
ABSTRACT

Title of dissertation: Multi-Level Main Memory Systems:
Technology Choices, Design Considerations,
and Trade-off Analysis

Paul Kenton Tschirhart, Doctor of Philosophy, 2015

Dissertation directed by: Professor Bruce Jacob
Department of
Electrical & Computer Engineering
University of Maryland, College Park

Multi-level main memory systems provide a way to leverage the advantages

of different memory technologies to build a main memory that overcomes the lim-

itations of the current flat DRAM-based architecture. The slowdown of DRAM

scaling has resulted in the development of new memory technologies that poten-

tially enable the continued improvement of the main memory system in terms of

performance, capacity, and energy efficiency. However, all of these novel technolo-

gies have weaknesses that necessitate the utilization of a multi-level main memory

hierarchy in order to build a main memory system with acceptable characteristics.

This dissertation investigates the implications of these new multi-level main mem-

ory architectures and provides key insights into the trade-offs associated with the

technology and organization choices that are integral to their design.

The design space of multi-level main memory systems is much larger than the

traditional main memory system’s because it also includes additional cache design

and technology choices. This dissertation divides the analysis of that space into

three more manageable components. First, we begin by exploring the ways in which

high level design choices affect this new type of system differently than current state

of the art systems. Second, we focus on the details of the DRAM cache and propose

a novel design that efficiently enables associativity. Finally, we turn our attention

to the backing store and evaluate the performance effects of different organizations

and optimizations for that system.

From these studies we are able to identify the critical aspects of the system

that contribute significantly to its overall performance. In particular, we note that

in most potential systems the ratio of hit latency to miss latency is the dominant

factor that determines performance. This motivated the development of our novel

associative DRAM cache design in order to minimize the miss rate and reduce the

impact of the miss latency while maintaining an acceptable hit latency. In addition,

we also observe that selecting the page size, organization, and prefetching degree

that best suits each particular backing store technology can help to reduce the miss

penalty thereby improving the performance of the overall system.

Multi-Level Main Memory Systems:
Technology Choices, Design Considerations, and Trade-off Analysis

by

Paul Kenton Tschirhart

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Bruce Jacob, Chair/Advisor
Professor Manoj Franklin
Professor Ankur Srivastava
Professor Alan Sussman
Professor Donald Yeung

c© Copyright by
Paul Kenton Tschirhart

2015

For my parents, Mark and Deborah;

my sisters, Mary and Megan;

and

my wife, Tanya

ii

Acknowledgments

First and foremost, I would like to thank my wife, Tanya, whose patient sup-

port and advice got me through more than one minor grad school crisis.

I am also deeply grateful for my wonderful family who have continually sup-

ported me through a long and difficult grad school journey. If it were not for their

constant love and encouragement, I am not sure I would have made it to this point.

I owe thanks to my fellow labmates: Ishwar Bhati, Mu-Tien Chang, Elliot

Cooper-Balis, Paul Rosenfeld, and Jim Stevens. The many discussions that I have

had with them over the years have helped me to become a more knowledgeable and

skilled researcher. Special thanks goes to Jim Stevens for all of his programming

guidance. My coding habits have been forever improved as a result of his incessant

badgering during my early days with the lab.

I would also like to thank my advisor, Bruce Jacob, for his vision and for

providing the opportunities that have shaped my career as a computer architecture

researcher.

Finally, I would especially like to thank my mentors and friends at Intel Labs:

Shih-Lien Lu, Zeshan Chishti, Chris Wilkerson, and Jim Greensky. Shih-Lien’s

guidance has played a critical role in my development as a researcher. In addition,

Chris also made a significant impact on my career. In fact, two chapters of this

dissertation began as a lunch conversation with him. Most importantly though, I

am grateful to Zeshan for his truly assiduous support and thoughtful advice, without

which finishing my PhD would have undoubtedly been much more difficult.

iii

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction and Motivation 1
1.1 Main Memory Trends . 2

1.1.1 DRAM Scaling . 2
1.1.2 Alternative Technologies . 4
1.1.3 Alternative Architectures . 5
1.1.4 High Performance SSDs . 7
1.1.5 In-Package DRAM Caches . 8

1.2 Problem Description . 9
1.3 Contributions and Significance . 10

2 Main Memory Background 14
2.1 Main Memory Organzation . 15
2.2 Channel Organization . 17
2.3 Ranking . 21
2.4 Buffering . 25

3 Memory Technologies 28
3.1 DRAM . 29

3.1.1 Access Process . 31
3.1.2 Organization . 36
3.1.3 Addressing . 37
3.1.4 LPDDR . 38
3.1.5 RLDRAM . 39

3.2 NAND Flash . 40
3.2.1 Organization . 41
3.2.2 Access Process . 43
3.2.3 Addressing and Garbage Collection 48
3.2.4 Cache Register Operations . 51

iv

3.3 PCM . 52
3.3.1 Organization . 52
3.3.2 Access Process . 53
3.3.3 Difficulties . 56

3.4 Memristor . 57
3.4.1 Organization . 57
3.4.2 Access Process . 59
3.4.3 Difficulties . 61

3.5 Technology Comparison . 62

4 Multi-Level Main Memory Systems 65
4.1 Multi-Level Main Memory Organization 65

4.1.1 Heterogeneous Main Memory Systems 67
4.2 Software versus Hardware Management 68

4.2.1 Stalling versus Interrupting 69
4.2.2 Page Placement . 71
4.2.3 Associativity . 76
4.2.4 Prefetching . 77

4.3 Software Managed Approaches . 77
4.3.1 Polling SSDs . 77
4.3.2 Persistent Object Stores . 78
4.3.3 Specialized File Systems . 78

4.4 Hardware Managed Approaches . 79
4.4.1 PCM Based Systems . 79
4.4.2 Flash Based Systems . 79
4.4.3 Solutions from Industry . 80

4.5 Potential Use Cases . 81

5 Simulation Framework 83
5.1 Open Memory Simulator . 84
5.2 HybridSim . 88
5.3 Full System Simulation . 90

6 Overall System Organization Analysis 95
6.1 Evaluation Methodology . 96

6.1.1 Benchmarks . 97
6.2 The Effect of Prefetching . 100
6.3 The Effect of Backing Store Latency 102
6.4 The Software Overhead of the Storage System 105
6.5 The Effect of Random Access . 107
6.6 The Effect of Associativity . 109
6.7 The Effect of Cache Size . 111
6.8 The Effect of Cache Concurrency . 112
6.9 Comparison to DRAM-only . 113
6.10 Summary . 114

v

7 DRAM Caches 116
7.1 DRAM Cache Design . 117

7.1.1 Meta-Data Storage . 119
7.1.2 Address Mapping . 122
7.1.3 Commodity Versus Custom Parts 123

7.2 Preliminary Studies . 126
7.2.1 The Effect of Cache Size on the Impact of Associativity 126
7.2.2 The Effect of Miss Latency on the Impact of Associativity . . 128

7.3 Block Based Designs . 129
7.4 Page Based Designs . 131

8 DRAM Cache Design Analysis 133
8.1 Evaluation Methodology . 134

8.1.1 Benchmarks . 136
8.2 DRAM Set Layout . 137
8.3 Tag Buffer Design . 141
8.4 Tag Buffer Management . 144
8.5 Miss Map and Compression . 148
8.6 Trace Based Design Comparison . 148

8.6.1 Standard Benchmarks . 148
8.6.2 Server Benchmarks . 152

8.7 Full System Design Comparison . 155
8.8 Alternative Technology and Organization Choices 156

8.8.1 Simplified LPDDR Backing Store 156
8.8.2 DDR DRAM Cache and Backing Store 160
8.8.3 More Complex DDR DRAM Backing Store 163
8.8.4 DDR DRAM Closed Page Cache and Backing Store 167

8.9 Bandwdith Sensitivity . 170
8.10 Summary . 171

9 Backing Store Design Analysis 173
9.1 Evaluation Methodology . 173

9.1.1 Benchmarks . 175
9.2 Ranks versus Page Size . 175

9.2.1 128MB Cache . 178
9.2.2 256MB Cache . 191
9.2.3 512MB Cache . 203

9.3 Prefetching . 216
9.4 Channel Organization . 222
9.5 Summary . 232

10 Conclusions 234
10.1 Summary of Contributions . 235
10.2 Future Work . 236

vi

A Workload Characterization 238

B Open Memory Simulator Verification 241

Bibliography 243

vii

List of Tables

3.1 Example inputs for each NAND flash cell operation [1]. 45
3.2 Comparison of Memory Technologies. 62

4.1 Hybrid Memory vs. SSD Comparison 69

6.1 Baseline Simulator Configuration . 97
6.2 Software and Hardware Access Time 105

7.1 The effect of associativity on the hit rate of a 128MB cache 126
7.2 The effect of associativity on the hit rate of a 256MB cache 127
7.3 The effect of associativity on the hit rate of a 512MB cache 128

8.1 Timing Parameters [2] . 135
8.2 Baseline Simulator Configuration . 136
8.3 Benchmark Characteristics . 138
8.4 Percentage improvement of replacement policies compared to LRU . 149

9.1 Baseline Simulator Configuration . 176
9.2 Benchmark Characteristics . 177

A.1 Evaulation Simulator Configuration 239
A.2 Characterization of the NAS Parallel Benchmarks for 10 billion in-

structions . 239
A.3 Characterization of the PARSEC Benchmarks for 50 billion instructions240
A.4 Characterization of a selection of benchmarks from the SPEC CPU2006

suite for 5 billion instructions . 240

B.1 OMS Verification Results . 242

viii

List of Figures

1.1 The slowdown in standard DDRx DRAM DIMM capacity improve-
ment over the past 15 years. [3–8] . 3

1.2 Examples of alternative non-volatile memory technologies 4
1.3 Scaling of NAND SLC Flash versus DRAM die density over time [9–20]. 5
1.4 Some examples of proposed multi-level memory system architectures. 6
1.5 An example of a high performance PCIe SSD. [21,22] 7
1.6 Some examples of recently proposed in package DRAM caches. . . . 8

2.1 The structure of a typical main memory system. 15
2.2 Conceptual examples of several different styles of channel organiza-

tion. 18
2.3 An example of a memory system with two channels and two 64 bit

wide ranks per channel. 22
2.4 An example of a memory system with 4 narrow 32 bit wide channels

and 2 ranks per channel. 23
2.5 An example of a memory system with many very narrow 8-bit chan-

nels each of which has two ranks. 24
2.6 An example of a buffered memory system 26

3.1 The structure of a typical DRAM-based memory array. 30
3.2 The complex method of writing to and reading from DRAM. 31
3.3 The operation of the sense amplifiers used to access the information

in the DRAM array. 33
3.4 A typical flash cell with a floating gate between the substrate and the

normal transistor gate. 40
3.5 The shift in threshold voltage that occurs when charge is trapped on

the floating gate of a flash cell. 41
3.6 The structure of a typical NAND Flash-based memory array. 42
3.7 The charge run down method of reading a NAND flash cell. 44
3.8 The proposed structure of a PCM based memory array. 52
3.9 The different processes involved with writing a 1 or a 0 using PCM. . 53
3.10 The proposed structure of a Memristor based memory array. Note

the lack of access transistors. 58

ix

3.11 The cyclical relationship between voltage and resistance in a memo-
ristor. 60

4.1 The typical multi-level main memory organization that will be dis-
cussed in this work . 66

4.2 Hybrid organization versus a typical enterprise-class SSD organizataion 68
4.3 The steps involved in servicing a miss of the DRAM for the SSD

organization. 71
4.4 The steps involved in servicing a miss of the DRAM for the Hybrid

organization. 72
4.5 The division of the various address spaces involved in the SSD orga-

nization. 73
4.6 The division of the various address spaces involved in the Hybrid

organization. 74

5.1 A comparison of different memory access timings). 86
5.2 Block diagram of simulation environment for systems with a multi-

level organization . 91
5.3 Block diagram of the simulation environment for systems with an

SSD organization. 92

6.1 Hybrid organization versus a typical enterprise-class SSD organizataion 95
6.2 The effect of Hybrid system prefetching on the file system benchmarks101
6.3 Backing store latency effects on the targeted benchmarks 103
6.4 Backing store latency effects on the file system benchmarks 103
6.5 The effect of randomness on the GUPS benchmark 108
6.6 The effect of randomness on the targeted benchmarks 110
6.7 The effect of cache size on the GUPS benchmark 111
6.8 The effect of cache concurrency on the targeted benchmarks 112
6.9 Comparison to DRAM-only system 114

7.1 Some examples of recently proposed in package DRAM caches. . . . 116
7.2 A comparison of the different tag access schemes for DRAM caches. 119
7.3 A comparison of some of the different possible row layouts for DRAM

caches. 124
7.4 The effect of miss penalty on the average access latency of the cache . 132

8.1 The DRAM row layouts of different DRAM cache approaches. 139
8.2 An explanation of the sizes of tags and other meta-data. 140
8.3 The access latencies of different DRAM cache approaches (not to

scale). 141
8.4 The effect of size and associativity on the tag hit rate of the tag buffer. 143
8.5 The probability of a next accesses arriving with an address that is a

stride of 8 or less away from the last access. 146
8.6 RLDRAM Cache - LPDDR Back Trace Main Results 150
8.7 RLDRAM Cache - LPDDR Back Trace Hit Rate Results 150

x

8.8 RLDRAM Cache - LPDDR Back Trace Miss Latency Results 151
8.9 RLDRAM Cache - LPDDR Back Trace Tag Buffer Hit Rate Results . 151
8.10 RLDRAM Cache - LPDDR Back Server Trace Main Results 153
8.11 RLDRAM Cache - LPDDR Back Server Trace Hit Rate Results . . . 153
8.12 RLDRAM Cache - LPDDR Back Server Trace Miss Latency Results . 154
8.13 RLDRAM Cache - LPDDR Back Server Trace Tag Buffer Hit Rate

