

where multiple DRAM channels share a single link bus, arbitration is required within

the simple controller to route requests and determine who can send responses. To

reduce the overall complexity of the simple controller design, a simple round-robin

58

scheduling mechanism was implemented. This can be seen in Figure 30.

Figure 30: Arbitration between simple controller cores

The link bus bandwidth requirements defined by Equations 2 & 3 can easily be

modified to account for this optimization. Each request and response link bus must

now be capable of meeting the bandwidth requirements of all the DRAM channels

which are attached. In Equations 4 & 5, NumDRAMChannels is the integer

value corresponding to the number of independent DRAM channels which are now

attached to the link buses and BWRequest and BWResponse are the values computed in

Equations 2 & 3. Because Equations 2 & 3 represent the bandwidth requirements

of a single DRAM channel, it stands to reason that with the multi-channel optimiza-

tion, a link bus must capable of handling all the bandwidth required by all channels;

therefore the product of these two values dictates the necessary bandwidth for each

request and response link bus in a system with the multi-channel optimization.

BWRequest
′ = (NumDRAMChannels)×BWRequest (4)

BWResponse
′ = (NumDRAMChannels)×BWResponse (5)

An example of the multi-channel optimization can be seen in Intel’s SMI/SMB

59

architecture. Each SMB supports two separate channels of DDR3. Intel’s architec-

tural equivalent of the request link bus and response link bus (referred to as the

southbound and northbound bus, respectively) are 9 data lanes (7.2 GB/s) and 12

data lanes (9.6 GB/s), respectively [13]. If Equations 4 & 5 are used to calculate

the bandwidth requirements for two channels of DDR3-1066 (as in Intel’s SMI/SMB

system), the request link bus would require 5.8 GB/s, and the response link bus would

require 9.5 GB/s (assuming 66% reads, 33% writes, 75% DRAM efficiency, and 8 byte

packet overhead). This can be seen in detail in Equations 6 & 7. While the packet

overhead is unknown for the SMI, the computed values are similar enough to the im-

plemented values to show that Equations 4 & 5 accurately predict the bandwidth

requirements of each link bus.

5.8GB/s = 2× ((8.533GB/s× .75)×
[
.333×

(
1 +

8B

64B

)
+ .666×

8B

64B

]
) (6)

9.5GB/s = 2× ((8.533GB/s× .75)×
[
(.666×

(
1 +

8B

64B

)]
) (7)

Limit-case simulations are performed on systems which utilize the multi-channel

optimization to varying degrees in order to demonstrate the impact that this opti-

mization has on system performance. Each configuration has eight DRAM channels

of either DDR3-1066, DDR3-1333, or DDR3-1600 and uses a link bus clock of 6.4

GHz. The multi-channel utilization is increased from two to eight. Increasing the de-

gree of multi-channel utilization in this fashion results in fewer request and response

link buses in that system. For example, with a multi-channel utilization degree of

two, the system has four link buses and simple controllers; with a multi-channel uti-

lization degree of four, the system has two link buses (displayed in Figure 31 for

60

demonstration purposes), and so on. Figure 32, Figure 33, and Figure 34 show the

sustained aggregate bandwidth of each of these systems during a limit-case simulation

and Table 2, Table 3, and Table 4 show the utilization of both the request link bus

and response link bus in the format of (RequestUtilization%, ResponseUtilization%).

The results also provide evidence of Equations 4 & 5 accurately predicting optimal

configurations.

Figure 31: An example of a 4-to-1 multi-channel configuration

61

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

2 DRAM Channels Per Simple Controller

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

(a) 2-to-1 Ratio - DDR3-1066

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

4 DRAM Channels Per Simple Controller

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

(b) 4-to-1 Ratio - DDR3-1066

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

8 DRAM Channels Per Simple Controller

(c) 8-to-1 Ratio - DDR3-1066

Figure 32: Sustained bandwidth of 8 DRAM channels of DDR3-1066 with varying
degrees of multi-channel utilization

DDR3-1066 - 2-to-1
Response Width

Request Width 8 12 16
8 47.03%, 76.72% 47.03%, 51.15% 47.03%, 38.36%
12 34.17%, 76.95% 34.17%, 51.30% 34.17%, 34.48%
16 23.48%, 76.80% 23.48%, 51.20% 23.48%, 38.40%

DDR3-1066 - 4-to-1
Response Width

Request Width 8 12 16
8 59.45%, 96.25% 85.94%, 93.13% 86.72%, 70.70%
12 42.86%, 96.09% 63.18%, 95.00% 68.65%, 76.84%
16 29.73%, 96.09% 43.59%, 94.79% 47.34%, 76.80%

DDR3-1066 - 8-to-1
Response Width

Request Width 8 12 16
8 61.56%, 99.92% 87.97%, 95.73% 87.97%, 71.95%
12 44.74%, 99.92% 66.72%, 99.95% 84.17%, 94.77%
16 30.55%, 99.92% 45.47%, 99.99% 61.64%, 99.99%

Table 2: The utilization of the request link bus and response link bus (Request Uti-
lization%, Response Utilization%) when eight channels of DDR3-1066 are used in
systems with various multi-channel utilization

62

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

2 DRAM Channels Per Simple Controller

(a) 2-to-1 Ratio - DDR3-1333

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

4 DRAM Channels Per Simple Controller

(b) 4-to-1 Ratio - DDR3-1333

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

8 DRAM Channels Per Simple Controller

(c) 8-to-1 Ratio - DDR3-1333

Figure 33: Sustained bandwidth of 8 DRAM channels of DDR3-1333 with varying
degrees of multi-channel utilization

DDR3-1333 - 2-to-1
Response Width

Request Width 8 12 16
8 55.08%, 89.92% 56.34%, 61.22% 56.34%, 45.91%
12 40.21%, 90.25% 41.04%, 61.56% 41.04%, 46.20%
16 27.62%, 90.07% 28.20%, 61.43% 28.20%, 46.07%

DDR3-1333 - 4-to-1
Response Width

Request Width 8 12 16
8 59.14%, 96.09% 85.86%, 93.49% 86.80%, 71.05%
12 42.97%, 96.48% 63.39%, 94.69% 80.83%, 90.27%
16 29.38%, 96.02% 43.48%, 94.69% 56.56%, 91.76%

DDR3-1333 - 8-to-1
Response Width

Request Width 8 12 16
8 61.25%, 99.98% 87.89%, 96.51% 88.00%, 71.97%
12 44.69%, 99.99% 66.48%, 99.98% 84.17%, 95.00%
16 30.45%, 99.99% 46.60%, 99.99% 61.45%, 99.99%

Table 3: The utilization of the request link bus and response link bus (Request Uti-
lization%, Response Utilization%) when eight channels of DDR3-1333 are used in
systems with various multi-channel utilization

63

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

2 DRAM Channels Per Simple Controller

(a) 2-to-1 Ratio - DDR3-1600

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

4 DRAM Channels Per Simple Controller

(b) 4-to-1 Ratio - DDR3-1600

8

12

16

0

10

20

30

40

50

60

70

81216

Response
Link

Bus Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Request Link Bus Width

8 DRAM Channels Per Simple Controller

(c) 8-to-1 Ratio - DDR3-1600

Figure 34: Sustained bandwidth of 8 DRAM channels of DDR3-1600 with varying
degrees of multi-channel utilization

DDR3-1600 - 2-to-1
Response Width

Request Width 8 12 16
8 55.47%, 90.78% 64.30%, 69.79% 64.30%, 52.34%
12 40.36%, 90.63% 46.77%, 69.95% 46.80%, 52.50%
16 27.99%, 90.88% 32.30%, 69.90% 32.30%, 52.42%

DDR3-1600 - 4-to-1
Response Width

Request Width 8 12 16
8 59.14%, 96.09% 86.02%, 93.39% 86.48%, 70.66%
12 34.04%, 96.06% 63.07%, 94.67% 82.81%, 92.63%
16 29.65%, 96.14% 43.67%, 94.60% 57.99%, 94.48%

DDR3-1600 - 8-to-1
Response Width

Request Width 8 12 16
8 60.95%, 99.98% 87.94%, 96.17% 88.00%, 71.97%
12 44.46%, 99.99% 67.05%, 99.99% 84.18%, 95.05%
16 30.62%, 99.99% 45.99%, 99.99% 61.23%, 99.99%

Table 4: The utilization of the request link bus and response link bus (Request Uti-
lization%, Response Utilization%) when eight channels of DDR3-1600 are used in
systems with various multi-channel utilization

When two DRAM channels share a link bus and simple controller (multi-channel

degree of two), there is little impact on performance relative to a system which does

not employ this optimization. Slower speeds of DRAM can easily reach peak per-

64

formance, demonstrating that this optimization can significantly reduce system costs

without any degradation of performance. This configuration uses half the number

of simple controllers and CPU pins relative to a system without the multi-channel

optimization, making it attractive to system and chip manufacturers who must con-

sider these costs. Systems that use DDR3-1600 have their performance reduced by

approximately 14% with the narrowest response link bus simulated (Figure 34(a)).

This is a result of the read-write ratio used in limit-case simulations weighting the

request stream towards a greater number of reads. When using Equation 5 to deter-

mine what response link bus bandwidth is necessary for DDR3-1600 in this scenario,

a value of 13.4 GB/s is found, which is greater than what configurations with 8 bit

lanes of response width can provide (12.8 GB/s), thereby reducing performance. The

simulations show that once the response link bus has been widened to 12 bit lanes,

the available bandwidth of the response link bus exceeds that of the value computed

by Equation 5 and therefore peak possible performance is achieved.

Once four DRAM channels share the same simple controller and link bus (multi-

channel degree of four as pictured in Figure 31), the lack of available link bus

bandwidth becomes a hindrance to system performance. Slower speed grades of

DRAM are capable of achieving peak performance in configurations with wider link

buses, but channels of DDR3-1600 are unable to reach maximum attainable efficiency

(70%) in any configuration simulated. When using Equations 4 & 5 to compute the

requirements of four DRAM channels of DDR3-1600, a link bus needs approximately

26.8 GB/s response bandwidth and 16.4 GB/s request bandwidth in order to operate

at maximum efficiency. This is not provided even by even widest link buses tested,

65

which provide only 25.6 GB/s. When simulating this system, each channel of DDR3-

1600 is only capable of achieving approximately 60% efficiency, which is less than the

maximum efficiency for that speed grade.

As can be seen in Table 2, Table 3, and Table 4, a multi-channel degree of

8 leads to the response link bus that is utilized over 99% of the time in a majority

of the configurations simulated, thereby causing a significant drop in performance.

While such a setup will make the design of the simple controller significantly more

expensive and does not perform nearly as well as lesser degrees of multi-channel

utilization, the pin-out of the CPU would decrease dramatically while still achieving

both performance and capacity gains relative to a standard DDR memory system.

Through simulation of numerous configurations, Equations 4 & 5 have been

shown to provide an accurate way of determining the optimal link bus bandwidth

necessary to reach peak DRAM efficiency given a certain set of parameters and be-

haviors such as DRAM speed, packet overhead, and read-write ratio. When the

request link bus bandwidth is less than computed values, requests are incapable of

reaching the DRAM at a rate which allows it to operate at maximum attainable effi-

ciency. When the response link bus is less than the computed valued, responses are

incapable of evacuating the read return queue fast enough to prevent it from reaching

maximum capacity and forcing the DRAM to stall. These equations provide system

manufacturers with the ability to determine the proper link bus configuration so as

to optimally utilize the available resources.

The implementation of the multi-channel optimization has implications in the

design decisions of other parts of the system as well. The read return queue was

66

previously examined in configurations with only a single DRAM channel attached

to each link bus. Aspects of this queue must now be explored with various degrees

of the multi-channel optimization. When multiple DRAM channels use the same

response link bus, the available bandwidth must be shared and will result in different

behavior when removing response packets from this queue. As discussed previously

(Figure 30), while the address determines which channel gets a request packet, a

simple round-robin policy determines which read return queue will send a response

packet to the response link bus. If a channel’s queue is empty, the next channel is

selected instead.

Similar to the examinations of the return queue depth seen in Figures 19, 20, &

21, the response link bus width and read return queue depth are varied during limit-

case simulations of multi-channel configurations which use various speeds of DRAM.

The results can be seen in Figures 35, 36, & 37. In systems that do not use

the multi-channel optimization, a queue depth of four is required to reach maximum

attainable efficiency; this is the case with multi-channel configurations as well. While

slower speeds of DRAM do not require as wide of a response bus to reach the maximum

attainable efficiency, a queue depth of four is always required. Further increasing the

queue depth beyond four provides only marginal gains to DRAM efficiency. At most

an increase of 2% in efficiency was seen when increasing the queue depth from four

to eight. There are two possible reasons: either the DRAM has already achieved

maximum attainable efficiency and can not be increased any further, or the response

link bus utilization is so great that increasing it further becomes difficult. A high

response link bus utilization is the result of the bus being too narrow to support that

67

level of multi-channel utilization. In many situations, the response link bus is utilized

over 95% of the time and over 99.9% of the time in 8-to-1 configurations. Figures

35(c), 36(c), & 37(c) show this; a queue depth of two is sufficient to reach that

system’s peak possible efficiency since the response link bus is the bottleneck for that

configuration.

At this point, the conclusion can be made that a queue depth of four for the

read return queue appears to represent the best trade off between performance and

cost. The read return queue will be explored further during full-system simulations

to ensure this is the case when a system handles a real workload. After the above

examinations of the multi-channel optimization, another conclusion that can be made

is that an 8-to-1 multi-channel configuration is too restrictive and not a viable solu-

tion. The DRAM is wholly under utilized, while other parts of the system (such as

queues and buses) are over utilized. The complexity of the simple controller in an

8-to-1 configuration is a factor in this conclusion as well as well. These configurations

are ruled out in further studies.