Results . 154
8.14 RLDRAM Cache - LPDDR Back Full System Results 155
8.15 RLDRAM Cache - 1 Rank LPDDR Back Trace Main Results 157
8.16 RLDRAM Cache - 1 Rank LPDDR Back Trace Hit Rate Results . . . 158
8.17 RLDRAM Cache - 1 Rank LPDDR Back Trace Miss Latency Results 158
8.18 RLDRAM Cache - 1 Rank LPDDR Back Trace Tag Buffer Hit Rate

Results . 159
8.19 DDR3 Cache - DDR3 Back Trace Main Results 161
8.20 DDR3 Cache - DDR3 Back Trace Hit Rate Results 161
8.21 DDR3 Cache - DDR3 Back Trace Miss Latency Results 162
8.22 DDR3 Cache - DDR3 Back Trace Tag Buffer Hit Rate Results 162
8.23 DDR3 Cache - 4 Rank DDR3 Back Trace Main Results 164
8.24 DDR3 Cache - 4 Rank DDR3 Back Trace Hit Rate Results 165
8.25 DDR3 Cache - 4 Rank DDR3 Back Trace Miss Latency Results . . . 165
8.26 DDR3 Cache - 4 Rank DDR3 Back Trace Tag Buffer Hit Rate Results166
8.27 Closed Page DDR3 Cache - DDR3 Back Trace Main Results 168
8.28 Closed Page DDR3 Cache - DDR3 Back Trace Hit Rate Results . . . 168
8.29 Closed Page DDR3 Cache - DDR3 Back Trace Miss Latency Results . 169
8.30 Closed Page DDR3 Cache - DDR3 Back Trace Tag Buffer Hit Rate

Results . 169
8.31 Bandwidth Sensitivity . 170

9.1 Average latency values for ft, 128MB cache 179
9.2 Average latency values for is, 128MB cache 180
9.3 Average latency values for mg, 128MB cache 181
9.4 Average latency values for blackscholes, 128MB cache 182
9.5 Average latency values for bodytrack, 128MB cache 183
9.6 Average latency values for canneal, 128MB cache 184
9.7 Average latency values for freqmine, 128MB cache 185
9.8 Average latency values for bzip2, 128MB cache 186
9.9 Average latency values for gcc, 128MB cache 187
9.10 Average latency values for leslie3d, 128MB cache 188
9.11 Average latency values for milc, 128MB cache 189
9.12 Average latency values averaged across all workloads, 128MB cache . 190
9.13 Average latency values for ft, 256MB cache 191
9.14 Average latency values for is, 256MB cache 192
9.15 Average latency values for mg, 256MB cache 193
9.16 Average latency values for blackscholes, 256MB cache 194
9.17 Average latency values for bodytrack, 256MB cache 195

xi

9.18 Average latency values for canneal, 256MB cache 196
9.19 Average latency values for freqmine, 256MB cache 197
9.20 Average latency values for bzip2, 256MB cache 198
9.21 Average latency values for gcc, 256MB cache 199
9.22 Average latency values for leslie3d, 256MB cache 200
9.23 Average latency values for milc, 256MB cache 201
9.24 Average latency values for all workloads, 256MB cache 202
9.25 Average latency values for ft, 512MB cache 204
9.26 Average latency values for is, 512MB cache 205
9.27 Average latency values for mg, 512MB cache 206
9.28 Average latency values for blackscholes, 512MB cache 207
9.29 Average latency values for bodytrack, 512MB cache 208
9.30 Average latency values for canneal, 512MB cache 209
9.31 Average latency values for freqmine, 512MB cache 210
9.32 Average latency values for bzip2, 512MB cache 211
9.33 Average latency values for gcc, 512MB cache 212
9.34 Average latency values for leslie3d, 512MB cache 213
9.35 Average latency values for milc, 512MB cache 214
9.36 Average latency values averaged across all workloads, 512MB cache . 215
9.37 Prefetching Effects for the NPB Workloads 217
9.38 Prefetching Effects for the PARSEC Workloads 218
9.39 Prefetching Effects for the SPEC Workloads 219
9.40 Average Prefetching Effects . 220
9.41 Miss Rates for Prefetching Experiments 220
9.42 DDR-800 Channel Effects for the NPB Workloads 225
9.43 DDR-800 Channel Effects for the PARSEC Workloads 226
9.44 DDR-800 Channel Effects for the SPEC Workloads 227
9.45 DDR-1600 Channel Effects for the NPB Workloads 228
9.46 DDR-1600 Channel Effects for the PARSEC Workloads 229
9.47 DDR-1600 Channel Effects for the SPEC Workloads 230
9.48 DDR-800 Channel Effects Averaged Across All Workloads 231
9.49 DDR-1600 Channel Effects Averaged Across All Workloads 232

xii

Chapter 1: Introduction and Motivation

For more than three decades the main memory system has been built using only

Dynamic Random Access Memory (DRAM) [23]. However, the scaling of DRAM

has approached its limits and the density of DRAM devices has stagnated as a result.

Meanwhile, data sets have continued to grow at a rate of 50% annually, quickly out

pacing the growth of the main memory system [24]. In response, new technologies

and architectures have been proposed as a means of continuing the development

of larger, faster, more power efficient main memory systems that can meet the

growing needs of high performance computing applications. All of the candidate

alternative technologies, though, have serious drawbacks that limit their usefulness

in a monolithic main memory organization like the current architecture. As a result,

many of the newly proposed architectures which utilize these technologies make use

of a hierarchical, heterogeneous organization that uses a faster, less dense memory

technology to cache a more dense, slower one [25–27].

This dissertation investigates these new multi-level main memory architectures

in order to improve the understanding of the complex dynamics that determine

their performance. In particular, we perform a series of studies to determine which

aspects of the system form bottlenecks and to gauge its performance relative to

1

existing architectures. We also analyze the cache and backing store sub-systems

that make up the hierarchy in order to ascertain their unique design requirements.

Together these studies reveal how the different components of the system interact

and the overall effects of these interactions, enabling the design of future multi-level

main memory systems which take into account the impact of the diverse technology,

organization, and optimization choices available.

1.1 Main Memory Trends

The work in this dissertation was inspired by five recent trends that have been

observed both in academic research and in industry developments. They include the

observed slowdown in DRAM scaling, the emergence of alternative memory tech-

nologies, the development of alternative architectures to support the novel memory

technologies, the introduction of high performance SSDs, and the appearance of

in-package DRAM caches. Together these trends have led to and shaped the het-

erogeneous, hierarchical main memory architecture that is the focus of this work.

1.1.1 DRAM Scaling

For many years, DRAM was able to achieve regular increases in density which,

in turn, enabled the continued capacity growth of DIMMs and the main memory

system. However, with each successive scaling generation it has become more dif-

ficult to fabricate smalller DRAM cells. This can be seen in the trend in Figure

1.1 where the distance between each capacity generation has grown over time. Re-

2

0.1

1

10

100

1999 2003 2007 2011 2015

D
D

R
x

D
IM

M
 C

ap
ac

it
y

(G
B

yt
e

)

Year

Figure 1.1: The slowdown in standard DDRx DRAM DIMM capacity improvement

over the past 15 years. [3–8]

cently, scaling of DRAM DIMM capacity has virtually ceased. While specialized

DIMMs are available that enable higher capacities by utilizing additional hardware,

the standard commodity DDRx DRAM DIMM has had a maximum capacity of

32GB for the past 4 years. At the same time, the working sets of programs have

continued to grow and are beginning to exceed the available memory capacity in

standard systems.

3

Wordline <62>

Wordline <63>

Bitline

..
.

Drain
Drain Select

Source Select

Wordline <61>

Wordline <1>

Wordline <0>

Source

p-substrate
n+

Source DrainFloating Gate

Wordline / Gate

n+

Wordline
Bitline

Memristor
Memory Cell

Doping Wall

TiO2-x TiO2

Access
Transistor

Wordline
Bitline

Heater

Phase Change
Material

Electrodes
Isolator

Phase Change
Memory Cell

NAND Flash Memory

Phase Change Memory Memristor Crossbar Memory

Figure 1.2: Some examples of recently proposed alternative non-volatile memory

technologies that could be used to build multi-level memory systems.

1.1.2 Alternative Technologies

In response to the slowdown in DRAM scaling, increased efforts have been

made to identify and develop a new technology that would either take its place or

supplement it in order to continue the growth of main memory capacity. There are

many potential non-volatile technologies that could one day fill this role including

Phase Change Memory (PCM) [25, 26, 28, 29], Memristors [30], NAND Flash [31]

and others [32]. However, of these candidate memory technologies, only NAND

4

0.1

1

10

100

1000

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

D
e

n
si

ty
 (

G
b

it
s)

Year

DRAM

SLC NAND

Figure 1.3: Scaling of NAND SLC Flash versus DRAM die density over time [9–20].

Flash is currently available in large quantities and has well established operating

parameters. NAND flash lacks some of the possible performance advantages of the

other technologies but it provides a considerable improvement to DRAM capacity

scaling as can be seen in Figure 1.3.

1.1.3 Alternative Architectures

However, all of the potential memory technologies that are currently being con-

sidered have significant weaknesses that limit their ability to simply replace DRAM.

As a result, significant efforts have been made in academic research to address this

problem architecturally by introducing a multi-level memory system that utilizes

a DRAM cache to counteract some of the drawbacks of the potential technolo-

5

Non-Volatile Main Memory

CPUCPU

DRAM Cache

Non-Volatile Main Memory

Row Buffer Cache

OS / MC

CPU

DRAM
Non-Volatile Memory

Use DRAM as a Transparent Cache Replace DRAM Manage DRAM separately from Non-Volatile Memory

(Coburn, 2011; Badam, 2011; Mogul, 2009)(Lee, 2009)(Qureshi, 2009; Ferreira, 2010)

Figure 1.4: Some examples of proposed multi-level memory system architectures.

gies [25, 26, 28, 31]. Some of these approaches re-purpose a smaller version of the

DRAM main memory system to serve a cache for the slower, more dense backing

store technologies [25, 26, 31]. While other approaches attempt to completely re-

place the DRAM with the new technology all together by adding a more complex

and deeper row buffer to the memory device [28]. This row buffer can be thought

of as a private cache architecture where each memory device gets its own separate

cache. Still other approaches prefer a software-driven solution that modifies that op-

erating system or provides some additional software support so that the system can

utilize these new memory technologies more efficiently [33–35]. These solutions differ

from the hardware managed approach in that they tend to maintain the DRAM and

non-volatile memory as separate address spaces. However, these different address

spaces can still be thought of as a sort of hierarchy with the smaller, faster DRAM

storing the more critical pages while the non-volatile memory stores everything else.

6

1.1.4 High Performance SSDs

Figure 1.5: An example of a high performance PCIe SSD. [21,22]

In the meantime, industry has moved forward with a short term solution in the

form of PCIe SSDs. These devices help to reduce the impact of page faults by pro-

viding an additional layer between the DRAM and the disk that is composed of low

cost NAND flash. This approach leverages the existing disk and OS infrastructure

to enable the relatively easy integration of large quantities of NAND flash into the

memory hierarchy. By treating the high performance NAND flash array like a disk

or a peripheral device, these products are able to use the virtual memory system

7

or drivers to interact with them. This eliminates the need for hardware support

by the CPU or memory controller and has allowed for the rapid adoption of these

devices. The widespread utilization of these devices in data centers is a testament

to the current need for additional memory capacity.

1.1.5 In-Package DRAM Caches

Stacked
DRAM
Cache
Layers

Processor
Cores

Silicon Interposer

Processor Cores Cache Interface (WIO) DRAM Cache Layers

Stacked DRAM Cache Side-by-side DRAM Cache

Figure 1.6: Some examples of recently proposed in package DRAM caches.

Finally, while some parts of industry have been focusing on improving the

storage system to help counteract the effect of the DRAM scaling slowdown, other

parts of industry have concentrated on extending the cache hierarchy instead. These

solutions have taken several forms including 3-D stacking DRAM dies on top of the

logic dies and the packaging of DRAM dies side by die with logic dies. The HMC

architecture takes the 3-D stacking approach and could potentially place a large

DRAM cache (refered to as the near memory) in package with the processor [36].

These HMC devices have remarkable potential but are not yet available on the

market. The side by side approach, on the other hand, is more limited but a version

8

of it is currently available in some high end Intel server chips. However, in either

case, these architectures provide an efficient way to implement the DRAM caches

that are integral to the creation of multi-level main memory systems and their

development has fueled additional research in that direction.

1.2 Problem Description

The development of multi-level main memory systems has opened a vast new

design space for the development of future memory architectures that could be con-

structed to satisfy a wide variety of goals. However, in general, this new class of

system is not particularly well understood. It features all of the design considera-

tions that must be taken into account when creating a new main memory but also

includes additional cache and memory technology concerns as well. As a result, it

is often difficult to anticipate all of the effects that design adjustments will have on

the performance of the entire system due to the complex relationships that exist

between its different components. In addition, some of the problems related to the

cache design, like meta-data storage, are unique to DRAM caches and therefore

require novel solutions. Furthermore, other difficulties can arise from the unique

characteristics of many of the potential memory technologies that can be utilized in

these architectures. This dissertation helps to resolve this situation by performing a

detailed study of the different levels of these systems in order to better understand

their interactions.

In particular this dissertation is mainly concerned with the following five ques-

9

tions. What are the primary bottlenecks in multi-level main memory architectures?

How do these architectures compare to current architectures? What aspects of

DRAM cache design most significantly affect its performance? Can associativity be

implemented in DRAM caches in an efficient way? And finally, how can backing

stores that utilize potential non-volatile technologies be engineered to reduce the

miss penalty?

1.3 Contributions and Significance

The primary contributions of this dissertation are as follows:

1. We develop a new suite of simulators that enable the investigation into multi-

level memory systems that utilize novel memory technologies that currently

lack established parameters and access protocols. This simulation infrastruc-

ture consists of new simulators for the cache controller (HybridSim) and the

novel memory system (OMS) and also incorporates existing DRAM and pro-

cessor simulators to allow for studies involving all levels of the computer sys-

tem. In addition to facilitating the studies presented in this dissertation, these

simulators also allow for the rapid prototyping of other novel memory tech-

nologies due to the simplified access protocol model used by OMS.

2. We analyze the impacts of different design decisions and technology choices on

the performance of the overall system. Most importantly, we observe that the

performance of most multi-level main memory system organizations is primar-

ily determined by the ratio of their cache access latency to their backing store

10

access latency. As a result, reducing the impact of the miss penalty is crit-

ical to ensuring sufficient performance for most systems. Additionally, these

studies also enable us to identify the maximum backing store access latency at

which a hardware managed cache achieves an acceptable performance advan-

tage over the current state of the art system that utilizes a high performance

PCIe SSD.

3. We investigate the benefits and drawbacks of hardware and software DRAM

cache management for different system designs. In particular, we characterize

the overhead of the OS and file system on page faults compared to a hardware

managed page replacement system. We show that the software delays can

account for roughly 50% of the total access time in software managed systems.

We also demonstrate that by utilizing hardware management and avoiding the

software overheads, it is possible to achieve up to a 7x boost in performance

for random read workloads.

4. We determine the influences of workload characteristics on system perfor-

mance, in particular the degree of random access, the memory footprint, the

number of threads, and the L3 Misses Per Kilo Instructions (MPKI). Our ex-

periments show that these properties of workloads tend to determine both how

much stress is placed on the cache and how cacheable the working set will be.

As a result, by taking into account these aspects of a workload it is possible

to understand which components of the system it is most likely to emphasize.

For instance, the frequency of random accesses in a workload determines how

11

much of the working set will be cacheable and therefore can highlight the miss

latency of an architecture. This information can also be used to identify which

architectures are best suited for a particular class of applications.

5. We quantify the impact of cache size, miss rate, and miss latency on the

performance of different DRAM cache designs. The results from these studies

show that associativity can provide a considerable performance speedup in

situations where the backing store latency is significantly longer than the cache

access latency. However, we note that there is a delicate balance between

the benefits of associativity and hit latency such that providing associativity

at the expense of too much hit latency can ultimately hinder performance.

Importantly, these results also show the limited utility of implementing DRAM

caches with greater than 4-way associativity.

6. We highlight the importance of taking the DRAM memory system structure

into account when implementing caches with DRAM. Our results show that

the failure to take into account the concurrent structures within the DRAM

address space can result in system slow downs of more than 2x.

7. We propose a new associative DRAM cache design that efficiently provides

tag storage and lookup that we refer to as Combo-Tag. There are three key

innovations that enable this design: coalesced tag accesses for multiple sets, a

small 4KB SRAM tag buffer, and a novel tag replacement algorithm for the tag

buffer. Combo-Tag successfully balances hit latency, miss latency, and memory

usage to provide an associative cache that achieves a 14% average reduction

12

in access latency (up to a 30-60% reduction in many cases). Furthermore, it

achieves this while utilizing 10-100x less on chip tag storage and 50% fewer

bytes in DRAM to store tags when compared to the current state of the art

DRAM cache designs.

8. We explore the impact of page size and concurrency on backing store per-

formance for several different potential access latencies. The results from

these studies indicate that as backing store latency increases, larger page sizes

and additional concurrency are required in order to provide acceptable perfor-

mance.

9. We analyze the effects of prefetching with different page sizes and prefetching

degrees on the overall performance of the system. From these experiments we

see that prefetching can provide roughly a 1.2x increase in overall performance

by reducing the number of misses in the cache. However, our results also reveal

that it is possible to over prefetch and seriously diminish system performance

as well.

10. We evaluate the effects of channel organization on backing store performance

and determine whether a relatively narrow host channel can be used to reduce

the pin out of potential backing store architectures. In this study we show

that the performance impact of introducing a buffered host channel is less than

10% of the ideal unbuffered case. We also demonstrate that the performance

of different host channel organizations varies with the access latency of the

backing store.

13

Chapter 2: Main Memory Background

Before we can discuss multi-level main memory systems and the wide variety of

design decisions that are introduced by them, we must first establish some baseline

knowledge regarding the existing memory system. The overall structure of the

main memory system as it exists today has been largely unchanged for several

decades. There are layers of on-chip SRAM cache that contain the most accessed

and, therefore, the most important portions of the address space. These caches are

then backed up by the main memory system which utilizes slower DRAM to provide

greater capacity and lower cost at the expense of performance. In turn, the main

memory system acts as a another sort of cache for the disk, storing data that is

not important enough to reside in the SRAM but important enough to necessitate

avoiding frequent long latency disk operations to access it. This hierarchy of SRAM

caches, DRAM main memories and Disks has worked relatively well up until recently.

However, as we saw in Chapter 1, workload demands and technology limitations are

forcing the middle layer of the traditional hierarchy, the DRAM main memory,

to expand into its own separate hierarchy adding new layers and complexity to

the overall memory system. In this chapter we will focus on the structure of the

DRAM main memory portion of the overall memory hierarchy in an effort to better

14

acquaint the reader with the existing architecture of the system that the rest of this

dissertation will be working to reinvent.

2.1 Main Memory Organzation

Sense Amplifiers

Column Decoders

…
 R

o
w

s
..

.

… Columns ...

R
o

w
 D

ec
o

d
er

s

Memory Controller

Channel 0

Channel 1

Memory
Chip

Memory
Array

Memory Cell

Figure 2.1: The structure of a typical main memory system.

15

Regardless of the underlying cell technologies all random access main memories

take on the form presented in Figure 2.1. They consist of an array of memory cells

that are organized in columns and rows with a memory cell at the intersection

of each column and row. This organization allows all of the bits to be accessed

independently and with essentially the same latency. In contrast, sequential access

memories like hard disk drives experience different latencies for different bits. In

order to access the bits decoders are needed to determine where a particular cell is

located in the array. These take inputs in the form of row and column addresses

and translate them by selecting the appropriate row and column lines. Once a cell

or group of cells has been selected, the sense amplifier circuitry is used to drive the

data from the data buffers into the selected cell or read the data present in those

cells out to the data buffers. Of these five components - the cell array, the row

and column decoders, the sense amps and the data buffers - the only two which

change significantly from technology to technology are the cell array and the sense

amplifiers. Different structures are needed for these components for some of the

technologies due to differences in their operating principles. However, throughout

the remainder of this dissertation the same five components will be present in each

memory technology discussed.

In addition to the five components that make up the internal structure of the

memory devices, there are also four components that make up the overall memory

system. These components are the memory controller, the channels, the memory

ranks, and the memory banks. The memory banks are concurrent portions of the

memory device which can each perform a memory operation largely independent

16

from the other portions of the device. In some technologies, such as flash, differ-

ent names are given to the separate concurrent units which make up the device.

However, most kinds of memory have some form of internal concurrency. In addi-

tion, the devices can then be grouped into ranks that act together to contribute a

portion of each memory access to that rank. In this way, devices with relatively

narrow interfaces can be used to make wide channels. These channels then connect

the memory controller, which typically resides on chip in today’s microprocessors,

to the ranks of devices which are usually packed in a Dual In-line Memory Mod-

ule (DIMM). Unlike the five internal components of the memory devices, two of

these four external system components will vary significantly from architecture to

architecture independent of technology: the ranks and the channels. The rest of

this chapter will focus on the different ways to implement these two integral system

components.

2.2 Channel Organization

One or more of the channel configurations pictured in Figure 2.2 can be found

in nearly every computer system. The most common channel organization for main

memory systems is the one pictured in the lower left of Figure 2.2. This is the

JEDEC (Joint Electron Devices Engineering Council) standard memory channel

organization and it consists of a memory controller talking to memory modules

which share several multi-drop buses. These buses provide the commands, addresses

and data to the memory modules from the memory controller. Because the modules

17

Memory Controller

Channel 0 – DIMM 0

Channel 0 – DIMM 1

Data Bus
Address/Command Busses

Address/Command Busses Data Bus

Memory Controller

Channel 0 – DIMM 0

Channel 0 – DIMM 1

Address/Command Busses

Address/Command Busses

Up Data Bus

Down Data Bus

Up Data Bus

Down Data Bus

Memory Controller

Channel 0 – DIMM 0

Channel 0 – DIMM 1

Data/Address/
Command Bus

Memory Controller

Channel 0 – DIMM 0

Channel 0 – DIMM 1

Up Data Bus

Down Data Bus

Up Data Bus

Down Data Bus

Data/Address/
Command Bus

Unified Half-Duplex Bus
Architecture

Full-Duplex Bus Architecture
(with separate command/address bus)

Full-Duplex Bus Architecture
(Similar to PCIe)

JEDEC Standard Bus Architecture

Figure 2.2: Conceptual examples of several different styles of channel organization.

share the address and data buses, chip select signals (not shown) are needed to

indicate to a module that the commands and data are intended for it. Also, because

there is only one data bus, it must allow data to travel both to and from the

memory arrays using the same wires. This is referred to as a half duplex bus

18

because communication can only go one way at any moment in time. JEDEC is

the body that has determined the industry-wide open DRAM standards since the

advent of SDRAM. Therefore, because nearly all computers use the JEDEC standard

memories, nearly all computers also use the corresponding bus organization. This

organization makes sense for homogeneous main memory systems but it remains to

be seen if it will be appropriate for heterogeneous systems. It is the current standard

though and therefore serves as a good baseline comparison for any investigation into

channel organizations for possible multi-level main memory organizations.

Another common channel organization is the full-duplex separate bus organi-

zation shown in the upper right of Figure 2.2. This is the channel architecture that

is used by PCI Express (PCIe) devices such as graphics cards and high performance

SSDs. Instead of utilizing separate buses for commands and data, this architectures

features separate buses that go to and from the devices. Because these separate

buses allow communication in both directions at the same time, the channel is re-

ferred to as full-duplex. The PCIe implementation of this channel architecture is

point-to-point unlike the multi-drop architecture used by the JEDEC standard bus

architecture, meaning that each channel can only talk to one thing. However, other

separate full-duplex bus architectures such as the FBDIMM architecture allowed for

multiple DIMMs to talk to the memory controller though the same channel by cre-

ating a multi-hop store and forward network using the DIMMs on the channel [37].

The channel architecture for the recently proposed Hybrid Memory Cube (HMC)

also resembles this channel organization [36]. It should also be noted that the up

and down buses do not have to be symmetric, meaning that it is possible to make

19

the up bus wider than the down bus or vice versa. Furthermore, determining the

optimal ratio of up to down bus bandwidth is a complex problem that has been the

subject of debate and has been investigated in the literature [38].

Aside from JEDEC and full-duplex bus channel architectures that can cur-

rently be found in most modern computers there are also two other potential channel

organizations that we will consider in this work. The first is a very simple half-duplex

bus that handles all of the system traffic, including commands, addresses, and data.

This type of channel architecture resembles that chip interface used on many NAND

flash memory chips. We would use this sort of architecture if we wanted to connect

our main memory system channel directly to a simplistic chip interface like the one

used by Flash chips [39]. The second alternative architecture is a purely hypotheti-

cal one that attempts to combine the features of the JEDEC standard architecture

with the full-duplex bus architecture by providing both up and down buses as well

as a separate command/address bus. These two channel architectures can also be

found in Figure 2.2.

There are advantages and disadvantages to each of these different channel

organizations in terms of performance and pin usage. For instance, the unified half-

duplex architecture has the advantage of utilizing all of the available pin bandwidth

to satisfy each operation. This means that the latency of individual operations

may be considerably lower than an architecture like the full-duplex bus organiza-

tion which only utilizes a portion of its available pin bandwidth for an operation.

However, under heavy loads, the full-duplex channel’s ability to receive data while

sending commands or data simultaneously could provide better performance than

20

the raw bandwidth of the unified architecture. Also, half-duplex channels have a

turn around time associated with them which can hamper performance in heavy

traffic situations. Similarly, separating the command and address bus from the data

bus can enable more efficient utilization of concurrency since commands can be sent

while data is being received. However, this situation might not occur that often

and in that case the extra pins being used to enable a separate command/address

channel are essentially being wasted. So, it is clear that the design decisions regard-

ing the channel architecture can greatly affect the efficiency and performance of the

overall memory system as well as the entire computer system as a whole.

2.3 Ranking

Memory devices often feature relatively narrow interfaces since the number of

pins that can be realistically implemented on a chip is limited by space and cost. For

instance, many DRAM parts come in x8 or x16 configurations, meaning that they

have 8 or 16 data pins. These narrow DRAM devices are then typically grouped

together in ranks of 8 or 4 to form a 64 bit wide channel. This organization is

shown in Figure 2.3. By grouping the devices together, this architecture is able to

significantly reduce the transfer latency for an access. This is because each device

will only have to send an 8 byte portion of the total 64 byte access. As a result, each

device will only need to send 8 bursts instead of 64, which reduces the transfer time

by a factor of 8. The downside to this arrangement is that it reduces the number

of concurrent units in the system in order to achieve the reduction in latency. This

21

Channel 0 : Rank 0

Memory Controller

Channel 0 : Rank 1

Channel 1 : Rank 0

Channel 1 : Rank 1

8 bits

64 bits

8 bits

64 bits

8 bursts – 64 Bytes

8 bursts – 8 bytes

Ranked Organization

128 Data Pins Total

Figure 2.3: An example of a memory system with two channels and two 64 bit wide

ranks per channel.

works well as long as the traffic going to the memory system is not too severe and

does not exceed the amount of concurrency in the system per unit time. In other

words, if there are 4 concurrent units in the system and they each take 50 ns to

perform a memory operation, then as long as the request stream doesn’t issue more

then 4 requests every 50ns then everything should typically work well. However, if

the traffic increases such that there are more than 4 requests every 50ns then some

requests will wind up having to wait on others thereby increasing the average access

latency. In that case, having some additional concurrency can wind up resulting in

a lower average latency value even though the latency of a single memory operation

is slightly longer due to the reduction in rank bandwidth.