68

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact of Response Width & Read Return Queue
DDR3-1066, 2-to-1 Multi-Channel

(a) DDR3-1066 efficiency in a 2-to-1 multi-channel configuration

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact of Response Width & Read Return Queue
DDR3-1066, 4-to-1 Multi-Channel

(b) DDR3-1066 efficiency in a 4-to-1 multi-channel configuration

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact of Response Width & Read Return Queue
DDR3-1066, 8-to-1 Multi-Channel

(c) DDR3-1066 efficiency in a 8-to-1 multi-channel configuration

Figure 35: Impact of response link bus width and read return queue on the efficiency
of eight channels of DDR3-1066 DRAM in multi-channel configurations

69

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact of Response Width & Read Return Queue
DDR3-1333, 2-to-1 Multi-Channel

(a) DDR3-1333 efficiency in a 2-to-1 multi-channel configuration

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

1
2

4
8

16
Response Link

Bus WIdth
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact of Response Width & Read Return Queue
DDR3-1333, 4-to-1 Multi-Channel

(b) DDR3-1333 efficiency in a 4-to-1 multi-channel configuration

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact of Response Width & Read Return Queue
DDR3-1333, 8-to-1 Multi-Channel

(c) DDR3-1333 efficiency in a 8-to-1 multi-channel configuration

Figure 36: Impact of response link bus width and read return queue on the efficiency
of eight channels of DDR3-1333 DRAM in multi-channel configurations

70

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

1
2

4
8

16 Response Link
Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact Of Response Width & Read Return Queue
DDR3-1600, 2-to-1 Multi-Channel

(a) DDR3-1600 efficiency in a 2-to-1 multi-channel configuration

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact Of Response Width & Read Return Queue
DDR3-1600, 4-to-1 Multi-Channel

(b) DDR3-1600 efficiency in a 4-to-1 multi-channel configuration

8

12

16

24

32

0%

10%

20%

30%

40%

50%

60%

70%

1
2

4
8

16
Response Link

Bus Width
@ 3.2 GHz

D
R

A
M

 E
ff

ic
ie

n
cy

Read Return Queue Depth

Impact Of Response Width & Read Return Queue
DDR3-1600, 8-to-1 Multi-Channel

(c) DDR3-1600 efficiency in a 8-to-1 multi-channel configuration

Figure 37: Impact of response link bus width and read return queue on the efficiency
of eight channels of DDR3-1600 DRAM in multi-channel configurations

71

4.1.5 Cost Constrained Simulations

When implementing an actual system, costs such as the required CPU pin-out, power

consumption, physical space, and the monetary cost of the DIMMs are all important

aspects that need to be considered. So far simulations have not taken these con-

straints into account, instead aiming for a general overview of the system’s behavior

by exploring the design space both inside and outside of what might actually be fea-

sible. To ensure that the principles learned from these simulations actually apply

to real–world situations, constraints should be placed on various dimensions of the

design space.

For example, a constraint could be the total number of CPU pins allotted to

communicate with the memory system. The total number of CPU pins is a significant

portion of the fabrication cost, so optimal use of the ones available is critical. A fixed

number of pins can be configured as link buses in numerous ways, from a few, wide

buses to numerous narrow ones. Another example constraint could be a maximum

number of DIMMs allowed in a single system, either due to physical space, monetary,

or power limitations.

Intel’s SMB is used to determine some of the other costs involved with this ar-

chitecture. In an Intel-based system (Section 1.2.5), the SMB dissipates 7 watts

while idle and up to 14 watts under load [13]. Within the simulator, these values are

used when determining system power. Each simple controller consumes 7 watts of

background power and an additional 3.5 watts for each DRAM channel it controls

(i.e., a simple controller which controls four DRAM channels will consume 7 watts

72

background power and 14 watts for the channels it operates, totaling 21 watts under

load). The pin-out of the SMB is also used to determine the appropriate number of

pins required to control a channel of DRAM. Of the 655 pins on each SMB pack-

age, 147 are used to control a single channel of DRAM. Therefore, when determining

the pin cost of a simple controller in the simulator, a multiple of this value is used

depending on the number of DRAM channels.

Further limit-case simulations are performed with such outside constraints placed

on aspects of the BOB system. In these systems, eight DRAM channels, each with

four ranks (32 DIMMs making 256 GB total) are allowed, while the CPU has up to

128 pins which can be used for data lanes to comprise various link buses operating

at 3.2 GHz. The theoretical peak of this system is 85.333 GB/s (eight channels of

DDR3-1333 whose theoretical peak bandwidth is 10.666 GB/s each). Even with these

constraints, there are still numerous ways to configure a BOB memory system from

numerous channels with narrow link buses with no multi-channel utilization to only

a few wider link buses that utilize a high degree of the multi-channel optimization.

Each of these types of configurations can be optimized for bandwidth performance,

latency, power, or monetary cost. Some of these possibilities (Table 5) are simulated,

and the results can be seen in Figure 38. Note : Y-Axis in Figure 38 is inverted.

73

Config
Name

Request
Bus

Width

Response
Bus

Width

DRAM :
Simp.

Controller

Simp.
Controller
Pin-Out

Num
Simp.

Controller

CPU
Data
Lanes

A 8 8 1:1 147 8 128
B 12 12 2:1 294 4 96
C 16 16 2:1 294 4 128
D 16 16 4:1 588 2 64
E 32 32 4:1 588 2 128
F 4 8 1:1 147 8 96
G 8 12 2:1 294 4 80
H 8 16 2:1 294 4 96
I 8 32 4:1 588 2 80
J 12 16 2:1 294 4 112
K 12 32 4:1 588 2 88
L 16 32 4:1 588 2 96

Table 5: Configuration parameters for various tested systems. Optimal configurations
determined in Figure 38 are highlighted in yellow.

0

0.1

0.2

0.3

0.4

0.5

0.6

90 110 130 150 170

G
B

/s
/C

P
U

 P
in

Memory System Power (W)

Bandwidth/CPU Pin vs. Memory System Power

A

B

C

D

E

F

G

H

I

J

K

L

Pareto FrontierG

D

I

Figure 38: Pareto frontier analysis plot for configurations in Table 5. Note: Shade
of data point corresponds to simple controller complexity

To perform a fair Pareto frontier analysis, relevant costs must be incorporated into

the data. In order to do this, the sustained bandwidth is normalized against the total

number of CPU pins that are utilized because some configurations do not use all 128

74

pins which are allotted. The color of each data point in Figure 38 corresponds to

the relative complexity of the simple controller. Black data points are configurations

that have a simple controller which requires 588 pins for four DRAM channels; the

gray points require 294 pins for two DRAM channels; the white points require 147

for one DRAM channel.

It is clear from Figure 38 that some configurations of the available resources

(DRAM and pins) are more desirable than others. The Pareto frontier analysis dic-

tates that configurations D, G, and I are Pareto equivalent and the most optimal

for the parameters tested. Because the simple controller complexity is not accounted

for in this analysis, there is still a decision to be made about which configuration is

best suited for a particular situation. If raw performance or a less complex simple

controller is more desirable, than configuration G is better suited, yet if system power

consumption is a concern, configurations D and I are better. This analysis also clearly

shows the downside to configurations where a simple controller drives only a single

channel of DRAM (white points). In this situation, the power dissipation from having

8 separate simple controllers far exceeds that of the other configurations and yields

no benefit in performance.

Configurations D, G, and I represent a range of likely and viable configurations of

a BOB memory system. For subsequent examinations of the BOB memory system,

these optimally configured systems will be used.

75

4.1.6 Ports

An aspect of the BOB memory system that has not yet been explored are the ports

in the main BOB controller. These ports are used as the means of communication

between the CPU and main BOB controller. Each port is a full–duplex bus which can

receive requests and return read data to and from the cache at the same time. With

a greater number of CPU cores now operating in parallel on modern processors, the

likelihood of simultaneous issuing of memory requests is growing as well, dictating

the need for concurrent issuing of requests and responses to and from the memory

system. With multiple ports on the main BOB controller, this becomes possible. As

ports are an integral part of a BOB system, details about how they are organized

must be investigated. Such details include the width and speed of each port, total

number of ports, and how requests are added to each port.

Since the main BOB controller and corresponding ports reside on the CPU die,

the frequency that these ports are operated is dictated by the CPU clock. During

limit-case simulations this is 3.2 GHz. The width of a port determines the number

of bytes that can be moved in a single CPU cycle. This can be the result of a single

cycle on a wide bus or a more narrow bus utilizing double-data rate transfer. Since

the bus is full–duplex, this number of bytes may move in both directions on each

cycle.

Each port has corresponding buffers that store request and response packets. Since

each bus is full-duplex, there is a buffer for both input and output. Packets are stored

in the input buffer while waiting for arbitration on the link buses and in the output

76

buffer while waiting for the port to become available in order to return data back to

the cache. These port buffers are searched out of order to find the first possible item

that is capable of being issued to the respective link bus. If the request is destined

for a link bus that is currently in use (or corresponding Ser–Des buffer is full) or the

destined simple controller work queue is at its maximum capacity, then that request

will not be removed from the port buffer.

While performing limit-case simulations on the Pareto optimal configurations de-

termined above (configurations D, G, and I from Table 5), the number of ports, the

width of each port, and the buffer space given to each port are varied and the sus-

tained bandwidth of these systems can be seen in Figure 39. In all configurations,

when the port is only capable of transferring 4 bytes on each CPU cycle, the perfor-

mance of the rest of the system is significantly impeded. This is mainly the result of

the outgoing port requiring 18 cycles to return a 72-byte data packet to the cache.

This inordinate amount of time results in a back-up in the rest of the system; data

responses are stalled within the simple controller’s read return queue while waiting

for the port to become free, which results in stalling the operation of the DRAM.

In these cases the output port is being utilized over 99% of the entire lifetime of the

simulation. The conclusion can be made that the depth of the port buffer when the

bus is so narrow has practically no impact on the performance, as the width of the

bus is the overall limiting factor.

77

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration G
1 Port

(a) Configuration G, 1 Port

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration D
1 Port

(b) Configuration D, 1 Port

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration I
1 Port

(c) Configuration I, 1 Port

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration G
2 Ports

(d) Configuration G, 2 Ports

4B

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration D
2 Ports

(e) Configuration D, 2 Ports

4B

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration I
2 Ports

(f) Configuration I, 2 Ports

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration G
4 Ports

(g) Configuration G, 4 Port

4B

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration D
4 Ports

(h) Configuration D, 4 Port

4B

4B

8B

16B

32B

0

10

20

30

40

50

60

1
2

4
8 Port

Width

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Configuration I
4 Ports

(i) Configuration I, 4 Port

Figure 39: The impact the number of ports, port depth, and port width have on
configurations G, D, and I

The data in Figure 39 also shows no significant difference in performance when

increasing the port width from 16 bytes to 32 bytes. This is in large part due to a port

width of 16 bytes being able to send and receive data faster than other constraints

within the system. A port with a width of 16 bytes can return a data packet to the

cache in 5 CPU cycles (1.5625 ns) while the time a response packet spends on the

link bus is at least 2.8125 ns (in configuration I which has the widest response bus).

Therefore, the response packet can be sent out the port before a new one arrives from

78

the link bus, and the extra bandwidth available when doubling the port to 32 bytes

would not improve performance and thus would be a waste of resources.

When increasing the total number or ports, the performance is almost universally

improved, especially in configurations of greater constraint, such as with a shallow

port buffer or narrow port bus. For example when the port is only 4 bytes wide with

a depth of one entry, increasing the number of ports from one to four increases the

sustained bandwidth more than 250%. Unfortunately, when increasing the number of

ports in this fashion, a comparison of the end result is not entirely fair as the overall

buffer space and total width across all ports is not equivalent. As with the previous

cost-constrained simulations seen in section 4.1.5, a constraint should be placed on

the overall buffer space and total width given to ports, and the organization of these

resources should be explored.

When the main BOB controller is allotted 16 entries worth of port buffer storage

and a total of 32 bytes of width to be used for a various number of ports, the possible

organizations and the resulting bandwidth for each configuration can be seen in Fig-

ure 40. Again, even with eight total ports operating in parallel, a width of 4 bytes is

universally the least ideal as the width is too restrictive when returning data to the

CPU. Configuration D sees the greatest reduction in performance when using such

a narrow port because the configuration only has two link buses to return responses

from each simple controller (compared to configuration G which has four). The im-

pact of the port organization on configuration I is minimal due to the restrictive link

buses in that configuration causing the performance bottleneck. The two request link

buses of 8 data lanes can not keep the DRAM busy enough to reach the performance

79

of other configurations. There is little difference in many of the other configurations,

but this is likely due to the nature of limit-case simulations. Port organizations will

be explored later with full-system simulations when the parallelism of issuing requests

and responses will have a greater impact on the overall system performance.

0

10

20

30

40

50

60

1x32B, 16 Deep 2x16B, 8 Deep 4x8B, 4 Deep 8x4B, 2 Deep

Su
st

ai
n

e
d

 B
an

d
w

id
th

 (
G

B
/s

)

Port Configuration

Utilization of Port Resources

G

D

I

Figure 40: Different port configurations of 32 bytes worth of width and 16 entries
worth of depth

Another aspect of the ports that can not be explored under a limit-case simulation

is the heuristic used to add new requests. The nature of a limit-case simulation

dictates that requests are added to a port as soon as it becomes available. While

executing a full-system simulation, the request rate and address stream are dictated

by the application. Various heuristics regarding how to add new requests to available

ports are explored in the sections below.

80

4.2 Full System Simulations

While the limit-case simulations help characterize the basic behavior of a BOB mem-

ory system, a time-independent stream of random addresses may not always be repre-

sentative of the workload the system might encounter. With MARSSx86 and numer-

ous multi-threaded benchmarks, the memory system can be observed and analyzed

while handling a cycle-accurate and meaningful request stream that includes interac-

tion with the operating system, cache, and virtual memory.

This type of simulation will exercise different aspects of the memory system due

to the higher likelihood of conflicts resulting from address stream locality or non-

uniform request rates which could flood various parts of the system. These types of

interactions are not present in the limit-case workload and are essential to developing

a complete picture of a BOB memory system. The memory system’s impact on

the overall execution time will also be visible with a full system simulation. This is

possible because the MARSSx86 CPU model will stall thread execution when waiting

for pending memory transactions. The relevant MARSSx86 configuration parameters

can be seen in Table 6. All figures and tables which display the performance of

a full-system simulation use data points which are collected in epochs. For these

simulations an epoch is one million DRAM cycles.

CPU Speed 3.2 GHz
Num. Cores 8

L1 D/I $ 512 KB
L2 Shared $ 4 MB

DRAM 256 GB DDR3-1333
OS/Kernel Ubuntu 9.10 / 2.6.31

Table 6: Configuration parameters for MARSSx86

81

While BOB configurations D, G, and I were determined to be Pareto optimal con-

figurations during a limit-case simulation, several benchmarks are executed on every

configuration listed in Table 5 to ensure that the conclusions made are applicable

to real workloads. Figures 41 through 44 show the Pareto frontier analysis of all

configurations running mcol, mg, sp, and STREAM. Each Pareto plot has a slightly

different outcome due to different read-write ratios within the request stream which

favor some configurations over others. Configurations D and I are consistently along

the Pareto frontier, although in different positions on each plot, and other configura-

tions change relative positions in each benchmark. Given this, the overall outcome of

the analysis shows a consistent placement of configurations when using performance,

pin count, and power consumption as metrics.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

90 110 130 150 170

G
B

/s
/C

P
U

 P
in

Memory System Power (W)

Bandwidth/CPU Pin vs. Memory System Power
mcol

A

B

C

D

E

F

G

H

I

J

K

L

Pareto Frontier I

D

Figure 41: Pareto frontier analysis of all configurations executing mcol benchmark

82

0.0

0.1

0.2

0.3

0.4

0.5

0.6

90 110 130 150 170

G
B

/S
/C

P
U

 P
in

Memory System Power (W)

Bandwidth/CPU Pin vs. Memory System Power
mg

A

B

C

D

E

F

G

H

I

J

K

L

Pareto Frontier D

I

Figure 42: Pareto frontier analysis of all configurations executing mg benchmark

0

0.1

0.2

0.3

0.4

0.5

0.6

90 110 130 150 170

G
B

/s
/C

P
U

 P
in

Memory System Power (W)

Bandwidth/CPU Pin vs Memory System Power
sp

A

B

C

D

E

F

G

H

I

J

K

L

Pareto Frontier
D

I

Figure 43: Pareto frontier analysis of all configurations executing sp benchmark

83

0

0.1

0.2

0.3

0.4

0.5

0.6

90 110 130 150 170

G
B

/s
/C

P
U

 P
in

Memory System Power (W)

Bandwidth/CPU Pin vs. Memory System Power
STREAM

A

B

C

D

E

F

G

H

I

J

K

L

Pareto Frontier D

I

K

G
B

/s
/C

P
U

 P
in

Figure 44: Pareto frontier analysis of all configurations executing STREAM bench-
mark

The Pareto plots confirm the conclusions made during the limit-case simulations

and configurations D, G, and I are used for all further studies. While other configu-

rations lie along the Pareto frontier during some benchmarks above, D, G, and I are

still chosen because the read-to-write ratio during a limit-case simulation (2/3 reads,

1/3 writes) is generally accepted as the most common case. These configurations also

encompass a wide range of possibilities that the available resources can be configured

into a memory system, and they will give a broad overview of the behaviors resulting

from how these resources are used.

4.2.1 System Performance & Power Trade-offs

Figures 45 through 51 display a number of benchmarks and the impact that each

BOB configuration has on the achievable bandwidth, latency, and total execution

84

time. Each graph displays a “region of interest” within the benchmark; this is the

relevant portion of the execution where the core computation is performed. The

wide variety of benchmarks results in significantly different behaviors in the memory

system. Each BOB configuration achieves the best relative performance during at

least one benchmark, showing that the application is the ultimate determining factor

in the performance of the memory system.

Table 7 displays the average bandwidth and power consumption of each of the

benchmarks, as well as the energy per bit and total energy. These values provide a

clearer picture of benefits and drawbacks of each system and are necessary to account

for the achieved performance and execution time of each benchmark when comparing

configurations. The power consumption accounts for both the DRAM power and the

power necessary to operate all simple controllers within that BOB configuration. As

previously explained, the power consumption of a single simple controller is based

on the Intel SMB [13]; the background power for a single chip is 7 watts, and the

operational power for each simple controller core is 3.5 watts. The power consumption

of the DRAM is computed using IDD values from the respective device data-sheets

and the methodology detailed in Micron technical note TN-47-04 [2].

STREAM (Figure 51) and mcol (Figure 47) generate the greatest average

bandwidth among the benchmarks which are executed, yet the behavior of the mem-

ory system during these benchmarks is drastically different. While these benchmarks

experience significantly different performance from each of the BOB configurations

studied, the best performing configuration is different. This is due to the request mix

generated during the region of interest; the STREAM benchmark generates a request

85

stream of approximately 46% reads and 54% writes while the mcol benchmark issues

98.9% reads.

The relatively balanced request ratio of STREAM favors the parallelism and rela-

tively balanced link-bus widths of configuration G, whose execution time is 2.9% less

than D and 49% less than I. Configuration I’s performance is significantly worse due

to the inability of the request link bus to provide the DRAM channels with requests

at a sufficient rate. The request link buses encounter periods of over 95% utilization.

This issue also results in a higher latency, as incoming requests spend more time

waiting in a port’s input buffer for arbitration onto the link bus. Conversely, during

mcol, configuration I performs significantly better than both configurations D and

G; this is a result of the wide response link bus in configuration I, which can easily

handle the inordinate amount of read requests during this benchmark. The execution

time when using configuration I is 15.6% less than G and 36.6% less than D.

While the instantaneous power dissipation provides some insight into the charac-

teristics of each BOB configuration, incorporating the execution time and achieved

performance will generate a complete view of relative benefits and drawbacks of each

configuration. For example, the instantaneous power of configuration G is 14% greater

than configuration D, yet the increased performance and reduced execution time re-

sults in only 10.8% more energy actually used. Conversely, the instantaneous power

dissipation of configuration I is the least of the configurations, but its increased exe-

cution time and poor performance results in over 64% more total energy consumption

over the lifetime of the execution. This is also the case during mcol ; configuration

D has the smallest instantaneous power dissipation, but its increased execution time

86

leads to the greatest total energy consumption.

For benchmarks where the memory system is largely idle (i.e., fluidanimate (Figure

46), facesim (Figure 45), and SandiaGUPS (Figure 49)), the average bandwidth

achieved by each configuration and therefore the total execution time as well, are

relatively similar; therefore, comparing performance provides little insight. When

the memory system is not heavily utilized, the power dissipation and energy play a

much larger factor in determining the best configuration. For example, the execution

time of fluidanimate differs by less than 6% across all systems, yet the energy per bit

consumed within configuration G and is 16% greater than D (which has the least).

Even with the shortest execution time, configuration G still consumes the most en-

ergy. The increased energy consumption is a result of a greater number of simple

controllers – four, whereas configuration D and I only have two. A greater number

of simple controllers is a benefit during some benchmarks and can increased perfor-

mance, but when the memory system is mostly idle, the increased power consumption

becomes a detrimental factor.

In conclusion, the full system simulations have provided insights into behaviors

which were not apparent during the limit-case simulations, such as the impact that

the performance and resulting execution time has on the energy consumption of the

system. The similarities between D and G’s performance in a majority of the cases

also makes it clear that significantly different configurations can achieve similar per-

formance and that outside constraints and costs involved with the implementation of

the system can still be considered without sacrificing performance. As predicted by

the limit-case simulations above, configuration I only performs well in situations of

87

inordinate numbers of reads and typically is limited by the lack of request link bus

bandwidth. With a general idea of how these systems behave and perform under a

full system simulation, specific characteristics and features can now be explored.

Figure 45: Full system simulations running the facesim benchmark

88

Figure 46: Full system simulations running the fluidanimate benchmark from the
PARSEC benchmark suite

Figure 47: Full system simulations running the mcol benchmark

89

Figure 48: Full system simulations running the mg benchmark from the NAS parallel
benchmark suite

Figure 49: Full system simulations running the SandiaGUPS benchmark

90

Figure 50: Full system simulations running the sp benchmark from the NAS parallel
benchmark suite

Figure 51: Full system simulations running the STREAM benchmark

91

facesim

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 87.62 13.02 6.72 124.33 1419

G 101.53 12.93 7.85 146.0 1438

I 86.72 12.04 7.20 133.54 1540

fluidanimate

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 78.5 3.06 25.65 40 508.4

G 92.5 3.11 29.74 46.3 500

I 78.4 2.92 26.84 41.7 531.6

mcol

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 94.95 21.33 4.45 14.1 148.8

G 114.16 27.13 4.20 12.8 111.7

I 104.77 32.34 3.23 9.9 94.3

mg

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 93.16 18.87 4.93 352.5 3782

G 101.83 18.35 5.55 395.8 3887

I 92.97 17.13 5.43 377.6 4162

Sandia GUPS

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 84.76 9.67 8.76 148.3 1750

G 98.70 9.61 10.27 173.8 1761

I 82.84 7.62 10.87 184.2 2223

sp

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 97.02 23.27 4.17 133.89 1380

G 111.17 23.43 4.74 151.97 1367

I 92.97 18.86 4.93 157.86 1698

STREAM

Config Power (W) Avg BW (GB/s) W per GB/s Energy (J) Time (ms)

D 105.7 32.61 3.24 12.5 117.9

G 120.5 33.54 3.59 13.8 114.5

I 91.44 17.10 5.34 20.5 224.5

Table 7: Power consumption of each configuration running the aforementioned bench-
marks normalized against their average performance

92

4.2.2 Latency Analysis

During limit-case simulations, requests are added to the memory system as soon as

resources permit (i.e., as fast as possible). This results in the system quickly reaching

a steady-state where queues reach their maximum capacity without the opportunity

of emptying. In such a situation, the latency of a request provides no insight into how

the system might behave during typical program execution. While performing a full

system simulation, the frequency of requests will vary depending on the current point

of the application, as well as system level events like operating system intervention.

This will grant a clearer picture of how each BOB configuration will impact the

latency of requests.

The bottlenecks that cause poor performance in a configuration can be easily

identified when the latency of a request is separated into the various components

described earlier (i.e., time spent in command queue or port buffer, access time). For

example, the latency components of STREAM in Figure 52 clearly shows that the

request link bus is the limiting factor in configuration I. The majority of a request’s

latency is from stalling in the port input buffer while waiting for arbitration on the

request link bus. Consequently, latencies within the DRAM, work queue, and read

return queue are far less than the other configurations simply because new requests

are unable to reach the simple controllers fast enough.

Another observation is that while the latency seen by configurations D and G are

within 3% of each other, the individual latency components contribute different pro-

portions to the overall latency, thereby uncovering relative bottlenecks. For instance,

93

in configuration D, the response link bus latency is less due to a wider response link

bus, yet with fewer of these buses (2 compared to 4 in configuration G) the time spent

waiting in the return queue awaiting arbitration is longer. As stated previously, the

DRAM access time is relatively similar between all configurations. Any variation seen

in this latency component is due to increased DRAM activity which is confirmed by

configuration G producing the greatest average bandwidth and having the highest

DRAM access time.

0

50

100

150

200

250

Config D Config G Config I

La
te

n
cy

 (
n

s)

BOB Configuration

Latency Components - STREAM

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Figure 52: Latency components of read requests during STREAM benchmark in
Figure 51

The mcol benchmark (Figure 47) has an atypical request stream which is com-

posed of approximately 98% read requests. Such an extreme situation will stress dif-

ferent parts of the system compared to normal operation. The latency components for

each configuration can be seen in Figure 53; this clearly shows the read-dominated

request stream stressing both the response link bus and read return queue. Read

requests to configuration D spend the most time stalled in the read return queue

94

awaiting arbitration onto the response link bus. This is because configuration D

does not have the same degree of parallelism as configuration G or the bandwidth

of configuration I, both of which perform better. Even though configuration I has

the smallest request latency, the poor request link bus bandwidth does cause certain

latency components to be greater than the other configurations; while insignificant

to the total, requests to configuration I spend more than twice as much time in the

port buffers than the other configurationsRequest Link Bus width / Response Link Bus Width

0

20

40

60

80

100

120

Config D Config G Config I

La
te

n
cy

 (
n

s)

BOB Configuration

Latency Components - mcol

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Figure 53: Latency components of read requests during mcol benchmark

Figures 54 through 60 display the latency components and number of requests

sent to each channel during the benchmarks above (Figures 45 through 51). These

uncover another important behavior which would not have been visible during a limit-

case simulation – the impact that the multi-channel optimization has on request la-

tency to DRAM channels that share resources such as the link bus or SerDes buffer.

When a group of DRAM channels share the link bus and SerDes buffer, an uneven dis-

95

tribution of requests across channels will not only negatively impact the performance

of the system as a whole but will also hurt the performance of the lightly-loaded

channels individually. This is a result of the lightly-loaded channels being forced to

wait for the shared resources to become free. The degree of multi-channel utilization

is the determining factor in how many DRAM channels are negatively impacted by

this behavior. With a multi-channel degree of two (two DRAM channels for each

simple controller and link bus), a heavily utilized DRAM channel can only impact

one other channel. With a multi-channel degree of four and eight, the number of

DRAM channels impacted by one is increased to 3 and 7, respectively.

Configuration G (multi-channel degree of two) has greater link bus concurrency

compared to configurations D and I. This behavior occurs with this configuration, but

the available concurrency causes it to be less pronounced than configurations D and

I, because requests have a greater opportunity of being issued and will not be stalled

in the port input buffer. For example, while configuration G is executing bench-

marks like fluidanimate and sp, there are clear examples of DRAM channels sharing

resources having similarly poor performance relative to the others. DRAM channels

0 & 1 experience a 50% higher latency relative to the others during fluidanimate,

and channels 6 & 7 experience a 37% higher latency during the NAS benchmark sp.

In the other benchmarks this does not occur, because the link buses are capable of

transmitting requests and responses at a rate that does not stall packets and does

not cause a back-up.

The higher degree of multi-channel utilization in configurations D and I causes this

phenomenon to become more visible as a greater number of DRAM channels have the

96

chance to be effected by a single, heavily-utilized channel. Examples of this can be

easily seen in facesim (Figure 54), fluidanimate (Figure 55), sp (Figure 59), and

STREAM (Figure 60). In these situations, half of the DRAM channels in the system

experience significantly higher latency than others. The relatively narrow request link

bus in configuration I causes this phenomenon to be worse than configuration D, and

in some extreme cases (fluidanimate and STREAM), some channels have double the

latency of the other channels.