22

Channel 0 : Rank 0

Memory Controller

Channel 0 : Rank 1

Channel 2 : Rank 0

Channel 2 : Rank 1

8 bits

32 bits

8 bits

32 bits

16 bursts – 64 Bytes

16 bursts – 16 bytes

Narrow Rank Organization

Channel 3 : Rank 1

Channel 3 : Rank 0

Channel 1 : Rank 1

Channel 1 : Rank 0

128 Data Pins Total

Figure 2.4: An example of a memory system with 4 narrow 32 bit wide channels

and 2 ranks per channel.

In today’s DRAM based memory systems, it is often the case that the re-

quest stream does not overload the available concurrency in the system. So, DRAM

systems typically have a structure that closely resembles the one in Figure 2.3. How-

ever, as the latency of the memory technology being used increases, the likelihood

that the request stream will overload the available concurrency per unit time also

increases. Also, as the latency of memory operations increases, the percentage of

the overall access latency that is due to transfer time decreases. For instance, in

a DRAM system it might take 50 ns to perform a read and then another 4-5 ns

to transfer the data back to the memory controller over the bus. Therefore, the 5

ns transfer time is 9% of the total access latency. But if the memory array takes

23

Channels 0-7 : Rank 0

Memory Controller

Channels 0-7 : Rank 1

Channels 8-15 : Rank 0

Channels 8-15 : Rank 1

8 bits

8 bits

64 bursts – 64 bytes

Independent Organization

128 Data Pins Total

Figure 2.5: An example of a memory system with many very narrow 8-bit channels

each of which has two ranks.

150 ns to perform a read, then the 5 ns transfer would only account for 3% of the

total access latency. As a result, concurrency becomes more critical to system per-

formance than transfer latency and adding more ranks to the system by using less

chips becomes more attractive as access latency increases. An organization that is

designed to accomplish this is shown in Figure 2.4. In this organization, fewer chips

are used to create the ranks, which increases the latency of individual accesses but

provides twice as much concurrency to the system.

It is also possible to have a channel organization which maximizes the amount

of concurrency in the system by eliminating ranks altogether and having each chip

operate independently. An example of this type of channel architecture is pictured

24

in Figure 2.5. This organization further extends the concept that was used by the

narrow rank organization by maximizing the available concurrency in the system at

the cost of even longer transfer latencies. In systems that use slow technologies such

as flash, this sort of trade-off is often worth while because the long access latencies of

the memory technology make the ability to perform operations in parallel extremely

important.

Finally, it is important to point out that though the three designs presented

in this section feature very different organizations they all utilize the same number

of data pins. In many systems, the pins needed to create the buses are some of the

most expensive parts of the entire design. As a result, keeping the number of pins

to a bare minimum is often a critical design goal. Therefore, in order for different

channel architectures to be considered equivalent it is necessary that they utilize

that same number of pins.

2.4 Buffering

Another way to balance the transfer latency with the concurrency in the system

is to introduce a buffer that can act as a mediator between a very fast host channel

and slower device channels. Figure 2.6 shows an example of a buffered architecture.

By sharing a very fast connection to the memory controller between many slower

devices or ranks of devices it is possible to take full advantage of the bandwidth

offered by such a fast channel. Ideally the individual chips would all be able to

operate at the same speeds as the host channel. However, it is frequently the case

25

Memory Controller

Channel 0 – DIMM 0

Channel 0 – DIMM 1

Up Data Bus

Down Data Bus

Buffered Architecture

Up Data Bus

Down Data Bus

Buffer

Buffer

Figure 2.6: An example of a memory system that utilizes a buffer chip to act as

an intermediary between a very fast split bus master channel and many slower full

duplex chips with narrow device channels.

that it is simply not feasible to run the device interfaces at high speeds for power

and cost reasons. Also, adding a buffer to the DIMM can enable the use of more

memory devices without needing to increase the pin count on the memory controller

for additional channels. There have been several proposed architectures that have

looked into building memory system with a buffer chip either on the motherboard or

on the memory modules used in the system [37, 38, 40–42]. However, most of these

proposals have not seen widespread acceptance with the exception of LR-DIMM.

26

This may change as additional levels are added to the main memory system and as

different memory technologies are utilized.

27

Chapter 3: Memory Technologies

For the past several decades, the main memory system has been built ex-

clusively using standard DRAM parts [23]. This provided an acceptable balance

between performance, power, price, and capacity for the main memory system until

relatively recently. As DRAM scaling has slowed though, we have seen the intro-

duction and development of new memory technologies intended to fill the gaps in

performance, power, or capacity that have opened up. One of the most conspicuous

of these new technologies is Flash, which has seen widespread adoption in the form

of high performance PCIe SSDs. These SSDs help to bridge the performance gap

between the DRAM and the disk layers of the system by providing a high capacity

backing store for the DRAM. This helps to reduce the page fault penalty in systems

that have working sets which exceed the reasonable capacity of a traditional DRAM

main memory. Additionally, alternative DRAM designs such as LPDDR and RL-

DRAM have also been developed and are commonly used in mobile devices. These

devices use the same underlying DRAM technology but are designed to maximize

performance or power at the cost of other metrics. Finally, other novel technologies

which utilize entirely different mechanisms to store data are also being explored as

a way to enable the continued improvement of the main memory system.

28

One of the advantages of a multi-level main memory architecture is that it al-

lows the designer to utilize multiple memory technologies to build the main memory

system. In this way the designer is able to leverage the strengths of the different

technologies and construct a memory system with attributes that are not possible

in a single layer homogeneous memory system. However, there are advantages and

disadvantages to each of the potential technologies. Some of these characteristics

are inherent to the technology itself, others are the result of design decisions that

are made at the device level. Therefore, in order to correctly utilize these tech-

nologies, it is important to both understand how they work and to be familiar with

the design decisions that shape the devices that use them. This chapter will focus

on a broad selection of the potential main memory technologies that are available

in hopes of providing some understanding of the trade-offs that are possible when

building multi-level main memory systems.

3.1 DRAM

The JEDEC standard DRAM memory consists of a capacitor, which is used

to store the electric charge that represents a 1 or a 0, and a transistor, which is used

to control access to the capacitor. This simple two element cell pictured in Figure

3.1 is what is located at the intersection of each row and column in a DRAM array.

When data is written to the cell, a voltage is applied to the gate of the transistor via

the word line which causes it to turn on, connecting the bit line to the cell capacitor.

The desired charge can then be driven onto the bit line and subsequently into the

29

VCC /2

WE

CSL

EQ

SAP

SAN

Wordline

Wordline

Bitline Bitline

Input

Write
Driver

Output

Write
Driver

Input
Output

 Sense Amplifiers

 Column Decoders

Memory
Array

Memory
Cell

Access
Transistor

Capacitor

DRAM
Memory Cell

R
o

w
 D

ec
o

d
er

s

Figure 3.1: The structure of a typical DRAM-based memory array.

cell capacitor thereby storing a 1 or a 0. The cell is read by first precharging the bit

lines so that they are halfway between the high and low voltage values. Then the

30

proper voltage is applied to the pass transistor thereby connecting the bit line to

the capacitor. When this happens the charge on the capacitor causes the voltage of

the bit line to either increase or decrease slightly. Delicate sense amplifier circuits

are then used to detect the slight changes in the bit line’s voltage and determine

whether a particular cell had a charge on it or not.

3.1.1 Access Process

Time

Data Sense Bank Access Data Restore Array Precharge

Data Sense Data Write Array Precharge

Column Write Delay

I/O Gating

Data Burst

Data Burst

I/O Gating

Row Access Col Read Precharge

Row Access Col Write Precharge

Commands

Bank Activity

Device Activity

Bus Activity

Commands

Bank Activity

Device Activity

Bus Activity

DRAM Read Process

Time

DRAM Write Process

tRC

tRAS

tRC

tRAS

Figure 3.2: The complex method of writing to and reading from DRAM.

In the DRAM system many sense amplifiers are used at the same time to read

out an entire row. The requested columns from that row are then sent back to the

memory controller. From the perspective of the memory controller, the memory

accesses look like the operations in Figure 3.2 where the timings and operation of

31

the sense amplifiers are represented by a single delay (the row access). DRAM reads

and writes are very similar because they are comprised of the same four parts: a

row access, a column access, a data restore and a precharge. During a DRAM read

the charge on the capacitor is allowed onto the bit line. Consequently the data is

lost from the storage cell and a write is required to restore the data. Therefore, a

data restore operation can be seen in both operations in Figure 3.2, in the read it

restores that original data and in the write it stores the new data. The primary

difference between the read and the write besides the direction of data flow are the

column access delays: tCL for the read and tCWD for the write. Despite this minor

difference the operations are almost identical. As a result, the start to finish time

of the two operations, tRC, is the same. [43–45]

However, despite this similarity between reads and writes, the access oper-

ations of DRAM are considerably more complex than other technologies. This is

because the DRAM access involves more steps than just a simple read or write com-

mand. For instance, most other technologies do not separate the column and row

accesses nor do they feature a separate precharge command. In some ways this more

complex access process is advantageous for DRAM as it allows for more complex and

clever command scheduling algorithms that make very efficient use of the available

hardware. However, this complexity also increases the bandwidth that is used for

each access because multiple commands are required.

The circuit pictured in Figure 3.3 is the basic sense amplifier used in DRAM

systems. It senses the difference in the voltages on the bit line that is connected to

the cell being read and another reference bit line that is just precharged with the

32

VCC /2

WE

CSL

EQ

SAP

SAN

Wordline
Bitline Bitline

Input

Write
Driver

Output

Write
Driver

Input
Output

Vcc + Vt

VCC

(Vref) Vcc/2

Ground
0.0 5.0 10.0 15.0 20.0

Time (nanoseconds)

SAN is driven high

Wordline 0

Bitline 0

Bitline 1

Charge in DRAM cell

EQ is driven high

0.0 5.0 10.0 15.0 20.0
Time (nanoseconds)

Sensing a 0

Sensing a 1

25.0

SAN is driven high SAP is driven low

Vcc + Vt

VCC

(Vref) Vcc/2

Ground

EQ is driven high

Wordline 0

Bitline 1

Bitline 0

Access
Transistor

Capacitor

Figure 3.3: The operation of the sense amplifiers used to access the information in

the DRAM array.

voltage halfway between the high and low voltages. The operation of this circuit can

be seen in Figure 3.2. First, the voltage equalizing portion of the circuit is used to

initially precharge both lines with the same voltage that is half of the high voltage.

Then after enough time has passed to ensure that both lines have the same voltage

the equalizing circuit is switched off. Next, the appropriate word line is driven high

connecting the cell to the bit line. If the capacitor in the cell that is being read

has a charge on it, this charge will cause a slight increase in the voltage of the bit

line. Similarly, if the capacitor is not charged it will absorb some of the charge

from the bit line causing the bit line’s voltage to decrease slightly. Again some time

33

is taken to ensure that the lines have settled on their new values. After this time

the SAN signal is driven high which connects the upper transistors in the sensing

circuit in Figure 3.3 to ground via the SAN wire. If the voltage of the left bit line

is slightly less than the other bit line then the upper right hand transistor will be

more conductive and will pull the right bit line down to ground. This behavior can

be seen in the ”Sensing a 0” graph in Figure 3.3. In this way, the sense amplifier

is able to detect that the cell being read did not have a charge on it. Conversely, if

the cell does have a charge on it, it will cause the bit line to have a slightly higher

voltage. Therefore, the reference bit line will be driven to ground when the SAN

signal connects the sense amp to ground. The voltage of the bit line being read will

still be just slightly more than the precharge voltage though. So, to push the value

of that bit line up to the full high voltage the SAP signal is used to connect the

lower transistors in the sensing circuit to VDD via the SAP wire. Since the left bit

line is now equal to ground the bottom right transistor is fully on and conducts the

full VDD onto the right bit line driving it high. This behavior can be seen in the

”Sensing a 1” graph in Figure 3.3. The operation of this circuit is significant because

it is the primary factor that determines the read latency of the DRAM system. The

faster this circuit can sense the charges on the cell capacitors, the faster those values

can be communicated back to whoever needs them. [1, 43]

As was mentioned earlier, DRAM is a volatile memory technology because it

requires power in order to maintain the data already written to the array. Great

care is taken to ensure that the pass transistors in DRAM cells can fully disconnect

the capacitor from the bit line and prevent any charge from escaping the capacitor

34

before it is read. However, despite this effort the transistors are not perfect and so

a very small amount of charge is still able to leak off of the cell capacitor. Over

time this gradual loss of charge will result in the loss of data as the voltage level of

the charged cells decreases below the value that is detectable by the sense amps. To

counteract this, the data in each cell must be periodically read out and rewritten in

order to preserve the proper charges on the capacitors. This process is referred to

as refresh and it must be performed every 64ms in order to preserve the system’s

data integrity. [43]

The pass transistor leakage current that necessitates DRAM refresh is also

one of the major barriers to DRAM scaling. As the pass transistors become smaller

they are less able to hold back the charge on the capacitor. As a result, alterations

to the pass transistor are often needed to enable continued scaling. In addition to

the difficulty of scaling the pass transistor, it is also critical that the cell capacitor’s

capacitance is large enough to store enough charge regardless of the capacitor’s

physical size. If the capacitance isn’t large enough then the sense amplifier won’t be

able to sense its influence on the bit lines during read operations. In fact, regardless

of technology generation the DRAM cell capacitor must have more than 25fF of

capacitance in order to serve as a storage element. These two requirements - the

pass transistor that can prevent too much charge leakage and the capacitor that

can store enough charge - are often barriers that must be overcome in order to

enable scaling to the next generation. As the industry attempts to push scaling

ever further, the solutions needed to satisfy those requirements are becoming more

difficult to develop. Furthermore, it is conceivable that at some point it will simply

35

become physically impossible to satisfy those requirements at some scale. [46,47]

3.1.2 Organization

DRAM is typically organized into channels, ranks, banks, rows and columns.