It is important to note that, during these situations of uneven request latency,

the request stream is composed mainly of write requests. Write requests packets,

which are 72 bytes, take significantly longer to serially transmit on a link bus relative

to read request packets, which are 8 bytes. Therefore, when the memory system

experiences a greater number of writes than reads, read requests are forced to stall

within a port input buffer while write requests occupy the request link bus. This

also shows the importance of how requests are added to the main BOB controller’s

ports. For these simulations, requests were simply added to the first available port,

by index. Therefore, the underlying cause of this behavior is the result of two factors:

an imbalance in requests to a particular channel (mainly writes) and requests being

stalled in an input port while awaiting arbitration on the link bus. This can also

be indirectly confirmed during mcol, which is 99% reads and has an even latency

(Figure 56).

The latency components for Sandia GUPS (Figure 58) are radically different

from all the other benchmarks. A large work queue latency indicates that there are

significant conflicts at the DRAM level, and requests are stalled within the work queue

97

while waiting for a rank, bank, row, or column to become available. This is typically

the sole result of the request stream and can only be mitigated through faster DRAM

parts or greater rank or bank parallelism within that DRAM channel.

In conclusion, the request latencies during full system simulations show how the

request stream and various bottlenecks in different parts of the system will impact

overall latency. For example, insufficient request link bus parallelism or bandwidth

causes requests to stall within the port buffer, which increases latency while requests

await arbitration. This can occur on the response path as well where requests stall

within the read return queue while awaiting arbitration onto the response link bus,

thus increasing latency. Another important issue which has arisen through full system

simulations is the negative impact that the multi-channel optimization can have on

request latencies. If a particular channel receives an inordinate number of requests,

other channels can be negatively effected as well. The underlying cause of these

issues is an uneven request loading on resources within the memory system and the

mechanism used to add requests to the ports. The best way to mitigate these issues

is with optimal address and channel mapping schemes and port-adding heuristics –

these are explored below.

98

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

N
u

m
b

er
 o

f
R

eq
u

es
ts

La
te

n
cy

 (
n

s)

facesim - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration D (21.02 GB/s) Configuration G (10.63 GB/s) Configuration I (10.58 GB/s)

Sandia GUPS - Per Channel Latency Components & Request Rate

Figure 54: Latency components for requests sent to each DRAM channel during an
epoch of the facesim benchmark

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

N
u

m
b

e
r

o
f

R
eq

u
e

st
s

La
te

n
cy

 (
n

s)

fluidanimate - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration D (23.86 GB/s) Configuration G (25.32 GB/s) Configuration I (13.45 GB/s)

sp - Per Channel Latency Components & Request Rate

Figure 55: Latency components for requests sent to each DRAM channel during an
epoch of the fluidanimate benchmark

0

500

1000

1500

2000

2500

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

R
eq

u
es

ts

La
te

n
cy

 (
n

s)

mcol - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration D (21.11 GB/s) Configuration G (29.31 GB/s) Configuration I (34.9 GB/s)

fluidanimate - Per Channel Latency Components & Request Rate

Figure 56: Latency components for requests sent to each DRAM channel during an
epoch of the mcol benchmark

99

0

200

400

600

800

1000

1200

0

50

100

150

200

250

300

N
u

m
b

er
 o

f
R

eq
u

es
ts

La
te

n
cy

 (
n

s)

mg - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration D (24.11 GB/s) Configuration G (28.16 GB/s) Configuration I (15.49 GB/s)

Figure 57: Latency components for requests sent to each DRAM channel during an
epoch of the mg benchmark

0

100

200

300

400

500

600

700

800

900

1000

0

50

100

150

200

250

300

N
u

m
b

er
 o

f
R

eq
u

es
ts

La
te

n
cy

 (
n

s)

Sandia GUPS - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration D (9.40 GB/s) Configuration G (7.95 GB/s) Configuration I (11.40 GB/s)

Figure 58: Latency components for requests sent to each DRAM channel during an
epoch of the Sandia GUPS benchmark

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

R
eq

u
e

st
s

La
te

n
cy

 (
n

s)

sp - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration D (26.09 GB/s) Configuration G (21.13 GB/s) Configuration I (11.98 GB/s)

mg - Per Channel Latency Components & Request Rate

Figure 59: Latency components for requests sent to each DRAM channel during an
epoch of the sp benchmark

100

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

N
u

m
b

e
r

o
f

R
eq

u
e

st
s

La
te

n
cy

 (
n

s)

STREAM - Per Channel Latency Components & Request Rate

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

Reads

Writes

Configuration G (31.74 GB/s) Configuration D (28.9 GB/s) Configuration I (16.49 GB/s)

Figure 60: Latency components for requests sent to each DRAM channel during an
epoch of the STREAM benchmark

4.2.3 Address Mapping

During a limit-case simulation, each request has a randomly generated address. Any

mapping that would take place on this address would have no impact on the resulting

use of resources because all bit combinations within the address are equally likely.

During a full system simulation, the addresses within the request stream are a product

of actual program execution and operating system functionality, and will therefore

have address space locality that will cause some bit combinations to happen more

frequently. When applying a mapping scheme to this address stream, particular

resources may be used more often than others, thereby causing resource conflicts and

loss of performance. This is why it is essential to find mapping schemes that optimally

use the resources within the system.

In a BOB memory system, address mapping occurs in two separate but equally

important places – within the main BOB controller and within a simple controller.

The mapping that occurs within the BOB controller takes a portion of the physical

address to determine which channel should receive that request. Ideally, this process

101

evenly spreads out requests over all available channels. An imbalanced mapping will

flood a particular channel and cause contention on the link buses and subsequently

within the actual DRAM.

The mapping that occurs within the simple controller is equivalent to the mapping

that occurs in a standard memory system. This has been shown to be essential to the

over-all performance and efficiency of the memory system [38, 42, 24, 39]; this applies

to the BOB memory system as well. Before DRAM specific commands can be issued

from the simple controller, the physical address of the request must be mapped to

the available resources, such as a particular rank, bank, row, and column. A good

address mapping scheme will prevent resource conflicts and utilize the parallelism

available in modern DRAM devices to increase efficiency. Unfortunately, finding an

optimal mapping scheme can be difficult due to variations in different address streams.

An address mapping scheme that may be optimal with one workload could perform

poorly with another.

To discuss the various mapping schemes which are used and analyzed, a convention

is created that allows easy reference to how that scheme maps bits to resources. Table

8 details the various bit fields required to map all available resources within a BOB

memory system and the notation used for each of these fields. Using this convention,

an address mapping scheme can now be referenced using the name for each bit field

and the location that they are taken from the physical address. For example, the

scheme RW:BK:RK:CH:CL:BY takes the highest-order bits of an address for the row

address, the next-highest-order bits for the bank address, and so on.

102

Channel Bits CH
Rank Bits RK
Bank Bits BK
Row Bits RW

Column Bits (or) CL
Column Bits High/Low CLH and CLL

Byte Offset BY

Table 8: Naming convention for each bit field in an address mapping scheme

The first mapping which takes place is the channel mapping within the main BOB

controller, and determines which channel a request should be sent. This mapping is

essential to evenly spread out requests over all the available channels. While deter-

mining which bits should be used for this mapping, the relative ordering of all other

mappings is maintained to ensure that no other factors impact the performance. Once

the optimal channel mapping bits have been determined, the mapping of other re-

sources will be explored. Table 9 display the mapping schemes used to determine

which bits should be used for mapping the channel. Note: Relative order of other

mappings are maintained.

Address Mapping Schemes

CH:RW:BK:RK:CL:BY
RW:CH:BK:RK:CL:BY
RW:BK:RK:CH:CL:BY

RW:BK:RK:CLH:CH:CLL:BY

Table 9: Mapping schemes used for determining optimal channel mapping bits

While executing various benchmarks during a full system simulation of configu-

ration G, the mapping schemes shown in Table 9 are used, and the resulting per-

formance can be seen in Figures 61 through 65. The different mapping schemes

produce a wide variety of achievable performance, due solely to how evenly they

103

spread the request stream across the DRAM channels. A clear pattern can be seen

where configurations that use lower order bits to map the channel address can more

evenly spread requests across DRAM channels and therefore achieve better perfor-

mance. This behavior occurs because higher-order bits do not flip as frequently as

lower-order bits [34]. As the channel mapping is taken from subsequently lower-order

bits, the performance increases due a more even spread of requests across all channels.

It is important to note that the lowest-order bits in the physical address are always

reserved for a portion of the column address and the bus width offset. These bits

account for both the width of the DRAM data bus and the amount of data returned

in a single burst and are always 0 due to cache block alignment.

The CH:RW:BK:RK:CL:BY mapping scheme, which uses the highest-order bits

to map the channel address, performs considerably worse during every benchmark

because the mapping directs between 80% and 98% of the requests to the same

channel, depending on the benchmark. This results in resource conflicts at every point

along a request’s path and the performance is limited to that of what is achievable by

a single channel – in configuration G, which uses DDR3-1333, this is approximately

7.5 to 8 GB/s. Such poor performance leads to execution times significantly longer

than other mappings, with STREAM and mcol executing almost six times longer

than they do under the best mapping.

Conversely, mapping scheme RW:BK:RK:CLH:CH:CLL:BY performs the best

during all benchmarks. In this mapping scheme, the lowest-order bits in the address

that flip most regularly are used to map the request to a DRAM channel. These bits

flip most frequently and, as a result, can evenly spread requests (within 1%) across all

104

channels. This makes resource conflicts less likely by utilizing all available parallelism

within the system. The achieved resource-balancing causes the execution time of each

benchmark to be better than all other mapping schemes. Therefore, the conclusion

can be made that this mapping scheme is the most ideal; therefore, these bits will be

used to map the DRAM channel in all subsequent simulations.

105

(a) Impact of Channel Mapping - facesim

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CH:RW:BK:RK:CL:BY RW:CH:BK:RK:CL:BY RW:BK:RK:CH:CL:BY RW:BK:RK:CLH:CH:CLL:BY

R
e

q
u

es
t

Tr
af

fi
c

Mapping Scheme

facesim - Impact of Channel Mapping on Request Spread

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

(b) Channel Spread - facesim

Figure 61: Impact of channel mapping scheme on performance and channel spread
during facesim benchmark

facesim

Mapping Scheme Average Bandwidth Execution Time
CH:RW:BK:RK:CL:BY 2.96 GB/s 766.6 ms
RW:CH:BK:RK:CL:BY 3.12 GB/s 691.9 ms
RW:BK:RK:CH:CL:BY 3.51 GB/s 637.8 ms

RW:BK:RK:CLH:CH:CLL:BY 5.22 GB/s 437.8 ms

Table 10: The average bandwidth and execution time using each address mapping
scheme while executing facesim

106

(a) Impact of Channel Mapping - fluidanimate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CH:RW:BK:RK:CL:BY RW:CH:BK:RK:CL:BY RW:BK:RK:CH:CL:BY RW:BK:RK:CLH:CH:CLL:BY

R
e

q
u

e
st

 T
ra

ff
ic

Mapping Scheme

fluidanimate - Impact of Channel Mapping on Request Spread

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

(b) Channel Spread - fluidanimate

Figure 62: Impact of channel mapping scheme on performance and channel spread
during fluidanimate benchmark

fluidanimate

Mapping Scheme Average Bandwidth Execution Time
CH:RW:BK:RK:CL:BY 2.36 GB/s 661.8 ms
RW:CH:BK:RK:CL:BY 2.86 GB/s 542.5 ms
RW:BK:RK:CH:CL:BY 2.87 GB/s 541.9 ms

RW:BK:RK:CLH:CH:CLL:BY 3.10 GB/s 500.4 ms

Table 11: The average bandwidth and execution time using each address mapping
scheme while executing fluidanimate

107

(a) Impact of Channel Mapping - mcol

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CH:RW:BK:RK:CL:BY RW:CH:BK:RK:CL:BY RW:BK:RK:CH:CL:BY RW:BK:RK:CLH:CH:CLL:BY

R
e

q
u

es
t

Tr
af

fi
c

Mapping Scheme

mcol - Impact of Channel Mapping on Request Spread

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

(b) Channel Spread - mcol

Figure 63: Impact of channel mapping scheme on performance and channel spread
during mcol benchmark

mcol

Mapping Scheme Average Bandwidth Execution Time
CH:RW:BK:RK:CL:BY 5.74 GB/s 542.2 ms
RW:CH:BK:RK:CL:BY 8.86 GB/s 356.9 ms
RW:BK:RK:CH:CL:BY 7.52 GB/s 420.4 ms

RW:BK:RK:CLH:CH:CLL:BY 23.18 GB/s 119.3 ms

Table 12: The average bandwidth and execution time using each address mapping
scheme while executing mcol

108

(a) Impact of Channel Mapping - mgMapping Scheme

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CH:RW:BK:RK:CL:BY RW:CH:BK:RK:CL:BY RW:BK:RK:CH:CL:BY RW:BK:RK:CLH:CH:CLL:BY

R
eq

u
es

t
Sp

re
ad

Mapping Scheme

NPB mg (C) - Impact of Channel Mapping on Request Spread

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

(b) Channel Spread - mg

Figure 64: Impact of channel mapping scheme on performance and channel spread
during mg benchmark

mg

Mapping Scheme Average Bandwidth Execution Time
CH:RW:BK:RK:CL:BY 5.99 GB/s 3810 ms
RW:CH:BK:RK:CL:BY 15.09 GB/s 1511 ms
RW:BK:RK:CH:CL:BY 14.82 GB/s 1532 ms

RW:BK:RK:CLH:CH:CLL:BY 20.94 GB/s 1089 ms

Table 13: The average bandwidth and execution time using each address mapping
scheme while executing mg

109

(a) Impact of Channel Mapping - STREAM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CH:RW:BK:RK:CL:BY RW:CH:BK:RK:CL:BY RW:BK:RK:CH:CL:BY RW:BK:RK:CLH:CH:CLL:BY

R
eq

u
es

t
Tr

af
fi

c

Mapping Scheme

STREAM - Impact of Channel Mapping on Request Spread

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

fluidanimate - Impact of Channel Mapping on Request Spread(b) Channel Spread - STREAM

Figure 65: Impact of channel mapping scheme on performance and channel spread
during STREAM benchmark

STREAM

Mapping Scheme Average Bandwidth Execution Time
CH:RW:BK:RK:CL:BY 5.96 GB/s 642.2 ms
RW:CH:BK:RK:CL:BY 12.78 GB/s 301.5 ms
RW:BK:RK:CH:CL:BY 13.87 GB/s 277.8 ms

RW:BK:RK:CLH:CH:CLL:BY 33.08 GB/s 116.1 ms

Table 14: The average bandwidth and execution time using each address mapping
scheme while executing STREAM

110

With the optimal channel mapping bits determined, the DRAM mapping which

takes place within the simple controller can be examined. This mapping is identical

to the address mapping that takes place within a commodity memory system where

portions of the address are used to determine which rank, bank, row, and column hold

the data for a request. As with the channel mapping, the likelihood of a particular

bit flipping is a key aspect in how that bit should be used to map resources. To

properly utilize the parallelism within a DRAM channel (and device), bits that flip

more frequently should be used to map resources of greater parallelism within the

system.