The channels, ranks, and banks are the concurrent elements of the system, which

are capable of performing memory operations independently of one another with

some limitations. The channels are the physical connections between the memory

modules and the memory controller. They are shared by the other concurrent units

in the memory system and so form the most important layer of parallelism available

in the memory system. The ranks are formed by ganging together memory devices

that each contribute a part of the overall memory access. There can be multiple

ranks on a memory module and they generally operate independently of one another.

They do however contend with one another for shared resources such as the channel

that connects the memory module to the memory controller. Within the ranks

there is a final layer of concurrency formed by the banks. Banks are subsections

of the memory device that can also act independently of one another with some

limitations. The last two layers of the typical DRAM organization are the rows and

columns which point to a specific location within the memory array. The row is a

section of the array that is read into the sense amplifiers on a read command. The

column refers to a 8 or 16 byte access within the larger row that is sent back to the

memory controller in multiple one or two byte bursts.

36

3.1.3 Addressing

In order to access a particular piece of data within the DRAM memory system,

the memory controller needs some way to know where to look within the very large

address space of the memory. To accomplish this the numerical memory address

is broken down into components that then index a specific channel, rank, bank,

row, and column. Using a different set of bits from the address ensures that each

numerical address maps to just one unique location in the memory system. So, if

there are 4 channels then two bits are needed to index which channel a particular

memory address belongs to. These bits can be taken from anywhere within the

memory address but it is often optimal to use the lower order bits for this. This is

because the lower order bits change more frequently than the upper bits so using

them for the channel portion of the location ensures that memory accesses will

be spread out across as many channels as possible thereby making maximum use

of the available channel concurrency. Similarly, other segments of bits are chosen

from the address to index different layers of the memory system in such a way

that maximizes concurrency. However, this does not always mean that its best to

assign bits to memory components in order of their perceived importance to system

concurrency. In other words, it is not always optimal to assign the lowest bits to

channel, the next lowest to the rank and so on.

One situation where it helps to use a slightly different address mapping is in

systems that use an open page configuration. An open page memory system chooses

to leave a row open in the sense amplifiers after accessing data. This means that

37

later accesses will have a lower latency if they map to the same row because the row

access phase of the DRAM transaction can be skipped. So, in an open page system

it is sometimes better to set up the address mapping so that sequential addresses

will map to the same row. That way the likelihood of hitting an open row will be

increased.

Therefore, selecting the correct address mapping scheme for a particular sys-

tem is critical to its overall performance. If the wrong scheme is used then the

available concurrency or open rows in the system will not be fully utilized. How-

ever, determining the correct scheme to use is not always a straight forward process

because the address streams of different workloads can have very different patterns

in terms of which bits change most often.

3.1.4 LPDDR

In response to the growing demand for low power memory devices, especially

in mobile systems, the LPDDR type of DRAM was developed. Initially LPDDR

was just a modified version of standard DDR SDRAM that had several features

that reduced the overall power consumption of the device. In particular, it was able

to operate with a supply voltage of just 1.8 V instead of the typical 2.5 V. It also

featured temperature compensated refresh which could reduce the refresh frequency.

DRAM cells need to refreshed less often when they are physically cooler, so the

refresh frequency can be adjusted to take advantage of that when the device is cold.

Finally, LPDDR also included the ability to completely turn off the device to save

38

power, at the cost of the data stored on the device. The development of LPDDR

has continued over the years with the introduction of LPDDR2, LPDDR3, and

LPDDR4. These later versions have improved upon the original idea by increasing

data rates, providing more bandwidth, and further improving power efficiency.

These devices are typically used in cell phones and tablets where power effi-

ciency is an important design consideration that must be balanced directly against

performance and capacity. However, as the size of main memories in servers have

increased, so has their power consumption. As a result, the memory system now

accounts for a significant amount of the overall system’s power consumption. This

trend has led some researchers to investigate incorporating LPDDR as the main

memory technology of servers [48].

3.1.5 RLDRAM

Another relatively new alternative version of DRAM is RLDRAM which, un-

like LPDDR, optimizes for latency over power efficiency. RLDRAM devices make

several design trade-offs in order to drastically shorten their random access latency.

They are generally more power hungry and provide lower densities than standard

DDR parts and also only offer closed page support. However, they can be as much

as 5x faster than their current generation standard DDR counterparts. These de-

vices were designed with networking, high-end commercial graphics, and L3 cache

applications in mind because these applications tend to require low latency random

accesses. With the development of in-package DRAM caches, they could also po-

39

tentially be a candidate for the last layer cache technology in those architectures

as well, though their limited density is a concern. Some researchers have already

begun exploring the possibilities of utilizing RLDRAM as a cache technology in

heterogeneous memory systems [27].

3.2 NAND Flash

In many ways NAND flash memory is the polar opposite of DRAM in the world

of random access memories. It is capable of extremely high densities but suffers from

long read and write latencies. To amortize the cost of those long latency accesses

flash performs operations at a page granularity (4-16 KB) as opposed to DRAM’s

much finer word granularity (64 B). In addition, unlike DRAM, NAND flash is non-

volatile and does not require constant power to maintain the integrity of the data

in its array.

p-substrate
n+

Source Drain
Floating Gate

Wordline / Gate

n+

Figure 3.4: A typical flash cell with a floating gate between the substrate and the

normal transistor gate.

Where DRAM utilizes capacitors to hold charges that represent 1s and 0s,

flash uses floating gate transistors like the one pictured in Figure 3.4 which store

40

Erased State Programed State
(Higher VTHN)

VTHN,Erased VTHN,Programmed

D
ra

in
 C

u
rr

en
t

Gate-Source Voltage

Figure 3.5: The shift in threshold voltage that occurs when charge is trapped on

the floating gate of a flash cell.

the 1s and 0s as charges trapped in a floating gate between the channel and the

normal control gate. This additional charge on the floating gate shifts the threshold

voltage of the transistor so that it requires more voltage on the gate to turn on.

This behavior is shown in Figure 3.5. Therefore, whether a gate contains a 1 or a

0 can be determined by detecting whether the transistor turns on for a particular

voltage.

3.2.1 Organization

NAND flash is capable of higher densities than other styles of random access

memory like DRAM because instead of storing a single bit in a cell, NAND flash

cells are composed of strings of floating gates which each store a bit. This structure,

which is depicted in Figure 3.6, enables higher density by increasing the ratio of

storage components to access transistors. Each DRAM capacitor needs its own pass

41

Wordline <62>

Wordline <63>

Bitline

 Sense Amplifiers

 Column Decoders

R
o

w
 D

ec
o

d
er

s

Memory
Array

Memory
Cell

NAND
String

NAND
String

Ev
en

 B
it

lin
e

O
d

d
 B

it
lin

e

Drain

Source

Source Line

Word Line <63, 0>

Drain Select 0

Source Select 0

Drain

Source

Drain

Source

Word Line <63, 0>

Drain Select 1

Source Select 1

Drain

Source

Drain Drain

B
lo

ck
 0

B
lo

ck
 1

..
.

Drain

Drain Select

Source Select

Wordline <61>

Wordline <1>

Wordline <0>

Source

VPrecharge

VSense

Even Output Odd Output

PE

Figure 3.6: The structure of a typical NAND Flash-based memory array.

transistor in order to operate correctly however the structure of NAND flash only

needs two transistors for a string of many floating gates. Furthermore, the length

of that string is limited only by performance concerns since it affects the operation

of the sense amplifier typically used with NAND flash. Even with these concerns

typically there are 64 floating gates in each cell. So, there are 64 storage cells

for every two pass transistors, a much better ratio than the 1:1 found in DRAM.

[1,49,50]

At the memory system level, the NAND flash memory is typically organized

into channels, dies, planes, blocks, and pages. This organization is somewhat sim-

42

ilar to the DRAM organization in that the first three levels represent the different

kinds of concurrency that are available in the system. Like DRAM the highest and

most effective form of concurrency available in the flash system is the channels that

connect the chips to the memory controller. Within a flash device there is then

also the possibility of having multiple dies, each of which can perform operations

independently of one another. However, the dies share the same channel so like

ranks and banks in DRAM, operations can only be interleaved across multiple dies.

This provides concurrency but not the true parallelism that the channel level of

concurrency provides. The plane level of the flash array organization is slightly

more complex than the other kinds of concurrency that we have discussed thus far.

Planes are capable of performing operations in parallel but they have to perform

the same type of operation [39]. The last two layers of the flash array, the blocks

and pages, do not enable any concurrent operations and are just organization units

like the rows and columns in DRAM. The blocks of a flash system are the units that

can be erased whereas pages can be written to and read from. There are typically

64 pages in each block though some flash devices can feature more and older flash

devices often featured 32 pages per block.

3.2.2 Access Process

The more complicated structure of the NAND flash cell makes its operation less

intuitive than that of simpler cells such as the DRAM cell. The table in Figure 3.1

provides an overview of the voltages needed to perform reads, writes and erases. To

43

NAND
String

NAND
String

Ev
en

 B
it

lin
e

O
d

d
 B

it
lin

e

Drain

Source

Source Line

Word Line <63, 0>

Drain Select 0

Source Select 0

Drain

Source

Drain

Source

Word Line <63, 0>

Drain Select 1

Source Select 1

Drain

Source

Drain Drain

B
lo

ck
 0

B
lo

ck
 1

VPrecharge

VSense

Even Output Odd Output

PE

Ground

Time

Bitline
Voltage

Output

Bitline is precharged
Bitline is discharged

Flash Sensing Process

VPrecharge

VSense

TimePrecharge TimeEvaluation

Figure 3.7: The charge run down method of reading a NAND flash cell.

erase the cell, the p substrate is strongly biased inducing Fowler-Nordheim tunneling

which causes any charges on the floating gate to migrate to the substrate. After

some time, most of the charges will be gone and the floating gate will be erased.

Because the substrate is shared by many floating gates, the erase cannot erase a

single floating gate at a time. Instead, the NAND flash die is divided up so that

there are many areas that can be erased independently. These areas are referred to

as blocks and generally contain many NAND strings which are all erased at the same

time. To program a particular cell, its control gate is biased to a high voltage while

44

Inputs Erase Program Read

Bit line Floating 0 V High or low

DSL 0 V 20 V 5 V

WL 63 0 V 20 V 0 V

WL 62 0 V 5 V 5 V

WL 2 0 V 5 V 5 V

WL 1 0 V 5 V 5 V

WL 0 0 V 5 V 5 V

SSL 0 V 0 V 5 V

Source Line Floating 0 V 0 V

P well tie-down 20 V 0 V 0 V

Comment Erases entire block Programming cell 63 Reading cell 63

Table 3.1: Example inputs for each NAND flash cell operation [1].

the other control gates in the string are biased to a lower voltage. The high voltage

on the control gate of the desired cell again induces Fowler-Nordheim tunneling

which causes charges to be drawn from the substrate onto the floating gate. Finally,

to read the cell its control gate is grounded while the other control gates in the string

are biased to specific voltage. This voltage ensures that those transistors are turned

on so that a current can flow through the string. If the floating gate that is being

read was in the erased state it will allow current to flow while a programmed floating

gate will not. The sensing circuits for the flash array then detect whether current

was able to flow and use this information to determine the state of the floating gate.

Setting the control gate to ground on the floating gate that is being read still allows

45

it to conduct because the erase process causes positive charges to tunnel onto the

floating gate while the negative charges tunnel off. In this way an erased floating

gate transistor actually has a threshold voltage lower than zero so grounding the

control gate turns it on if it’s erased. [1, 50]

Because it is possible to add different amounts of charge to the floating gate

it is possible to adjust the threshold of the gate to different values. In this way,

multiple bits can be stored using a single floating gate with each combination of bits

corresponding to a different threshold level. For instance, for a two bit cell, the cell

could contain the value 01 when its threshold is 1V and 10 when its threshold is 2V.

This multi-level cell (MLC) capability is another factor which allows NAND flash

to achieve much higher densities than other random access memories. However, the

sense amplifiers must be able to detect the additional threshold levels. To accomplish

this either more hardware is needed to test for each level simultaneously or more time

is needed so that the same hardware can test for each level sequentially. Because

NAND flash is used today primarily as a storage memory the same sensing hardware

is often used despite the performance cost because it maximizes the density gains.

In addition, MLC NAND flash has a shorter lifetime than single level cells (SLC).

Over the lifetime of a flash cell its thresholds will shift due to various wear out

mechanisms. Because MLC divides the threshold of an SLC into sub-thresholds

which are much narrower it is less able to tolerate shifts in the threshold. However,

this shorter lifetime is generally accepted because MLC vastly increases density

without increasing price. [49]

The typical sensing circuits used with NAND flash determine whether a float-

46

ing gate was programmed by using a charged capacitor to generate current through

the NAND string for a specific amount of time. If the floating gate being read is

erased then the capacitor will have been completely discharged by the end of that

time period. Otherwise there will still be some charge on the capacitor. A simple

voltage comparator is then used to determine if there is any charge left on the ca-

pacitor. Because the amount of charge trapped on a programmed floating gate can

vary, different amounts of current will flow for different floating gates that have all

been programmed. Therefore, the voltage that is compared to the voltage of the

NAND string is not zero but instead a threshold value. If the charge left on the

NAND string is below this threshold, it is reasonable to conclude that the floating

gate was conducting enough to be considered erased. This process and the related

circuit is shown in Figure 3.7. [49]

Typically, NAND flash arrays use the capacitance of the bit line as the ca-

pacitor in order to reduce the hardware overheads introduced by this method of

sensing. This is why the capacitor in Figure 3.7 is shown in dotted lines. How-

ever, though this method reduces hardware costs by eliminating a capacitor from

the sensing circuit, it restricts the possible size of the discharging capacitor to the

capacitance of the bit line. As can be seen in Figure 3.7, the time it takes the ca-

pacitor to discharge is the largest component of the overall time it takes to perform

the sensing operation. Therefore, because this sensing hardware uses the relatively

large bit line capacitance as its capacitor it is much slower than it would be if it

used a very small capacitor that could discharge quickly. Furthermore, the adja-

cent bit lines can interact with the discharging of the bit line that is being read.

47

Therefore, they need to be forced to a fixed voltage in order to electrically shield

the bit line being read from that interaction. This means that only half of the bit

lines can be read at any one time. While the even bit lines are being read, the

odd bit lines are forced to the fixed voltage to shield them and vice versa. So, a

read operation in NAND flash actually involves two sense operations but requires

half the sensing circuits that would normally be required thereby further reducing

the hardware overhead. Other potentially faster sensing circuits are possible but

would require more hardware. However, these circuits are not used because NAND

flash is primarily a storage memory. Therefore, the performance cost of using the

bit line capacitance is considered acceptable since it greatly reduces the peripheral

hardware, reducing cost and improving density. [49]

3.2.3 Addressing and Garbage Collection

The programming operation of NAND flash memory can only add charge to

the floating gate and so an erase is needed before data can be rewritten into a NAND

cell. However, the erase process takes a very long time and so performing an erase

on a cell before rewriting data back into it would greatly reduce the performance

of NAND flash. Therefore, subsequent writes to the same host address are actually

sent to different cells in the NAND flash array. An address map is maintained which

keeps track of which NAND cells contain the data for a particular host address.

When a host address is rewritten, the data is placed in a new location in the array,

then the address map entry is updated to reflect this and the old location is marked

48

as dirty. So, unlike DRAM, the address translation scheme which breaks down the

numerical address into channel, rank, bank, row, and column bits isn’t critical to

properly utilizing the available concurrency in the system. Instead, the address

mapping scheme is responsible for assigning pages in a way that efficiently utilizes

concurrency.

When it is possible to perform an erase without hindering performance too

much, a process referred to as garbage collection cleans the dirty portions of the

array by erasing them. This process is not trivial because the erase is performed for

a whole block of the NAND array. Often, some valid data still exists in the block

and must be copied to a new location before the erase can proceed. This leads to

an effect called ”write amplification” because a page of valid data may be moved

around multiple times inside the NAND array to avoid several different erases. This

results in multiple writes for a single piece of data even though the user only ever

wrote the data once. To compound this problem, the floating gates can only be

programmed so many times before they begin to break down and no longer work.

So, not only do the additional writes result in longer erase times and unnecessary

power use, they also cause the device to wear out more quickly.

Wear leveling algorithms are used to try to combat the wear out problem while

minimizing write amplification. These algorithms come in two varieties that deal

with the two different kinds of data that can be present in the flash array: dynamic

wear leveling and static wear leveling. Dynamic data is data that is frequently

accessed and changed whereas static data tends to remain in the array unused for

long periods of time. These two kinds of data have very different effects on the

49

overall wear-out of the flash array and therefore have to be dealt with in different

ways. [51]

Dynamic wear leveling algorithms address the basic problem of wear out due to

frequent accesses by trying to evenly spread out the incoming writes evenly so that

individual gates all have roughly the same amount of wear [51]. This is generally

accomplished by mapping the incoming writes to locations in the NAND flash array

using an algorithm that attempts the balance the traffic going to each section of the

array. The most basic version of this dynamic wear leveling is a clock-like algorithm

that distributes the writes across the array in a round robin fashion. However,

once every page has been written, the subsequent writes will need to be placed in

blocks that have been erased. This means that this algorithm depends heavily on

the garbage collection process selecting blocks to erase in an even fashion so that

some blocks are not erased and written to more often than others. More complex

algorithms can be devised which avoid this problem by tracking the erase count of

the various blocks in the array and adjusting the write placement accordingly.

However, a large amount of the data that is typically added to a flash array

is static data. As a result, it can become very difficult to find blocks to erase that

either do not contain lots of clean, valid pages or have not been erased recently. The

static data in each block means that additional writes will have to be done to get

the valid data off of the block before it can be erased. All of those writes drastically

increase the write amplification so typically garbage collection algorithms try to

avoid blocks with lots of valid data. However, this can lead to a situation where

some blocks in the array start to be erased more than others simply because they

50

contain the smallest amount of static data. The resulting imbalance in wear-out

across the different blocks in the array can then lead to faster device failure. To

address this problem, static wear leveling algorithms periodically move valid static

data to a different location in the flash array opening up the less worn, previously

static block to new data. These static wear leveling algorithms can increase the write

amplification because they do involve moving data around but they can ultimately

greatly extend the life of the device.

3.2.4 Cache Register Operations

Another method of improving the performance of NAND flash memory devices

involves including a second buffer register in the die that allows for pipelining read

or write commands to the same die. Initially flash devices were equipped only with a

single buffer register that would hold data while it was being sent back to the memory

controller or written into the actual memory array. This was necessary because flash

reads and writes are done at a 4KB granularity but the flash device itself has only

an 8bit wide interface. So, the data needed to be stored somewhere while the

operations were taking place. Adding a second register allowed for an additional

operation to take place while the transfer was occurring. These two registers are

called the cache register and the data register. During a read operation the data

is transfered from the NAND flash array to the data register. After the process of

getting the data off of the array is complete, the page can then be quickly transfered

from the data register to the cache register provided that the cache register isn’t

51

already holding something. Then another read process can take place on the array

and that page can be stored in the data register while the other page is being sent

back to the memory controller from the cache register. In this way it is possible to

completely hide the transfer latency of some operations thereby reducing the overall

average access latency. Initially this pipelining of operations using the cache and

data registers was only possible if the addresses being accessed were sequential. [52]

However, it was later expanded to support random addresses as well [39].

3.3 PCM

3.3.1 Organization

 Sense Amplifiers

 Column Decoders

R
o

w
 D

ec
o

d
er

s

Memory
Array

Memory
Cell

Access Transistor

Wordline

Bitline

Heater

Phase Change
Material

Electrodes
Isolator

Phase Change
Memory Cell

Figure 3.8: The proposed structure of a PCM based memory array.

Phase change memory (PCM) is an emerging non-volatile memory technol-

ogy that boasts better latencies and lifetime than NAND flash. Figure 3.8 shows a

typical PCM cell which is composed of a small amount of chalcogenide glass which

52

is connected to the bit line, a heating element, and an access transistor, which is

connected to the word line. Like DRAM, PCM has a separate access transistor for

each storage unit rather than strings of storage units like NAND. It works by chang-

ing the state of the chalcogenide glass between two stable phases: amorphous and

crystalline. These two different phases of the material have very different resistances

which can be used to represent a 1 (crystalline) or a 0 (amorphous).

Because these devices have not been widely produce or used to build memory

systems, their system level organization is still somewhat uncertain. However, most

architecture studies that focus on incorporating PCM into the main memory system

assume a DRAM-like organization for the PCM portion of the memory system

[25,28].

3.3.2 Access Process

Amorphizing RESET pulse

Crystallizing SET pulse

Melting Point (~600C)

Crystallization Transition
Temperature (~300 C)

Te
m

p
er

at
u

re

Time

Figure 3.9: The different processes involved with writing a 1 or a 0 using PCM.

To place the material in its amorphous state it is heated to a high temperature

53

which melts the material and then it is quenched quickly. Alternatively, to place the

material in its crystalline state it is heated to a temperature between the crystallizing

temperature and the melting temperature for a longer period of time. This behavior

can be seen in Figure 3.9. Therefore, it takes much longer to write a 0 into a PCM

cell than it does to write a 1. To create the heat needed for the phase changes voltage

is applied to the heater, which is generally just a resistor, via the bit line. A shorter,

higher amplitude voltage pulse is used to achieve the melting temperature and rapid

quenching needed for the amorphous state. Similarly, a longer, lower amplitude

voltage pulse is used to create the longer lasting crystallizing temperature needed

for the crystalline state. Applying a voltage on the appropriate word line opens the

desired cell’s pass transistor causing the current resulting from the voltage pulse to

flow only into that cell. In this way, individual cells can be programmed. Because

the crystallization process is a gradual one PCM, like flash, is potentially capable

of MLC by varying the degree of crystallization of the chalcogenide material. This

creates different levels of resistance which can be used to represent different multi-

bit combinations. So, PCM is still capable of potentially high densities despite its

need for more pass transistors than NAND. However, as was the case with flash,

such MLC cells require either more complicated sense amplifiers or longer sensing

times. [25, 28,29]

The state of a PCM cell is determined by a charge rundown process that is

very similar to the one used to read NAND flash. First a capacitor is charged to a

specific voltage and then it is allowed to discharge through a bit line. The voltage

on the word line of the desired cell is driven high which turns on the pass transistor

54

and connects the cell to the bit line allowing the current to flow through it. At the

end of a specified period of time, the charge on the capacitor is compared to some

reference voltage. If the PCM cell was in the higher resistance amorphous state then

less current would have flowed and more charge would remain on the capacitor giving

it a higher voltage. Conversely, if the cell was in the lower resistance crystalline state

then much more current would have flowed and little charge would remain on the

capacitor. Therefore, if the capacitor’s voltage is above the reference voltage than

the cell was in the amorphous state and in the crystalline state otherwise. Because

the method of sensing is essentially the same as NAND flash its seems strange that

PCM has much better read latencies. This is because PCM uses dedicated sensing

capacitors which have a much smaller capacitance than a NAND flash bit line and

therefore discharge much faster. In addition, because the current must only flow

through a single cell the total resistance in the bit line is much lower during a read

than is the case with NAND flash and so more current can flow [28,53]. This further

increases the speed at which the capacitor can discharge and reduces the overall

latency of the read operation. In addition, some PCM systems use current comparing

sensing circuits rather than the voltage comparing sensing circuits described thus

far [28]. These are even larger but are capable of even faster sensing operations.

It should be noted that those sensing circuits could also be used to determine the

current through a NAND flash cell. [28, 54]

When the PCM cell is heated the chalcogenide material expands and subse-

quently contracts as it cools. The repeated expansion and contraction of the material

as a result of writing data into the cell degrades the contact of the electrode with the

55

glass. Eventually this contact is degraded to the point that it can no longer reliably

conduct the programming currents into the cell. This means that, like flash, PCM

cells are only capable of performing a finite number of reads before they cease to

work. While many sources state that this write endurance is orders of magnitude

greater than flash, wear leveling is still employed in order to maximize the lifetime

of PCM, especially when PCM is used as a main memory [25, 28, 29, 55]. Though

it is not as necessary as it is with NAND flash, wear-leveling still ensures that the

PCM chip’s lifetime will be measured in years even if it is written to much more

frequently than is anticipated. [55]

3.3.3 Difficulties

There are always many hurdles that have to be overcome when developing a

new memory technology. Two of the most prominent challenges facing that develop-

ment of PCM have to do with its power consumption and resistance drift. The write

process of PCM requires high current density over a long time period. Therefore, in

order to keep the power consumption of the PCM device at reasonable levels, the

number of simultaneous writes that can be performed has to be strictly limited. This

negatively affects the potential write performance of PCM devices. Furthermore,

the high power consumption of PCM devices can potentially increase the temper-

ature of the device to the point that logical errors or incomplete phase transitions

occur. So, keeping the power consumption of the PCM device in check is critically

important to its proper operation and its success as a memory technology. [56]

56

Another difficulty currently facing PCM development has to do with the resis-

tance properties of the chalcogenide material. Ideally, PCM would be able to store

multiple bits per cell in the similar way to MLC NAND flash by assigning different

levels of resistance to different combinations of the bits. However, the resistance of

the chalcogenide material tends to drift for a while after it has been written to. This

results in states that had resistances that were initially quite different eventually de-

veloping resistances that are less distinct. Over time it would then become more

difficult to tell the different states apart. This property of the chalcogenide material

is somewhat understood though and researchers have some solutions to potentially

solve the problem. [57]

3.4 Memristor

3.4.1 Organization

The existence of the memristor was first suggested by Leon Chua in the 1970s

[58]. It is characterized as a the fourth fundamental 2-port circuit element where

the other three are the resistor, the capacitor and the inductor. The resistance of

the memristor changes as a result of the magnitude of voltage that is applied across

it. Therefore, the current that flows through a memristor as a result of a voltage

being applied across it depends not only on the present voltage but also on the

voltage that was applied during the previous programming cycle. This results in

the hysteresis curve in Figure 3.11 where a different resistance can be seen for the

same voltage depending on whether the previous voltage passed the write threshold

57

 Sense Amplifiers

 Column Decoders

R
o

w
 D

ec
o

d
er

s

Memory
Array

Memory
Cell

Wordline

Bitline

Memristor
Memory Cell

Doping Wall

TiO2-x TiO2

V

TiO2-x TiO2

Highly
Doped
Region

Transition
Region

Undoped
Region

V

Rdop ωRtrans (1-ω)Rundop

R = Rdop + ωRtrans + (1-ω)Rundop

Figure 3.10: The proposed structure of a Memristor based memory array. Note the

lack of access transistors.