All of the DRAM mapping schemes tested below (shown in Table 15) use the

channel mapping bits that were determined to be optimal and the remaining portion

of the address to map the DRAM resources – that is, all of the following mapping

schemes use the lowest-order usable bits to map the channel address. Different com-

binations of resource mappings ensure that a clear picture is uncovered about how the

DRAM mapping scheme impacts resource utilization and overall performance. This

utilization can be visualized by examining the state of all the banks in each system.

Each DRAM bank can be in one of four possible states: Idle (all rows precharged),

Active (row in sense amplifier), Precharging (preparing sense amplifier), or Refresh-

ing (issuing refresh commands). Ideally, a channel should have as many banks in

the Active state (or Precharge) as possible, thereby utilizing the parallelism available

within the DRAM devices. The figures below show the average number of banks in

each state over an epoch of execution. It is important to note that, because the re-

fresh action is periodic and independent of all other factors, the number of refreshing

111

banks is always the same.

Address Mapping Schemes

RK:BK:RW:CLH:CH:CLL:BY
CLH:RW:RK:BK:CH:CLL:BY
RW:CLH:BK:RK:CH:CLL:BY
BK:CLH:RW:RK:CH:CLL:BY
RW:BK:RK:CLH:CH:CLL:BY

Table 15: Mapping schemes used for determining optimal DRAM mapping bits

The execution of various benchmarks using these DRAM mapping schemes in

BOB configuration G can be seen in Figure 66 through 70. These figures (Figures

66(b) through 70(b)) also display the bank utilization within the DRAM chan-

nel by displaying the number of DRAM banks in a particular state (Idle, Active,

Precharging, Refreshing). As with channel mapping, DRAM mapping schemes that

use lower-order bits to map higher levels of parallelism perform better than those

that do not. For example, mapping scheme RW:CLH:BK:RK:CH:CLL:BY uses the

lowest-order unused bits after channel mapping to address the bank and rank within

the DRAM channel, and it performs the best across all benchmarks. The lower-order

bits flip more frequently and will therefore be more likely to evenly spread requests

across all the ranks and banks within that channel. This is confirmed in the bank

utilization figures as well, where this DRAM mapping scheme always has the least

number of idle banks.

Conversely, mapping scheme RK:BK:RW:CLH:CH:CLL:BY uses the highest order

bits to determine which rank a particular request maps to, and it performs the worst

across all benchmarks. This scheme performs the worst because the higher-order bits

that map the rank flip less frequently and will therefore route a majority of requests

112

to only a few ranks or banks within the channel, thus causing conflicts and reducing

performance. The bank utilization of this mapping scheme (Figures 66(b) through

70(b)) confirms this as well with the fewest active banks. This can be used to infer

that requests are not fully utilizing the rank and bank parallelism within the DRAM

channel. The RK:BK:RW:CLH:CH:CLL:BY mapping scheme also makes it clear that

even when an optimal channel mapping scheme can evenly spread requests across all

DRAM channels in the system, the DRAM mapping scheme implemented within the

simple controller still has a major impact on performance.

DRAM mapping scheme BK:CLH:RW:RK:CH:CLL:BY performs marginally worse

than the best performing schemes but significantly better than RK:BK:CLH:CH:CLL:BY.

When considering a bank address as the combination of both the rank and bank bits,

this indicates that even if a portion of that address is taken from lower order bits

(unlike RK:BK:CLH:CH:CLL:BY), performance can be significantly improved. The

other DRAM mapping schemes had different relative performance depending on the

benchmark and point of execution. This shows that while the DRAM and channel

mapping scheme can have a dramatic impact on the performance of the system, the

incoming address request stream is equally as important in determining how effective

these mapping schemes can be.

As with the channel mapping, DRAM utilization has an impact on other parts

of the system. If a DRAM mapping scheme results in a high number of conflicts,

requests must be stalled in various queues. This can cause back-ups in other parts

of the system, thereby negatively impacting other DRAM channels. For example,

the RK:BK:RW:CLH:CH:CLL:BY mapping scheme has the least number of active

113

banks, and as a result the command queues have an average of 9.2 requests wait-

ing to be issued. When the work queue is full, the request latency will increase

as seen in these graphs, and there is a chance that requests will be stalled in the

port buffers as well, causing other DRAM channels to stall. On the other hand, the

RW:CLH:BK:RK:CH:CLL:BY mapping scheme has the most active banks and only

has an average of 0.6 requests waiting in the queue. This means that requests can

easily move throughout the rest of the system, preventing back-ups and reducing

overall system latency.

114

(a) Impact of Address Mapping - fluidanimate

25

26

27

28

29

30

31

32

33

RK:BK:RW:CLH:CH:CLL:BY CLH:RW:RK:BK:CH:CLL:BY RW:CLH:BK:RK:CH:CLL:BY BK:CLH:RW:RK:CH:CLL:BY RW:BK:RK:CLH:CH:CLL:BY

N
u

m
b

er
 o

f
B

an
ks

Address Mapping Scheme

fluidanimate - Impact of Address Mapping on Bank Usage

Refresh

Precharge

Active

Idle

Bank State

(b) Bank Utilization - fluidanimate

Figure 66: DRAM mapping impact on STREAM benchmark

fluidanimate

Mapping Scheme Average Bandwidth Execution Time

RK:BK:RW:CLH:CH:CLL:BY 2.64 GB/s 589.7 ms

CLH:RW:RK:BK:CH:CLL:BY 3.05 GB/s 509.1 ms

RW:CLH:BK:RK:CH:CLL:BY 3.06 GB/s 508.6 ms

BK:CLH:RW:RK:CH:CLL:BY 3.07 GB/s 507.1 ms

RW:BK:RK:CLH:CH:CLL:BY 3.06 GB/s 507 ms

Table 16: The average bandwidth and execution time using each DRAM mapping
scheme during fluidanimate

115

(a) Impact of Address Mapping - Sandia GUPS

25

26

27

28

29

30

31

32

33

RK:BK:RW:CLH:CH:CLL:BY CLH:RW:RK:BK:CH:CLL:BY RW:CLH:BK:RK:CH:CLL:BY BK:CLH:RW:RK:CH:CLL:BY RW:BK:RK:CLH:CH:CLL:BY

N
u

m
b

e
r

o
f

B
an

ks

Address Mapping Scheme

Sandia GUPS - Impact of Address Mapping on Bank Usage

Refresh

Precharge

Active

Idle

Bank State

(b) Bank Utilization - Sandia GUPS

Figure 67: DRAM mapping impact on Sandia GUPS benchmark

Sandia GUPS

Mapping Scheme Average Bandwidth Execution Time

RK:BK:RW:CLH:CH:CLL:BY 6.52 GB/s 2598 ms

CLH:RW:RK:BK:CH:CLL:BY 9.65 GB/s 1754 ms

RW:CLH:BK:RK:CH:CLL:BY 9.63 GB/s 1759 ms

BK:CLH:RW:RK:CH:CLL:BY 9.66 GB/s 1752 ms

RW:BK:RK:CLH:CH:CLL:BY 6.89 GB/s 2457 ms

Table 17: The average bandwidth and execution time using each DRAM mapping
scheme during Sandia GUPS

116

(a) Impact of Address Mapping - mcol

25

26

27

28

29

30

31

32

33

RK:BK:RW:CLH:CH:CLL:BY CLH:RW:RK:BK:CH:CLL:BY RW:CLH:BK:RK:CH:CLL:BY BK:CLH:RW:RK:CH:CLL:BY RW:BK:RK:CLH:CH:CLL:BY

N
u

m
b

er
 o

f
B

an
ks

Address Mapping Scheme

mcol - Impact of Address Mapping on Bank Usage

Refresh

Precharge

Active

Idle

Bank State

(b) Bank Utilization - mcol

Figure 68: DRAM Mapping impact on mcol benchmark

mcol

Mapping Scheme Average Bandwidth Execution Time

RK:BK:RW:CLH:CH:CLL:BY 8.63 GB/s 337 ms

CLH:RW:RK:BK:CH:CLL:BY 28.91 GB/s 107.7 ms

RW:CLH:BK:RK:CH:CLL:BY 28.79 GB/s 107.9 ms

BK:CLH:RW:RK:CH:CLL:BY 24.62 GB/s 125.4 ms

RW:BK:RK:CLH:CH:CLL:BY 28.58 GB/s 109 ms

Table 18: The average bandwidth and execution time using each DRAM mapping
scheme during mcol

117

(a) Impact of Address Mapping - sp

25

26

27

28

29

30

31

32

33

RK:BK:RW:CLH:CH:CLL:BY CLH:RW:RK:BK:CH:CLL:BY RW:CLH:BK:RK:CH:CLL:BY BK:CLH:RW:RK:CH:CLL:BY RW:BK:RK:CLH:CH:CLL:BY

N
u

m
b

er
 o

f
B

an
ks

Address Mapping Scheme

sp (C) - Impact of Address Mapping on Bank Usage

Refresh

Precharge

Active

Idle

Bank State

(b) Bank Utilization - sp

Figure 69: DRAM mapping impact on the sp benchmark

sp

Mapping Scheme Average Bandwidth Execution Time

RK:BK:RW:CLH:CH:CLL:BY 8.63 GB/s 1969 ms

CLH:RW:RK:BK:CH:CLL:BY 24.88 GB/s 682.5 ms

RW:CLH:BK:RK:CH:CLL:BY 24.90 GB/s 680.9 ms

BK:CLH:RW:RK:CH:CLL:BY 20.14 GB/s 831.9 ms

RW:BK:RK:CLH:CH:CLL:BY 25.01 GB/s 671.9 ms

Table 19: The average bandwidth and execution time using each DRAM mapping
scheme during sp

118

(a) Impact of Address Mapping - STREAM

25

26

27

28

29

30

31

32

33

RK:BK:RW:CLH:CH:CLL:BY CLH:RW:RK:BK:CH:CLL:BY RW:CLH:BK:RK:CH:CLL:BY BK:CLH:RW:RK:CH:CLL:BY RW:BK:RK:CLH:CH:CLL:BY

N
u

m
b

er
 o

f
B

an
ks

Address Mapping Scheme

STREAM - Impact of Address Mapping on Bank Usage

Refresh

Precharge

Active

Idle

Bank State

(b) Bank Utilization - STREAM

Figure 70: DRAM mapping impact on STREAM benchmark

STREAM

Mapping Scheme Average Bandwidth Execution Time

RK:BK:RW:CLH:CH:CLL:BY 8.42 GB/s 450.2 ms

CLH:RW:RK:BK:CH:CLL:BY 33.46 GB/s 114.7 ms

RW:CLH:BK:RK:CH:CLL:BY 33.52 GB/s 114.4 ms

BK:CLH:RW:RK:CH:CLL:BY 28.60 GB/s 134.3 ms

RW:BK:RK:CLH:CH:CLL:BY 32.80 GB/s 117.1 ms

Table 20: The average bandwidth and execution time using each DRAM mapping
scheme during STREAM

119

In conclusion, the importance of both the channel and address mapping is signifi-

cant. Both are essential for effectively using all the available resources in the system,

from properly spreading requests over channels to using all of the parallel banks within

a DRAM device. Ultimately, the incoming address stream will always be a strong

determining factor in how efficient the mapping scheme is, yet the principles outlined

above will always apply; that is, higher levels of parallelism should be mapped with

lower order bits within the address, as they are more likely to evenly spread requests

across all resources. The reasoning and simulations detailed above show clear evidence

that this is the case, with mapping scheme RW:CLH:BK:RK:CH:CLL:BY being the

most optimal mapping scheme for a BOB memory system; this scheme is used in all

subsequent simulations.

4.2.4 Read Return Queue

The read return queue within each simple controller is responsible for storing re-

quested read data while awaiting arbitration on the response link bus. To ensure

proper request ordering, if the queue is full at any point, no read or write commands

will be issued to the DRAM until space for new data is available. During a limit-case

simulation, the random address stream dictates a constant read-to-write ratio and an

even spread across all channels. While this will show some of the impact that the

queue has on the system, it is not indicative of actual program execution. During

a full-system simulation, locality (both spatial and temporal) in the address stream

will cause certain channels to receive more requests than others, and the read-to-

write ratio will change throughout the various parts of the benchmark’s execution.

120

Full system simulation results will give a far more accurate picture of how the amount

of storage given to this queue will impact both the attached DRAM channel and other

parts of the system as well.

Figures 71 through 75 display each BOB configuration executing various bench-

marks while changing the storage capacity of the read return queue in each simple

controller. The differences between each BOB configuration will illustrate how the

organization of the link buses and simple controllers in each configuration will inter-

act with this queue and the resulting impact it has on system performance. Each

configuration will behave differently because the determining factors in how quickly

items are removed from this queue are a) the width of each response link bus and

b) the total number of these buses in the configuration; each BOB configuration is

different in this regard. The relative difference in performance between various queue

capacities will also vary during each benchmark as a result of the read-to-write ratio

and request frequency changing depending on the point of the benchmark’s execu-

tion. A period of a more read requests will require more capacity in this queue than

a period of greater writes and will therefore have a greater effect on the performance.