(Vth1) or the erase threshold (Vth2). Therefore, the memristor can be used to store

a 1 or a 0 as high or low resistances which can be changed by applying different

voltages across the memristor. [59]

There are many ways of fabricating memristors however the TiO2 version pic-

tured in Figure 3.10 is one of the most common. This cell primarily consists of two

sections of TiO2: the upper, conductive section has been doped with oxygen vacan-

cies while the lower, resistive section is normal TiO2. The cell works by shifting

the concentration of oxygen ions in the TiO2 material. When a negative voltage is

applied to undoped side of the memristor it attracts the oxygen ions in the doped

TiO2 thereby expanding the lower resistance region of the material. As a result,

58

the resistance of the entire cell decreases. Similarly, if a positive voltage is applied

to the undoped side of the memristor, the oxygen vacancies will be repelled thereby

increasing the more resistive region of the material. Also, because the oxygen vacan-

cies are able to move relatively quickly through the TiO2 material the write latency

for memristors has the potential to be very small. In addition, the memristor can

take on a range of resistance values depending on the voltages that are applied to

it. Therefore, the memristor, like flash and PCM, is also potentially capable of

MLC. [60,61]

Like PCM, the Memristor technology is still relatively new and has not yet

been implemented in any widely available devices. As a result, it is difficult to say

what its eventual system level organization will look like. However, like PCM, most

researchers appear to assume that it will be organized similarly to DRAM.

3.4.2 Access Process

The memristor memory cell is composed of only a single two port circuit

element. As a result, it can easily be incorporated into a very high density memory

array structure called the crossbar array. This simple structure, which is pictured in

Figure 3.10, is capable of much higher densities than other memory arrays because

it does not use pass transistors. This effectively doubles the possible density of

the array because half the hardware is needed for each cell compared to a typical

PCM or DRAM cell. Instead, the proper voltages are simply applied on the desired

row and column wires of the crossbar. For instance, to put the memristor element

59

C
u
rr
en

t

Voltage

Vth1

Vth2

Figure 3.11: The cyclical relationship between voltage and resistance in a memoris-

tor.

into its lower resistance mode a positive voltage is applied to the row wire (which

corresponds to the doped side of the memristor in this example) while the column

wire is grounded. This causes current to flow through the memristor that resides

where the row and column wires intersect thereby changing its state. To prevent

changing the state of the other memristors, the other column wires are also set to

the positive voltage which counteracts the effect of the row wire’s voltage. To read

a memristor, current is injected into the desired row and measured at the desired

column. Because there are alternate paths for the current to take, the operation is

performed three times. The first time the initial state of the cell is read, then it

is explicitly programmed to a 1 and the current is remeasured, then it is explicitly

programmed to a 0 and the current is read a third time. By comparing the three

currents it is possible to determine the state of the cell being read. Since this

60

memory also uses current to determine whether a cell is in a high or low resistance

state it is assumed that its sensing circuits will be very similar to ones used with

PCM. [59,62]

3.4.3 Difficulties

One of the most significant challenges currently facing the memristor’s devel-

opment is actually not directly related to the memory technology itself but instead

to its crossbar array architecture. The crossbar array attempts to determine the

resistance of the memristor at the intersection of a row and column line by bias-

ing the other wires in the array. This should isolate that resistance so that all of

the current flowing through the array will go through that element. However, in

practice what often happens is that sneak paths form within the array that allow

some current to travel through other memristors, sometimes avoiding the desired

memristor entirely. When this happens, the resulting resistance measurement can

be significantly off and the resulting data corrupt. [63] Therefore, in order to reli-

ably utilize a crossbar array, the problem of sneak paths must first be dealt with.

Researchers are currently working to address this both to enable the continued de-

velopment of memristor memories and also to allow other potential technologies to

utilize crossbar array architectures.

61

SRAM DDR2 DRAM DDR3 DRAM

Cell Elements 6T 1T1C 1T1C

Density - 2Gb [2] 8Gb [2]

Read time (ns) 1 55 [?, 64] 50 [44,45,64]

Write/Erase time (ns) 1 55 [?, 64] 50 [44,45,64]

Read op. voltage (V) -* 1.8 [?, 64] 1.35-1.5 [44,45,64]

Write op. voltage (V) -* 1.8 [?, 64] 1.35-1.5 [44,45,64]

Write Endurance 1016 1016 [46] 1016 [46]

LPDDR2 RLDRAM

Cell Elements 1T1C 1T1C

Density 4Gb [2] 576Mb [2]

Read time (ns) 60 [2] 10 [2]

Write/Erase time (ns) 60 [2] 10 [2]

Read op. voltage (V) 1.14 - 1.95 [2] 1.35 [2]

Write op. voltage (V) 1.14 - 1.95 [2] 1.35 [2]

Write Endurance 1016 [46] 1016 [46]

NOR Flash PCM Memristor

Cell Elements 1T 1T1R 1R

Density 2Gb [2] ??? ???

Read time (ns) 100 [2, 65,66] ∼ 60 - 200 [28,46,67,68] ∼ 50 [69,70]

Write/Erase time (ns) 1-2us(word)/10-900ms(block) [2, 65,66] ∼ 60 / 300 [28,46,67,71] ∼ 50-250 [30,70]

Read op. voltage (V) 1.7-2 [2, 65,66] ∼ 1-1.8-3 [28,46,67] ∼ 1-2.5-3 [60,62]

Write op. voltage (V) 1.7-2 [2, 65,66] ∼ 1.6-3 [28,46,71] ∼ 3-3.44 [60,62]

Write Endurance 105 [2, 65,66] ∼ 104 - 109 [28, 46,67,71,72] ???

SLC NAND Flash MLC NAND Flash TLC NAND Flash

Cell Elements 1T 1T 1T

Density 512Gb [2] 2Tb [2] 2.5Tb

Read time (ns) 25us [73,74] 50us [?, 75] 100us [76]

Write/Erase time (ns) 200us (page) / 2ms (block) [73,74] 900us (page) / 2ms (block) [?, 75] 2.5ms (page) / ∼ 2ms (block) [76]

Read op. voltage (V) 2.7-3.6 [46,73,74] 2.7-3.6 [2, 75] 3.3 [2]

Write op. voltage (V) 2.7-3.6 [46,73,74] 2.7-3.6 [2, 75] 3.3 [2]

Write Endurance 105 [73, 74] 104 [2, 75] 2,500

Table 3.2: Comparison of Memory Technologies.

3.5 Technology Comparison

Table 3.2 presents a summary of the different main memory technologies dis-

cussed in this section and their characteristics with regard to speed, density and

power usage. From these values it is quickly clear that the non-volatile technologies

62

are generally not equal to DRAM in terms of latency performance. The excite-

ment surrounding the newer technologies is understandable considering their stark

improvement over NAND flash’s latencies. However, the low latency numbers for

those technologies are the result of carefully fabricated prototype devices. In the

case of PCM, recent mass production attempts of the technology have yielded less

impressive performance figures. This can be seen in the wide range of values for the

PCM latencies, particularly the erase latency. It is prudent then to assume that the

longer latency figures for these technologies are a more accurate representation of

their eventual performance. With this consideration in mind it becomes clear that

if a memory system which incorporates non-volatile technologies is to perform as

well as DRAM only systems, some additional engineering is required to hide the

longer latencies. On the other hand, the motivation behind attempting to use these

technologies despite their less than optimal latencies is evident in their higher den-

sity characteristics. Such characteristics may enable the construction of much larger

main memory systems than would be possible with only DRAM thereby providing

for the greater memory needs of future applications.

In addition, all of the non-volatile technologies that have been discussed in

this section share many similarities. For instance, they all work on the same basic

principle: their storage cells resist current flow by varying amounts depending on

their state. Therefore, all of the non-volatile technologies can also use the same

sensing circuits. Similarly, organizational decisions have similar affects on the dif-

ferent technologies. The more sensing circuits that are included on a chip, the more

bit lines that can be read simultaneously and the longer the burst of data from the

63

device. Also, the devices all have asymmetric read and write operations. The signif-

icantly longer latency costs of a write compared to a read mean that scheduling is

much more important for all of these technologies. Writing at an inopportune time

can result in much more significant delays than result from incorrectly scheduled

writes in a DRAM system. Finally, all of these technologies also have finite lifetimes

and wear out from over use. Therefore, they all require some form of wear leveling

scheme. These similarities are the motivation behind the notion that all non-volatile

technologies can be represented by a generic non-volatile memory in memory system

studies. The similarities between the technologies mean that many of the modifi-

cations needed to incorporate the memories into the main memory system will be

appropriate for all of the non-volatile memory types regardless of their underlying

cell technology.

64

Chapter 4: Multi-Level Main Memory Systems

The capacity, power, lifetime, and performance limitations of the technologies

that could potentially fill the main memory roll has led designers and researchers to

propose the division of the main memory sub-system into a new hierarchy within

the broader memory and storage system hierarchy. These architectures typically

divide the main memory system into a smaller, faster, more expensive cache portion

and a bigger, slower, less expensive backing store. In this way different technologies

and organizations can be utilized at the different levels in order to construct a main

memory system with characteristics that are not possible with a single memory tech-

nology. This chapter will discuss the different varieties of these new memory systems

and will also compare them to the current state of the art system architecture.

4.1 Multi-Level Main Memory Organization

The extension of the memory system to enable the incorporation of new, slower

main memory technologies has resulted in a new cache layer. There are potentially

two ways to think about this new cache layer. In one sense it represents an extension

of the cache hierarchy as it is also functionally a cache. In another sense, it is

possible to consider it a new level of the main memory because it is off-die and is

65

CPU

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or eDRAM

Shared
DRAM Cache

(~128MB – 512MB In-Package
or

~10-100GB Off-Chip)

Main Memory
Non-Volatile Memory

(~1-10TB)

On-Die
Cache

Hierarchy

Off-Die
Main

Memory
Hierarchy

Figure 4.1: The typical multi-level main memory organization that will be discussed

in this work

often managed by the main memory controller. For the purposes of this dissertation,

we tend to view the new cache layer in the latter way, as a new layer of the main

memory system. Figure 4.1 illustrates our view of the new system architecture with

a multi-level main memory system.

In addition, multi-level main memory systems can be constructed so that the

layers of the main memory are utilized in different ways or composed of different

memory technologies. The resulting architectures can be hierarchical or indepen-

dent, heterogeneous or homogeneous, and software managed or hardware managed.

A hierarchical system uses some layers of the main memory as cache to store the

most frequently accessed subset of the data that is contained in the lower levels

66

of the system. Alternatively, it is also possible to distribute the data across the

different levels of the system so that each level is assigned a different portion of the

address space rather than having one act as a cache. In this dissertation we will

focus on the multi-level systems that form a clear hierarchy with their layers.

4.1.1 Heterogeneous Main Memory Systems

Heterogeneous main memory systems are another type of main memory system

that utilize two or more different memory technologies to build the main memory

system. We consider these architectures to be another distinct subset of multi-level

main memories because they do not have to form a hierarchy and can instead use the

two memories in a side by side address space configuration. In this dissertation we

will refer to memory systems that are both heterogeneous and hierarchical as hybrid

memory systems. This differentiates those systems from hierarchical systems which

use the same memory technology at both levels (varying the organization instead)

and from heterogeneous systems which do not use one of the memories as a cache

for the others.

A great deal of research into heterogeneous memory systems has focused on

different ways of incorporating non-volatile memory into the main memory system.

The first of these systems to be proposed was eNVy in 1994, which utilized NOR

Flash as its backing store technology and DRAM as its cache [77]. Later, several

different architectures were proposed that utilized PCM as the backing store [25,28].

More recently, Chatterjee et al. proposed constructing heterogeneous memory

67

systems utilizing different types of specialized DRAM [27]. This work utilized RL-

DRAM as the cache technology and LPDDR as the backing store technology similar

to one of the architectures presented in Chapter 8 .

4.2 Software versus Hardware Management

CPU

On-Die
Cache

Hierarchy

Off-Die
Main

Memory
Hierarchy

Hybrid/Multi-Level System Organization
Hybrid uses a large shared L3 cache, a last-level DRAM

cache, and an extremely large non-volatile memory-based
main memory

State of the Art Enterprise System Design
Current servers use shared L3 caches, large DDRx DRAM

main memories, and PCIe SSDs as extremely large backing
stores

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or

eDRAM

Shared
DRAM Cache

(~128MB – 512MB
In-Package or

~10-100GB Off-Chip)

Main Memory
Direct Hardware Access
Non-Volatile Memory

(~1-10TB)

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or

eDRAM

CPU

I/O
Subsystem
Software
Access via
Operating

System

SSD
NAND Flash
(~1-10TB)

Main Memory
DRAM

(~10-100GB Off-Chip)

OS

Figure 4.2: Hybrid organization versus a typical enterprise-class SSD organizataion

In addition to heterogeneous, hybrid, and hierarchical multi-level main mem-

ories, there are also architectures that utilize either software or hardware to manage

the cache layer of the main memory. To understand the differences between hard-

ware and software managed multi-level main memory architectures, we compare

a hardware managed Hybrid architecture to a software managed architecture. The

software managed architecture used in this comparison is representative of a modern

68

Table 4.1: Hybrid Memory vs. SSD Comparison
Hybrid SSD

Page Placement CPU memory controller OS - virtual memory/buffer cache

Garbage Collection (where necessary) NV controller chip NV controller chip

Virtual to Physical Address Translation OS - virtual memory OS - virtual memory

Physical to Backing Store Address Translation CPU memory controller OS - block layer

Backing Store access scheduling backing store controller chip OS - I/O scheduler

Host Interface direct connection to CPU memory controller PCIe root complex

File System tmpfs ramdisk ext3

enterprise-class system which utilizes a high performance PCIe SSD. The Hybrid ar-

chitecture used in this comparison resembles the Flash Hybrid architecture proposed

in [31] and the PCM Hybrid architecture proposed in [25]. This architecture extends

the functionality of the memory controller to manage the DRAM main memory as

a cache for a large backing store. In both systems, the backing store hardware is

largely identical to the hardware of an SSD. The key difference is that the memory

controller, rather than the operating system, is responsible for generating requests

and managing whether a page is stored in the DRAM cache or the backing store.