As within the limit-case simulations, when the return queue only has the capacity

for a single request (64 bytes), the performance is the worst across all benchmarks and

BOB configurations. Such a restrictive queue size will stall the DRAM operation as

soon as a single read request is issued, thereby causing significant back-ups throughout

the system. Performance can be similar to configurations with a greater queue depth

when the request rate is slow, as in parts of fluidanimate, or during periods of a

greater number of writes than reads. An example of this can be seen in portions of

121

the STREAM benchmark that have a greater number of writes than reads and the

achieved bandwidth is within 1% of configurations with a larger queue capacity. In

these situations, the read return queue is not the bottleneck to performance and can

therefore achieve similar bandwidth to other configurations. Regardless, these are

uncommon situations and a storage capacity of 64 bytes is far too restrictive.

Simply doubling the queue size to accommodate two response packets (128 bytes)

can increase the average bandwidth during a benchmark by up to 76%. The greater

the read-to-write ratio is during a benchmark, the more likely an increased capacity

in this queue will be beneficial to performance. The mcol benchmark is an extreme

example of this with a request stream of approximately 98% reads; the average band-

width during the execution is increased by 76% when the return queue size is doubled

to 128 bytes. Other benchmarks see significant performance gains as well with the

average bandwidth during sp, STREAM, and mg increasing by 27%, 22%, and 19%,

respectively.

Further increasing the queue capacity from two (128 bytes) to eight (512 bytes)

provides marginal bandwidth gains of up to 6%. This is because there is only a small

likelihood that during typical program execution the return queue will require such

capacity over a period which would otherwise stall DRAM operation. Regardless,

all configurations see the best performance when the storage capacity in this queue

is 512 bytes. For such a relatively small amount of storage, it would seem to be an

obvious decision that the queue be given such a capcity.

122

Figure 71: The impact of the return queue depth on performance during fluidanimate
benchmark

123

Figure 72: The impact of the return queue depth on performance during mcol bench-
mark

124

Figure 73: The impact of the return queue depth on performance during mg bench-
mark

125

Figure 74: The impact of the return queue depth on performance during sp benchmark

126

Figure 75: The impact of the return queue depth on performance during STREAM
benchmark

127

The figures above also indicate that the return queue depth can have a significant

impact on request latency as well. This can be further examined when the latency

components of requests are displayed for each configuration during each benchmark;

these are shown in Figure 76. While increasing the capacity of this queue always

reduces the request latency across all configurations, it will also alter the relative sizes

of each of the latency components. For example the time spent in the work queue and

the DRAM access time are universally reduced due to less frequent stalling because

of a full read return queue. Conversely, the time spent in the read return queue

increases as there is now the possibility for multiple entries to reside there, some of

which must wait to be sent out on the response link bus. In some cases, the time

spent in the port input buffer also marginally increases. This is because the increased

return queue capacity allows a greater number of requests to be in the memory system

at any one time, thereby allowing program execution to stall less frequently and the

CPU to issue more requests.

128

0

20

40

60

80

100

120

140

160

180

64B 512B 64B 512B 64B 512B 64B 512B 64B 512B

La
te

n
cy

 (
n

s)

Return Queue Depth

Impact of Read Return Queue Depth on Latency Components
Configuration D

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

fluidanimate mcol mg sp stream

Impact of Read Return Queue Depth on Latency Components

0

20

40

60

80

100

120

140

160

180

64B 512B 64B 512B 64B 512B 64B 512B 64B 512B

La
te

n
cy

 (
n

s)

Return Queue Depth

Impact of Read Return Queue Depth on Latency Components
Configuration G

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

fluidanimate mcol mg sp stream

Impact of Read Return Queue Depth on Latency Components

0

20

40

60

80

100

120

140

160

180

64B 512B 64B 512B 64B 512B 64B 512B 64B 512B

La
te

n
cy

 (
n

s)

Return Queue Depth

Impact of Read Return Queue Depth on Latency Components
Configuration I

Output Port

Response Link Bus

Return Queue

DRAM Access

Work Queue

Request Link Bus

Input Port

fluidanimate mcol mg sp stream

Figure 76: The impact of the return queue depth on latency components during each
benchmark

While it is clear that increasing the capacity of this queue grants an increase

in performance by allowing more requests to be issued to the DRAM, the relative

129

performance increase is different between each BOB configuration. As previously

mentioned, this is due to the drastically different link bus organization in each config-

uration simulated. Configuration G has the least response link bus bandwidth of all

the configurations (four link buses with a response link bus bandwidth of 9.6 GB/s

each) and benefits the most from an increased read return queue depth. The impact

the queue capacity has on the achieved bandwidth during each of the benchmarks

and the reduction in execution time can be seen in Table 21. Across all benchmarks,

the achieved bandwidth of configuration G increases an average of 32% when increas-

ing the depth of the return queue from one (64 bytes) to eight (512 bytes). On the

other hand, configurations D and I see an average bandwidth increase of 16% and

18% respectively. This is because the response link bus in configuration G takes the

longest amount of time to return a response packet and therefore benefits the most

from extra storage as other requests must wait longer to be issued if the queue is full.

130

Configuration D
Benchmark 64 B 512 B BW Increase Speedup
fluidanimate 3.32 GB/s 3.41 GB/s 2.7% 2.9%

mcol 16.95 GB/s 21.12 GB/s 24.6% 17.5%
mg 17.18 GB/s 20.32 GB/s 18.2% 15.5%
sp 19.80 GB/s 24.11 GB/s 21.7% 17.8%

STREAM 28.21 GB/s 32.61 GB/s 15.6% 13.4%

Configuration G
Benchmark 64 B 512 B BW Increase Speedup
fluidanimate 3.34 GB/s 3.41 GB/s 2.1% 1.5%

mcol 15.62 GB/s 28.80 GB/s 84.3% 43.1%
mg 16.51 GB/s 20.19 GB/s 22.3% 18.3%
sp 19.09 GB/s 24.86 GB/s 30.2% 23.2%

STREAM 27.23 GB/s 33.56 GB/s 23.3% 18.8%

Configuration I
Benchmark 64 B 512 B BW Increase Speedup
fluidanimate 3.17 GB/s 3.17 GB/s 0.0% 0.0%

mcol 19.49 GB/s 34.62 GB/s 77.6% 41.4%
mg 16.29 GB/s 17.63 GB/s 8.2% 7.4%
sp 18.92 GB/s 19.85 GB/s 4.9% 4.7%

STREAM 17.04 GB/s 17.04 GB/s 0.0% 0.0%

Table 21: The difference in bandwidth when increasing the return queue capacity in
each configuration from one (64 bytes) to eight (512 bytes)

This can be further quantified by examining statistics about the read return queue

in each configuration during program execution. For example during the STREAM

benchmark the return queue is full (and thus preventing new requests from being

issued) 72.5% of the time when the queue capacity is one (64 bytes) while config-

urations D and I must stall 71.2% and 36.0% of the time, respectively. Once the

queue depth is two (128 bytes), the amount of time in which the DRAM is stalled

is drastically reduced, yet configuration G still stalls more frequently – 28.3% of the

time compared to 27.8% and 5.2% in configurations D and I, respectively. With a

capacity of eight, each configuration stalls as little as 0.01%. Even in a read dominant

131

benchmark like mcol, a capacity of eight is sufficient and DRAM operation stalls less

than 1% in configuration D, whose performance was the worst across all configura-

tions during this benchmark. The performance difference beyond this capacity would

be negligible and would not be worth the cost of increasing the capacity; therefore a

total capacity of eight is ideal.

4.2.5 Port Parameters & Heuristics

There are three main parameters when discussing port configurations: the number

of independent ports, the width of each port, and the storage capacity of the input

and output buffer attached to each port. The number of ports corresponds to the

number of independent buses which can be written to or read from on the same cycle.

The width of a port dictates how many bytes of data and packet overhead it may

move on each CPU cycle (either from a single beat of a wide bus or from dual-edged

data transfer). The buffer depth for both the input and output bus of each port

corresponds to how many entries that buffer can hold, regardless of what type of

packet. The frequency of each port is dictated by the CPU clock, and is set to 3.2

GHz for these simulations. As shown in the limit-case simulations, the decisions made

about these parameters can have a drastic impact on the overall system performance.

Examining the organization of the ports during a full system simulation will give a

complete picture about the interaction the ports have with the rest of the system.

Along with BOB configurations D, G, and I, configuration A will be used in the

examination of the ports as this will include all degrees of multi-channel configura-

tions, and therefore all possible numbers of link buses for a system with eight DRAM

132

channels. This will ensure that any interaction between port configurations and link

bus configurations will be uncovered. The number of ports, the width of each port,

and the capacity of each port buffer is changed within these configurations during

the execution of STREAM and the resulting average bandwidth can be seen in Fig-

ures 77 through 80. In each of these figures, the port configuration is referenced

as X xY B where X is the number of independent ports and the Y is the number of

bytes that port can move on a single CPU cycle (i.e., the width). The port buffer

depth is the number of entries that buffer can hold until it has reached maximum

capacity. Tables 22 through 25 show the same results as each of the corresponding

graphs, but groups the configurations with similar resource usage by color to make

comparing configurations easier.

Each parameter in the configuration of the ports has a drastically different impact

on the achieved performance. The relative impact of each parameter is determined by

the link bus organization in the attached BOB system, although, across all configu-

rations, increasing the port buffer depth will always increase performance by as much

as 45%. An increased buffer capacity gives the main BOB controller a greater pool of

requests with which to schedule in the event that some requests must be stalled. This

will also allow the CPU to issue a greater number of requests as the port buffer is the

initial place requests are stored once issued. In some extreme cases performance will

begin to drop – this will be discussed later.

In configurations with only two link buses (D and I), parameters such as the

width and the number of ports do not have a significant impact on the performance

relative to the capacity of the input and output buffer. This is because with only two

133

link buses, there is a greater likelihood that each link bus will already be occupied

sending requests. In these situations, there are some clear optimal decisions which can

be made about how ports should be configured. For example, if a system is provided

with resources to be used as data lanes and buffer space in port configurations, a

greater number of independent ports will perform better than if these resources are

used for fewer, wider ports. This is because the limited bandwidth of the request

link bus will not be able to utilize the additional port bandwidth, if increased. Such

behavior can be seen in configuration I (Figure 80) where a single port with a width

of 32 bytes and a buffer capacity of eight (1x32Bx8) achieves 15.52 GB/s which is

worse than the performance of two ports with 16 bytes of width and a storage capacity

of four for each (2x16Bx4), which achieves 15.55 GB/s. Both of these configurations

use the same resources for buffer space and data lanes, but one performs better than

the other as a result of increased parallelism (as opposed to increased bandwidth).

While the difference in performance is marginal, this is uniformly the case across all

tested configurations.

Another conclusion that can be drawn from these results is that a port width of

eight bytes is almost universally worse when using a fixed amount of resources. For

example in configuration D, 4x8Bx8 achieves 32.57 GB/s while 2x16Bx16 achieves

32.59 GB/s; both of these port configurations use the same resources. This is due to

the increased time necessary to transmit both write request packets and read response

packets (both 72 bytes); with an 8 byte port this would require 9 CPU cycles, and

will stall subsequent requests for an inordinate amount of time.

Conversely, when there is a higher level of link bus parallelism, as in configuration

134

A (eight link buses) and G (four link buses), a greater benefit can be seen when

increasing both the number of ports or the width of a port. This is because there

is a greater possibility that a link bus will be idle and able to receive a request to

send to the DRAM. Therefore, a wider port performs better because it is capable of

transmitting packets to idle link buses in less time (especially write requests whose

packets are 72 bytes). An example of this can be see in configuration A (Figure

77); of all possible combinations of 32 bytes worth of lanes and 16 entries worth

of buffer storage (i.e., 1x32Bx16, 2x16Bx8, and 4x8Bx4), the configuration which

performs the best is a single monolithic 32 byte port with a 16 entry buffer. The

differences in performance between these port configurations is only 2.3% with port

configuration 1x32Bx16 achieving an average bandwidth of 46.73 GB/s, 2x16Bx8

achieving 46.01 GB/s, and 4x8Bx4 achieving 45.64 GB/s, yet this principle applies

to all other configurations possible with a fixed amount of resources.

135

0

5

10

15

20

25

30

35

40

45

50

1 4 8 16

A
ve

ra
ge

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Port Configuration Impact on Bandwidth - STREAM
Configuration A

1x8B

1x16B

1x32B

2x8B

2x16B

2x32B

4x8B

4x16B

4x32B

Figure 77: The impact of various port configurations in configuration A running the
STREAM benchmark

Configuration A

Ports Width Depth Total Storage Total Width BW Max
1 32 1 1 32 21.86 -
1 32 4 4 32 38.05 X
1 32 8 8 32 45.15 X
1 32 16 16 32 46.73 X

2 16 1 2 32 28.56 -
2 16 4 8 32 44.58 -
2 16 8 16 32 46.01 -
2 16 16 32 32 45.63 X

4 8 1 4 32 36.52 -
4 8 4 16 32 45.64 -
4 8 8 32 32 44.61 -
4 8 16 64 32 45.29 -

Table 22: Various port organizations in configuration A colored by similar resources

136

0

5

10

15

20

25

30

35

40

1 4 8 16

A
ve

ra
ge

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Port Configuration Impact on Bandwidth - STREAM
Configuration D

1x8B

1x16B

1x32B

2x8B

2x16B

2x32B

4x8B

4x16B

4x32B A
ve

ra
ge

 B
an

d
w

id
th

 (
G

B
/s

)

Figure 78: The impact of various port configurations in configuration D running the
STREAM benchmark

Configuration D

Ports Width Depth Total Storage Total Width BW Max
1 32 1 1 32 21.54 -
1 32 4 4 32 26.87 X
1 32 8 8 32 29.60 -
1 32 16 16 32 32.19 -

2 16 1 2 32 24.35 -
2 16 4 8 32 29.65 X
2 16 8 16 32 32.23 -
2 16 16 32 32 32.59 X

4 8 1 4 32 26.71 -
4 8 4 16 32 32.24 X
4 8 8 32 32 32.57 -
4 8 16 64 32 32.5 -

Table 23: Various port organizations in configuration D colored by similar resources

137

0

5

10

15

20

25

30

35

40

1 4 8 16

A
ve

ra
ge

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Port Configuration Impact on Bandwidth - STREAM
Configuration G

1x8B

1x16B

1x32B

2x8B

2x16B

2x32B

4x8B

4x16B

4x32B

Figure 79: The impact of various port configurations in configuration G running the
STREAM benchmark

Configuration G

Ports Width Depth Total Storage Total Width BW Max
1 32 1 1 32 15.71 -
1 32 4 4 32 23.38 X
1 32 8 8 32 28.06 X
1 32 16 16 32 32.27 X

2 16 1 2 32 19.19 -
2 16 4 8 32 27.97 -
2 16 8 16 32 32.21 -
2 16 16 32 32 33.51 X

4 8 1 4 32 22.90 -
4 8 4 16 32 32.11 -
4 8 8 32 32 33.45 -
4 8 16 64 32 33.29 -

Table 24: Various port organizations in configuration G colored by similar resources

138

0

4

8

12

16

20

24

1 4 8 16

A
ve

ra
ge

 B
an

d
w

id
th

 (
G

B
/s

)

Port Buffer Depth

Port Configuration Impact on Bandwidth - STREAM
Configuration I

1x8B

1x16B

1x32B

2x8B

2x16B

2x32B

4x8B

4x16B

4x32B

Figure 80: The impact of various port configurations in configuration I running the
STREAM benchmark

Configuration I

Ports Width Depth Total Storage Total Width BW Max
1 32 1 1 32 11.43 -
1 32 4 4 32 14.18 X
1 32 8 8 32 15.52 -
1 32 16 16 32 16.80 -

2 16 1 2 32 12.87 -
2 16 4 8 32 15.55 X
2 16 8 16 32 16.81 X
2 16 16 32 32 17.05 X

4 8 1 4 32 14.10 -
4 8 4 16 32 16.80 -
4 8 8 32 32 17.04 -
4 8 16 64 32 17.05 -

Table 25: Various port organizations in configuration I colored by similar resources

139

As stated above, increasing the port buffer depth typically increases performance

due to a greater number of requests that are capable of being scheduled. In some

cases, though, performance is shown to decrease marginally. An example of this can

be seen in configuration G when increasing the buffer depth of port configuration

4x8B from 8 to 16 entries; the performance decreases slightly from 33.45 GB/s to

33.29 GB/s (0.5%). The reason for this behavior is the heuristic used to add requests

to the ports during these simulations. All prior full-system simulations have used

a heuristic where the first available port (by index) is used to add a request to the

memory system. This particular heuristic can lead to an over-utilization of ports with

lesser indices and subsequently a backup in that port’s input buffer. Therefore when

increasing the capacity of the input buffer, a greater number of requests must wait

to be issued and performance is decreased.

Heuristics for adding requests to the main BOB controller’s ports include :

• First Available (FA) - Ports are searched in order of increasing index for the

first available port

• Per Core (PC) - Each CPU core (or a subset of cores) is assigned a particular

port to issue requests

• Round Robin (RR) - Requests are added to all ports in a round-robin fashion

• Least Full (LF) - Requests are added to the port that has the input buffer

with the fewest number of entries

In these heuristics, a port is “available” when it is not currently being written to

140

and has space in its input buffer. If a request is issued to a port and is rejected as

a result of not being available, the request stays within the last-level cache and tries

again on the next CPU cycle. The heuristics above have a range of implementation

complexities. The per core heuristic is the simplest to implement and simply assigns

a particular core (or set of cores) to always communicate with the same port. The

first available heuristics is slightly more complicated in that it requires logic to search

incrementally over all ports. The round robin and least full require the most amount

of state and logic to implement but are the most fair heuristics.

Each of these heuristics are used while performing full-system simulations of var-

ious benchmarks on each BOB configuration. Each BOB configuration uses port

configuration 4x16B with a buffer capacity of eight. The average bandwidth and the

average number of transactions in each of the four ports during execution can be

seen in Tables 26 through 29. Rows highlighted in yellow indicate heuristics which

performed the best for that particular benchmark and BOB configuration.

The most obvious and apparent impact that each of these heuristics has is in

the buffer utilization during program execution (as shown as the average number of

entries in each buffer in the tables below). The round robin and least full heuristics

typically provide the most even spread of requests over all available buffers, regardless

of the benchmark. The per core heuristic can evenly spread requests as well as, yet

is entirely dependent on the benchmark being executed. For example, during the

STREAM benchmark, this heuristic more evenly spreads requests than all others,

yet during Sandia GUPS, it does not issue requests to three of the available ports for

over 95% of the execution of the benchmark. Conversely, the first available heuristic

141

will always utilize a particular buffer more than others.

With such drastic differences in buffer utilization, one would expect that these

heuristics should also have a meaningful impact on overall system performance. The

results clearly show otherwise, and that there is an insignificant difference in the

achieved bandwidth between each method used to add requests to each port. The

largest difference between heuristics is 3.5% in BOB configuration I while executing

Sandia GUPS, yet the average difference across all benchmarks and configurations is

only 1.2%.

The main reason for such a minuscule difference in performance is both the drastic

difference in bandwidth of the 16 byte wide ports and the link buses, and the fact

that port buffers are searched out of order to find a viable request packet. A port

that is 16 bytes wide and operates at a frequency of 3.2 GHz has a bandwidth of 51.2

GB/s and can transmit a read request packet (8 bytes) in a single cycle and a write

request packet (72 bytes) in 5 cycles. Therefore, even if transactions are added to

ports in a manner which does not evenly spread packets across the available buffers,

the ports are capable of evacuating packets from their buffers fast enough to prevent

it from being a detriment to performance.

With write packets taking multiple cycles to transmit, write-heavy benchmarks are

slightly more susceptible to performance variations between heuristics. An example

of this can be seen during Sandia GUPS which has the largest relative difference

between different heuristics (3.5%) and has a request stream of 97% writes during the

entirety of the benchmark. Regardless, the relative difference can still be considered

insignificant.

142

BOB Configuration A

STREAM Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 46.43 1.645 1.681 1.690 1.697
FA 46.37 4.302 2.268 0.451 0.050
RR 46.38 1.696 1.689 1.661 1.660
LF 46.35 1.931 1.768 1.578 1.391

mcol Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 30.69 0.052 0.054 0.053 0.053
FA 30.34 0.182 0.028 0.000 0.000
RR 30.72 0.053 0.052 0.053 0.053
LF 30.54 0.096 0.085 0.019 0.006

sp.C Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 26.08 0.759 0.758 0.791 0.776
FA 26.06 2.133 0.882 0.169 0.018
RR 26.16 0.758 0.778 0.775 0.764
LF 26.10 0.980 0.841 0.689 0.524

Sandia GUPS Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 10.89 1.001 0.00 0.00 0.00
FA 11.10 0.779 0.366 0.068 0.003
RR 10.99 0.302 0.299 0.300 0.300
LF 11.11 0.360 0.314 0.263 0.224

Table 26: Average bandwidth and number of requests waiting across all input port
buffers

143

BOB Configuration D

STREAM Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 32.62 5.959 5.939 6.004 6.007
FA 32.59 7.602 7.391 6.709 5.302
RR 32.61 6.801 6.768 6.765 6.784
LF 32.60 6.902 6.788 6.648 6.510

mcol Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 20.51 0.056 0.056 0.055 0.056
FA 21.10 0.210 0.020 0.000 0.000
RR 20.55 0.056 0.057 0.056 0.057
LF 20.59 0.068 0.131 0.021 0.008

sp.C Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 24.06 3.669 3.716 3.678 3.632
FA 24.13 6.544 5.659 2.836 0.652
RR 24.03 4.009 3.994 4.082 4.071
LF 24.03 4.255 4.033 3.807 3.577

Sandia GUPS Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 9.48 3.320 0.00 0.00 0.00
FA 9.64 3.061 2.735 1.805 0.128
RR 9.64 2.026 2.028 1.983 1.988
LF 9.63 2.116 2.009 1.898 1.777

Table 27: Average bandwidth and number of requests waiting across all input port
buffers

144

BOB Configuration G

STREAM Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 33.41 5.647 5.668 5.778 5.763
FA 33.56 7.534 7.235 6.435 5.035
RR 33.58 6.580 6.586 6.604 6.591
LF 33.54 6.755 6.634 6.479 6.329

mcol Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 27.84 0.101 0.099 0.102 0.100
FA 28.76 0.381 0.044 0.001 0.000
RR 27.89 0.098 0.097 0.097 0.097
LF 27.98 0.113 0.202 0.054 0.017

sp.C Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 24.82 3.536 3.495 3.496 3.912
FA 24.89 6.586 5.435 2.725 0.649
RR 24.95 3.687 3.653 3.749 3.681
LF 24.91 4.064 3.858 3.626 3.395

Sandia GUPS Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 9.56 3.252 0.00 0.00 0.00
FA 9.61 2.925 2.522 1.286 0.071
RR 9.70 1.779 1.733 1.787 1.737
LF 9.73 1.901 1.802 1.704 1.600

Table 28: Average bandwidth and number of requests waiting across all input port
buffers

145

BOB Configuration I

STREAM Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 17.07 7.781 7.762 7.770 7.759
FA 17.04 7.958 7.952 7.941 7.925
RR 17.04 7.937 7.937 7.939 7.938
LF 17.04 7.948 7.944 7.940 7.936

mcol Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 35.22 0.278 0.280 0.287 0.279
FA 34.74 0.941 0.135 0.002 0.00
RR 35.25 0.258 0.262 0.260 0.262
LF 35.21 0.312 0.401 0.219 0.113

sp.C Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 19.87 6.955 6.923 6.925 6.945
FA 19.82 7.752 7.629 7.300 6.469
RR 19.86 7.291 7.282 7.249 7.268
LF 19.91 7.425 7.346 7.243 7.141

Sandia GUPS Port Index
Heuristic Achieved Bandwidth 0 1 2 3

PC 7.34 5.174 0.00 0.00 0.00
FA 7.59 5.020 4.602 3.695 1.563
RR 7.57 3.761 3.782 3.753 3.787
LF 7.52 3.821 3.668 3.505 3.271

Table 29: Average bandwidth and number of requests waiting across all input port
buffers

In conclusion, the port configuration has been shown to have a marginal impact on

the overall system performance during full-system simulations. Optimal organizations

are dictated by other aspects of the system; BOB systems with fewer link buses

tend to benefit more from resources being used as multiple, independent ports, while

BOB configurations with a great amount of link bus parallelism benefit more from

ports which have a greater bandwidth. The mechanism employed to add requests to

the ports was shown to have little impact on system performance and the simplest

146

or easiest to implement heuristic could be chosen with little impact to achievable

performance.

147

5 Conclusion

After over 15 years of widespread adoption, the commodity memory system’s inabil-

ity to scale, both in operating speed and overall capacity, has caused the memory

bottleneck to become one of the largest hindrances to system performance. These

limitations are brought about by the physical contact based electrical connections

that each DIMM uses to communicate with the rest of the system. As the memory

clock is increased to keep pace with the CPU clock, the signal integrity seen at each of

these physical contacts is significantly reduced. This problem is also exacerbated as

more DIMMs are attached to a particular channel. As a result, system manufacturers

are forced to reduce the total number of DIMMs allowed in a system as they increase

the memory clock which necessarily reduces both capacity and available concurrency.

This fact paired with the inability to increase single DIMM capacity without unrea-

sonably increasing its cost has caused serious issues that must be solved in order to

fully utilize a system’s computational ability.

The FB-DIMM standard was introduced in 2004 in an attempt to solve many

of the problems facing modern memory system design. By placing logic called the

advanced memory buffer (AMB) on each DIMM, the CPU could now communicate

with the memory system via a fast and narrow bus instead of a slow, wide one.

This granted both an increase in clock rate and signal integrity seen at the DRAM

devices, allowing an increase in overall possible capacity. Each of these narrow buses

were logically separated into channels called the northbound and southbound bus,

where requests and responses were packetized into frames and sent over multiple

148

clock cycles. The AMB on each DIMM was responsible for interpreting these frames

and routing requests and responses accordingly.

Unfortunately, unexpected problems arose out of this design which eventually

led to its failure. These problems included excessive heat and power dissipation as a

result of the AMB’s high-speed IO, variable request latency due to the chained nature

of the DIMMs, and relatively expensive DIMMs compared to similar capacity DDR

modules (caused by the addition of the AMB and its heat spreader). The standard

was eventually removed from vendor road-maps, and system designers were forced to

implement a new architecture that could finally give them both the increase in speed

and capacity that their systems and applications demand.

By taking the lessons learned from FB-DIMM, vendors such as Intel, IBM, and

AMD have implemented a new memory architecture which also places logic between

the CPU and DIMMs and communicates via logically separate, fast and narrow buses.

The key differentiation between this buffer-on-board design and FB-DIMM is that

the new logic is not responsible for communicating with other logic nor is it chained

together. Instead, it is only used to control the attached DIMMs and communicate

with the CPU. The DIMMs used in this system are standard DDR modules (U-

DIMMs, R-DIMMs, or LR-DIMMs) which also reduces costs relative to an FB-DIMM

system. All of the above mentioned vendors have implemented such memory systems,

yet each system varies in their specifics, dictating the need for an exploration of this

new design.

To fully explore this new memory architecture, a cycle accurate and hardware

verified simulator was developed in order to characterize the behavior of all aspects

149

of the system, and determine optimal use of the resources involved based on outside

constraints. Two types of simulations were performed: a limit-case simulation where

requests are issued directly to the memory system as fast as possible and a full-system

simulation where the simulator interacts with the CPU, cache, operating system, and

application. To do this, MARSSx86 was integrated with the BOB simulator, and a

variety of multi-threaded benchmarks were executed.

From both of these types of simulations, basic principles and optimizations about

the buffer-on-board system’s design were discovered. This includes :

• Confirmation that insights and optimizations which apply to commodity mem-

ory systems also apply to the DRAM attached to each individual BOB channel

and the simple controller which operates it. This includes the importance of a

proper address mapping scheme to fully utilize the parallelism available in each

device. Also, the importance of adequate queue depths necessary to maintain

peak DRAM efficiency. Lastly, the negative impact that numerous ranks has

on the utilization of the DRAM data bus caused by the necessity to idle when

switching between ranks.

• Insights into the importance of proper configuration of each BOB channel’s re-

quest and response link bus. The efficiency of the DRAM is key in the system’s

performance and each link bus must be configured in such a way as to not im-

pede efficiency. This includes enough bandwidth to provide a sufficient number

of requests to fully utilize the DRAM bus as well as the ability to remove re-

sponses quickly enough so as not to stall DRAM operation. Unfortunately, it

150

was clear that the read-to-write request ratio had the biggest impact on what

was considered to be an optimal configuration. A set of formulas were developed

to determine the proper bandwidth necessary to maintain maximum attainable

efficiency based on read-write ratio and DIMM type.

• The realization that the total possible system bandwidth is dictated only by the

types of DIMM which populate each channel and the total number of indepen-

dent channels in the system. When the rest of the system has been configured

in such a way so that it is possible to achieve optimal performance, the peak

bandwidth is simply a product of the number of channels the achievable peak

bandwidth of the DIMM which occupies these channels.

• Outlining a key optimization which can reduce system costs while maintain-

ing performance and overall capacity. Referred to as the multi-channel op-

timization, this concept is based on the fact that a link bus can provide far

more bandwidth than a DIMM needs to reach maximum attainable efficiency.

Therefore, some link bus configurations can support multiple DRAM channels

without negatively impacting system performance thereby saving on signifi-

cantly system costs such as CPU pin-out, physical space, and simple controller

fabrication costs.

• Understanding the proper configuration and use of the main BOB controller.

This includes optimal channel mappings which are necessary to evenly spread

out requests over all available channels. This is essential since over-loading a

particular channel with requests will significantly reduce overall performance.

151

Also, an understanding about the impact the main BOB controller’s ports has

on the movement of requests and responses and the subsequent performance.

5.1 Future Work

The buffer-on-board memory architecture is relatively new. While current implemen-

tations already alleviate many of the issues facing the commodity memory system,

it is clear that this architecture provides the possibility for optimizations or func-

tionality which could benefit other parts of the system as well. The introduction of

the logic provides a chance for capabilities which were not possible before and could

improve both efficiency and performance of many other parts of the system.

The most straight-forward optimization to the regular BOB system could increase

performance while not requiring any modifications to other parts of the system. This

is the addition of a cache within each simple controller. This could reduce DRAM

access times, power consumption (in the DRAM), and contention on the DRAM bus.

Granted, adding a cache to the simple controller would increase power consumption

and transistor count so it remains to be seen whether these benefits outweigh the

additional costs. It is possible that the SRAM based cache would require significant

amount of power resulting in the same issues as FB-DIMM or that the concurrency in

a BOB memory system results in improbable address space locality. Further analysis

would need to be done to determine whether or not this is feasible and/or beneficial.

Another more complex modification could be the addition of features within the

operating system so as to be aware of the BOB aspects of the memory system. For

152

instance, the operating system could map instruction memory to a BOB channel that

has a wider link bus relative to other channels to ensure quick access to subsequent

instructions. This could be expanded to allow direct memory access (DMA) from the

network or other peripherals directly to a simple controller. This would reduce traffic

through the CPU and cache while providing faster access times to the other parts of

the system.

The most involved modification to the system would be the addition of active

memory operations (AMOs). With this, each simple controller would have the ability

to perform logic operations along with its standard memory controller functionality.

Offloading work to the memory controller is not a new idea but this new architecture

circumvents many of the issues facing AMOs in the past. Having logic so relatively

close to the memory prevents contention, lowers CPU utilization, and reduces latency

of certain requests. Unfortunately, this would require changes to the operating system,

CPU, cache, and simple controllers, making it non-trivial to implement, both in

simulators and in actual systems.

Regardless of whether or not these additional features are added to a BOB memory

system, it has been shown to be a viable solution to many of the issues facing modern

memory architectures. It allows an increase in clock rate, an increase in overall

capacity, while decreasing pin count required by the CPU. Accurate simulation and

modeling have shown this and provided insights into optimal implementations and

organizations in hopes that future systems will be even better than the ones already

in use.

153

6 Appendix A

BOBSim
Total samples : 4333
Focusing on: 4333
Dropped nodes wi th <= 21 abs (samples)
Dropped edges w i th <= 4 s amp le s

__ l ibc_s ta r t_main
0 (0 .0%)

o f 4 1 5 6 (9 5 . 9 %)

main
1 6 (0 . 4 %)

o f 4 1 5 6 (9 5 . 9 %)

4 1 5 6

_ s t a r t
0 (0 .0%)

o f 4 1 5 6 (9 5 . 9 %)

4 1 5 6

1 1

BOBSim
BOBWrapper

U p d a t e
77 (1 .8%)

of 4079 (94 .1%)

4 0 7 5

s t d
vec to r

opera to r []
(inline)

220 (5 .1%)
of 362 (8 .4%)

1 3

s t d
vec tor
e r a s e

(inline)
4 (0 .1%)

of 49 (1.1%)

6

s t d
vec to r

size
(inline)
26 (0.6%)

of 46 (1.1%)

6

FillTransactionBuffer
5 (0.1%)

of 43 (1.0%)

4 3

8 5

BOBSim
BOB

Upda te
1778 (41 .0%)

of 3968 (91.6%)

3 9 5 9

3 2

5

1 6 4 2

BOBSim
C h a n n e l
Upda te

35 (0 .8%)
of 1416 (32 .7%)

1 4 1 2

s t d
d e q u e

opera tor[]
(inline)
123 (2 .8%)

of 564 (13.0%)

7 4 9

s td
deque

size
(inline)

7 (0.2%)
of 376 (8.7%)

3 6 0

3 2 6

BOBSim
BOB

FindChannelID
80 (1 .8%)

6 81 5

BOBSim
C h a n n e l

AddTransac t i on
1 (0 . 0 %)

o f 3 4 (0 . 8 %)

3 0

3 1

BOBSim
SimpleController

U p d a t e
565 (13.0%)

of 1101 (25.4%)

1 1 0 0

BOBSim
Rank

Update
69 (1.6%)

of 225 (5.2%)

2 0 9

BOBSim
Rank

ReceiveFromBus
27 (0.6%)

of 43 (1.0%)

4 3

BOBSim
BOB

ReportCallback
1 6 (0 . 4 %)

of 39 (0 .9%)

6

BOBSim
LogicLayerInterface

Update
23 (0 .5%)

of 29 (0.7%)

2 0

5 9 4

1 1 32 3

3 5

BOBSim
BankS ta t e

U p d a t e S t a t e C h a n g e
315 (7 .3%)

1 1 1

BOBSim
SimpleController

IsIssuable
294 (6 .8%)

of 297 (6 .9%)

2 5 82 1

BOBSim
Channe l

ReceiveOnCmdBus
2 (0 .0%)

of 23 (0 .5%)

2 3

1 6 7

6

s t d
_ D e q u e _ i t e r a t o r

o p e r a t o r []
(inline)

0 (0 .0%)
of 434 (10 .0%)

5 6 4

s t d
_ D e q u e _ i t e r a t o r

o p e r a t o r +
(inline)

0 (0 .0%)
of 438 (10 .1%)

s t d
_Deque_i terator

o p e r a t o r + =
(inline)
298 (6 .9%)

of 438 (10.1%)

5 6 8

2 2 7

4 3

5 6 4

1 1

operator-
(inline)

162 (3 .7%)
of 369 (8.5%)

3 6 7

2 0 6

8

9

1 8 0

9

2 6 5

6

2 7 7

1 4 0

5 2

1 0

1 8

6 8

BOBSim
B a n k S t a t e
B a n k S t a t e

0 (0 .0%)
of 50 (1 .2%)

5 0

6

7

c o p y
(inline)

0 (0 .0%)
of 26 (0 .6%)

2 5

*__GI___libc_malloc
7 (0.2%)

of 46 (1.1%)
6

_int_malloc
37 (0 .9%)

of 39 (0.9%)

3 9

o p e r a t o r
n e w
1 (0 . 0 %)

o f 4 6 (1 . 1 %)

4 5

6

6

8

2 5

2 9

6

1 11 2

2 7

3 7

BOBSim
SimpleController
AddTransaction

5 (0.1%)
of 30 (0.7%)

2 9

1 0

6

8

1 8

__copy_m
(inline)
4 (0 .1%)

of 26 (0.6%)

_ _ c o p y _ m o v e _ a
(inline)

0 (0 .0%)
of 26 (0 .6%)

3 3

_ _ c o p y _ m o v e _ a 2
(inline)

0 (0 .0%)
of 26 (0 .6%)

3 3

3 3

2 1

154

References

[1] Calculating Memory System Power for DDR - TN-46-03. Technical Note, Micron

Technology, Inc., 2001.

[2] Calculating Memory System Power For DDR2 - TN-47-04. Technical Note, Mi-

cron, Inc., 2005.

[3] FBDIMM - Channel Utilization (Bandwidth and Power) - TN-47-21. Technical

Note, Micron Technology, Inc., 2006.

[4] Calculating Memory System Power for DDR3 - TN41-01. Technical Note, Micron

Technology, Inc., 2007.

[5] DDR3 Power Estimates, Affect of Bandwidth, and Comparisons to DDR2. Tech-

nical report, Micron Technology Inc., April 2007.

[6] FBDIMM : Architecture and Protocol - JESD206. ISO, JEDEC Solid State

Technology Association, January 2007.

[7] Low-Power Fully Buffered DIMM. Whitepaper, Netlist Inc., 51 Discovery, Suite

150, Irvine, CA, 2007.

[8] Netlist FBDIMM preliminary power analysis Training. Technical report, Netlist,

September 2007.

[9] DDR2 SDRAM FBDIMM. Datasheet, Micron Technology, Inc., 2008.

[10] FBDIMM Advanced Memory Buffer (AMB) - JESD82-20A. ISO, JEDEC Solid

State Technology Association, March 2009.

[11] DDR3 SDRAM Specification. Technical report, Association, JEDEC Solid State

Technology, July 2010.

[12] IBM Power 795 Technical Overview and Introduction. Datasheet, IBM, Septem-

ber 2010.

[13] Intel 7500 Scalable Memory Buffer. Technical report, Intel, March 2010.

[14] Intel CoreTM i7-900 Desktop Processor Series. Technical report, Intel, February

2010.

[15] Intel R© Xeon R© Processor 7500 Series, March 2010.

[16] R. J. Baker. CMOS: Circuit Design, Layout, and Simulation. IEEE Press, 2nd

edition, 2005.

[17] Jason Clark and Ross Whitehead. Lower Power Server CPU Shoot-out. Technical

report, AnandTech, July 2007.

[18] E. Cooper-Balis and B. Jacob. Fine-Grained Activation for Power Reduction in

DRAM. Micro, IEEE, 30(3):34–47, 2010.

[19] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-performance DRAMs in

workstation environments. IEEE Transactions on Computers, pages 1133–1153,

2001.

[20] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. A Performance

Comparison of Contemporary DRAM Architectures. In Proc. 26th Annual In-

ternational Symposium on Computer Architecture (ISCA’99), pages 222–233,

Atlanta GA, may 1999. Published by the IEEE Computer Society.

[21] Henrik Fredriksson and Christer Svensson. Improvement Potential and Equal-

ization Example for Multidrop DRAM Memory Buses. IEEE Transaction On

Advanced Packaging, 32(3):675–682, 2009.

[22] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-buffered DIMM memory

architectures: Understanding mechanisms, overheads and scaling. In High Per-

formance Computer Architecture, 2007. HPCA 2007. IEEE 13th International

Symposium on, pages 109–120, 2007.

[23] Micron Inc. TN-47-21 : FBDIMM - Channel Utilization (Bandwidth and Power).

Technical Note, 2006.

[24] Bruce Jacob, Spencer W. Ng, and David T. Wang. Memory Systems : Cache,

DRAM, Disk. Morgan Kaufmann, 2008.

[25] Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. Power7:

IBM’s Next-Generation Server Processor. IEEE Micro, 30(2):7–15, 2010.

[26] B. Keeth, R. J. Baker, B. Johnson, and F. Lin. DRAM Circuit Design: Funda-

mental and High-Speed Topics. IEEE Press, 2008.

[27] Mark LaPedus. Micron rolls DDR3 LRDIMM. EE Times, 2009.

[28] Inc. Micron. DDR3 SDRAM MT41J512M4 Datasheet. Online, 2006.

[29] Inc. Micron. DDR3 SDRAM RDIMM MT72JS(Z)S1G72PZ. online, 2009.

[30] Inc. Micron. DDR3L 1.35V SDRAM LRDIMM MT72KSZS2G72LZ. online,

2010.

[31] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSSx86: A

Full System Simulator for x86 CPUs. In Design Automation Conference 2011

(DAC’11), 2011.

[32] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A Cy-

cle Accurate Memory System Simulator. IEEE Computer Architecture Letters,

99(RapidPosts), 2011.

[33] Samsung. SAMSUNG Develops Industry’s First DDR4DRAM, Using 30nm Class

Technology. Press Release, Jan 2011.

[34] Jun Shao and Brian T. Davis. The bit-reversal SDRAM address mapping. In

Proceedings of the 2005 workshop on Software and compilers for embedded sys-

tems, SCOPES ’05, pages 62–71, New York, NY, USA, 2005. ACM.

[35] Gotou Shigehiro. AMD’s Next Server Platform ”Maranello”. PC Watch, 2008.

[36] Sadagopan Srinivasan. Prefetching vs The Memory System : Optimizations for

Multi-Core Server Platforms. PhD thesis, University of Maryland, 2007.

[37] Javier Suarez. Enterprise X-Architecture 5th Generation. Technical report,

March 2010.

[38] D. Burger W. Lin, S. Reinhardt. Reducing DRAM latencies with an Integrated

Memory Heirarchy Design. January 2001.

[39] David Tawei Wang. Modern DRAM Memory Systems : Performance Analysis

and a High Performance, Power-Constrained DRAM Scheduling Algorithm. PhD

thesis, University of Maryland, 2005.

[40] Steve Woo. DRAM and Memory System Trends. October 2004.

[41] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural

simulator. pages 23–34, 2007.

[42] Z. Zhang Z. Zhu. A Performance Comparison of DRAM Memory System Opti-

mzations for SMT Processors. Februrary 2005.