Figure 4.2 illustrates the differences between the SSD and Hybrid approaches.

This rest of this section will describe the key design differences of the Hybrid

and SSD systems by comparing the Hybrid design to the design of a current state-

of-the-art enterprise PCIe SSD. These differences are summarized in Table 4.1.

4.2.1 Stalling versus Interrupting

The storage system was designed for long latency spinning disks so one of the

key concerns was hiding disk latency. This was accomplished on time-shared systems

69

by having the OS scheduler switch to another task and using an I/O interrupt to

indicate completion of the access. The process waiting on the I/O operation would

later be awoken by the OS scheduler to resume execution. Modern systems have

inherited this feature and it still makes sense for most types of I/O operations.

However, as with high speed networks, when the hardware is capable of low enough

latency or high enough throughput, interrupting can introduce unnecessary overhead

in the system. This overhead can come from several possible sources including the

time it takes to service an interrupt, the time it takes to perform a context switch to

another task, the time it takes the OS scheduler to resume execution of the waiting

task, and indirect costs such as cache pollution. At the time of this work, the typical

design for a modern SSD still relies on the interrupt and task switch approach.

Since backing store accesses are hidden from the OS in the Hybrid memory

design, the interrupt and task switch process is replaced with a simpler stalling

process. This is similar to how the CPU cores just wait on the memory controller to

perform DRAM accesses. While this may seem non-intuitive due to the significantly

longer latencies of some backing store technologies such as flash, if the overhead of

the interrupt and task switch is sufficiently large, then stalling can offer better

performance. For instance, the work in [78] indicated that the delay incurred by a

context switch can be as much as 1.5 ms, which is considerably longer than most

flash read latencies. Therefore, in some situations a system could potentially benefit

greatly from stalling on a read access to the backing store rather than task switching

and waiting for an interrupt.

70

4.2.2 Page Placement

Application IO System

SSD

1

2

3

4

5

6

7

8

PCIe Root
Complex

Main
Memory

Virtual
Memory
System

Flash AccessFlash Access

SSD Miss Access Process

9

Figure 4.3: The steps involved in servicing a miss of the DRAM for the SSD orga-

nization.

Currently, the OS virtual memory system determines which virtual pages are

kept in the main memory page frames and which virtual pages are stored on the SSD

backing store (either the original file for file-backed page or the swap for anonymous

virtual pages). This process is described in Figure 4.3. Step 1 of this diagram starts

with the application generating a request to the virtual memory system. Step 2

occurs on a page miss; here the virtual memory system selects and evicts a virtual

page from the main memory. The virtual memory system also passes the requested

virtual page to the I/O system. During step 3 the I/O system generates a request

for the SSD. This request is then sent to the PCIe root complex which directs it

71

Application

Main
Memory

Hybrid
Controller

Non-Volatile
Backing Store

Flash Access

1

2

3

4

5
6

Hybrid Miss Access Process

Figure 4.4: The steps involved in servicing a miss of the DRAM for the Hybrid

organization.

to the SSD in step 4. The PCIe root complex is the host bridge that connects the

CPU and memory to the PCIe system. More information on the PCIe system and

its architecture can be found at [79] and in the official PCIe specifications at [80].

To specify which virtual page to bring in from the SSD, the OS sends the SSD

controller a logical block address. The SSD then uses that logical block address

to determine the actual physical location of the virtual page associated with that

address and issues a request to the device which contains that virtual page. For the

virtual page that is evicted from the main memory, the SSD allocates a new physical

page for that virtual page and issues a write to the appropriate device. This occurs

between steps 4 and 5. After the SSD handles the request, it sends the data back

to the CPU via the PCIe root complex, step 5. The PCIe root complex the passes

72

SSD Implementation

Disk
DRAM

Virtual Memory

SSD

OS Virtual Memory Manager

Figure 4.5: The division of the various address spaces involved in the SSD organi-

zation.

the data to the main memory system where it is written, step 6. Once the write

is complete the PCIe root complex raises an interrupt alerting the OS scheduler

that an application’s request is complete. This is step 7. Finally, during step 8, the

application resumes, reissues its request to the virtual memory system and generates

a page hit for the data. The division of the virtual memory address space between

the different physical address spaces in SSD-based systems is illustrated in Figure

4.5.

In the Hybrid system, the backing store is presented to the OS virtual memory

manager as the entire physical memory address space. This address space organi-

zation is presented in Figure 4.6. It appears to the OS that the computer’s main

memory is the size of the backing store. The actual DRAM main memory address

space is hidden from the OS and is managed by the memory controller as a cache.

73

Hybrid Implementation

Disk

DRAM

Virtual Memory

Non-Volatile Backing Store

LRU Cache Replacement Policy

OS Virtual Memory Manager

Figure 4.6: The division of the various address spaces involved in the Hybrid orga-

nization.

Together the backing store and DRAM cache form the Hybrid memory. Accesses

to this Hybrid memory have a granularity of 64 bytes, just like DRAM. The cache

lines in the DRAM cache have a granularity of 4KB because that is the typical size

of an OS virtual memory page. Keeping the fill granularity the same in both the

SSD and Hybrid systems removes a possible source of confusion from the results

presented later in this dissertation. Figure 4.4. shows the access process for the Hy-

brid architecture which is considerably simpler than the SSD process. Step 1 begins

with the application generating a request. Step 2, varies somewhat depending on

the degree of associativity implemented in the Hybrid system. If the system is using

a direct mapped cache like the one proposed in [81] then the appropriate location

74

in the DRAM is determined from the address and accessed. The tag is retrieved

with the data in a single accesses. In this system a DRAM cache access begins with

the Hybrid memory controller checking its tag database to determine if a particular

cache line is present in the DRAM cache. If the cache line is present in the DRAM

cache, then the access is serviced by the DRAM as a normal main memory access

(not shown in Figure 4.4.). When an access misses the DRAM cache, the Hybrid

controller selects a page in the DRAM to evict and schedules a write-back if the

page is dirty. In the current implementation of our Hybrid memory controller, a

least recently used (LRU) algorithm is used to determine which page to evict. The

missed page is then read in from the backing store and placed in the DRAM. This

is step 3. During this step, the Hybrid memory controller can also prefetch addi-

tional pages into the DRAM or write back cold dirty pages preemptively, similar

to how the virtual memory memory works, to further improve read performance.

Currently, the Hybrid system implements sequential prefetching. More complex

prefetching schemes such as stream buffers, stride prefetching, and application di-

rected prefetching are also compatible with this design. Step 4 is the backing store

handling the request. Once the data has been received from the backing store the

Hybrid controller passes the data to the application, step 5. Finally, during step 6

the data is written into DRAM from the Hybrid memory controller.

75

4.2.3 Associativity

The page table utilized by the OS is functionally fully associative and so, in

order to provide a more fair comparison, the cache in our Hybrid system is 16 way

set-associative. We also analyze the effects of different levels of associativity on

Hybrid performance later in the study to determine the role that associativity plays

in the performance of both systems.

In order to implement associativity efficiently a Hybrid main memory design

must store the tags for its large cache in an efficient manner. The tag size is com-

puted as b - c + a + s, where b is the number of bits in the backing store address

space, c is the number of bits in cache address space, a is the number of bits needed

to represent the cache associativity, and t is the number of bits needed for state in-

cluding the valid bit, the dirty bit, replacement policy state bits, and other related

data. For sufficiently large Hybrid memories, the tag store can become too large in

terms of transistor budget to be implemented directly on the CPU. There have been

several solutions that have been proposed to solve this problem of tag overhead in

DRAM caches. These range from adding a tag cache to temporarily store tags [82],

storing tags alongside data in DRAM [83] and implementing the DRAM cache as

direct mapped [81]. To keep matters as straightforward as possible in the experi-

ments presented in Chapter 6, we assume that the tags of the associative Hybrid

implementations are stored in SRAM and can be accessed efficiently. Such a system

could be realized with either a dedicated tag store or a tag cache in a real world

implementation.

76

4.2.4 Prefetching

The operating system prefetches data from the backing store on a page fill in a

effort to reduce future misses and to amortize the cost of the backing store access. To

keep the comparison as fair as possible we have implemented a sequential prefetcher

as part of the Hybrid design. On a cache fill this prefetcher grabs the next 16

pages after the missed address in addition to the missed page itself. We arrived at

the 16 page prefetching degree as a result of experimentation that is included in

Chapter 6 of this dissertation. More advanced prefetching schemes are another area

of potential future work that the researchers would like to explore.

4.3 Software Managed Approaches

4.3.1 Polling SSDs

There have been a number of projects that have modified the software inter-

face for solid state drives by polling the disk controller rather than utilizing an IO

interrupt to indicate when a request completes [84] [85] [86]. This is similar to the

Hybrid architecture presented in this chapter in that the memory controller and

the application poll when a request is outstanding to the backing store. The key

differences between the two approaches are that the software based designs still uti-

lize the same PCIe interface and basic operating system structures as current PCIe

SSD designs. The performance advantages or limitations that IO polling would

have compared to the Hybrid architecture approach are an open area of study and

77

hopefully a subject for future work.

4.3.2 Persistent Object Stores

Another way to redesign the OS to work more efficiently with SSDs is to build

persistent object stores. These designs require the programmer to determine which

objects should be persistent and to modify the code to utilize special allocation

functions. A portion of the DRAM main memory is then allocated as a cache for

the persistent objects. These designs require careful management at the user and/or

system level to prevent potential problems such as dangling pointers and to deal

with allocation, garbage collection, and other management issues. A performance

improvement for certain types of workloads is possible with these designs by creating

a customized caching algorithm for persistent objects to be more efficient than the

generic operating system paging mechanism. An example of this type of system

is SSDAlloc [34], which builds persistent objects for boosting the performance of

flash-based SSDs, particularly the high end PCIe Fusion-IO drives. NV-Heaps [33]

is another similar system designed to work with upcoming byte-addressable non-

volatile memories such as PCM.

4.3.3 Specialized File Systems

Other work focuses on file system approaches for managing non-volatile mem-

ory. One example is a file system that has been developed for managing Hybrid main

memories [35]. This work is based on the assumption that the OS rather than the

78

memory controller handles tasks such as page placement, garbage collection, and

wear leveling. Another proposed file system uses a technique called short-circuit

shadow paging to provide functionality that is optimized for byte-addressable and

low latency non-volatile memories (e.g. PCM) [87].

4.4 Hardware Managed Approaches

4.4.1 PCM Based Systems

Over the past few years, a significant amount of work has also been put into de-

signing architectures that can effectively use PCM to replace or reduce that amount

of DRAM needed by systems [25] [28] [26]. This body of work anticipates a slow

down in the scaling of DRAM and proposes PCM based systems as a way to continue

increasing the capacity of main memory to meet demand. Some of the architectures

that have been suggested for use with PCM inspired the Hybrid architecture studied

in this dissertation in that they also utilize the DRAM as a cache that is managed

by the memory controller [25].

4.4.2 Flash Based Systems

However, these PCM designs were not the first to utilize a Hybrid architecture.

In 1994, eNVy was proposed as a way to increase the size of the main memory by

pairing a NOR flash backing store with a DRAM cache [77]. This design is actually

very similar to both the Hybrid architecture studied in this paper and the Hybrid

PCM architectures except that it utilizes NOR flash as its non-volatile backing store

79

technology. In addition, a very similar architecture was also proposed by FlashCache

which utilized a small DRAM caching a larger NAND flash system [88]. However, it

is engineered to focus on low power consumption and to act as a file system buffer

cache for web servers, which means the performance requirements are significantly

different than the more general purpose merged storage and memory system. In

2009, a follow-up paper to FlashCache proposed essentially the same design with

the same goals using PCM [89].

4.4.3 Solutions from Industry

There have also been several industry solutions that attempt to improve the

performance of the storage system [90] [91] [92] [93] [94]. These solutions tend

to fall in one of three categories: software acceleration for SSDs, PCIe SSDs, and

Non-Volatile DIMMs. Recently, several companies including Oracle have released

software to improve the access times to SSDs by treating the SSD differently than

a traditional hard disk [90]. Similarly, Samsung recently released a file system for

use with its SSDs that takes into account factors such as garbage collection which

can affect access latency and performance.

Also, for several years, companies such as Fusion IO, OCZ and Intel have

been producing SSDs that utilize the PCIe bus for communication rather than the

traditional SATA bus. The additional channel bandwidth provided by PCIe allows

for much better overall system performance by alleviating one of the traditional

storage system bottlenecks. The SSD design utilized in this study was based on

80

these products.

Finally, in 2008 Spansion proposed EcoRAM which was a flash based DRAM

replacement [93] [95]. Like the Hybrid architecture, EcoRAM allowed the flash to

interface directly with a special memory controller over the fast channel. However,

EcoRAM utilized non-standard proprietary flash parts to construct its DIMMs and

it was meant to replace DRAM. The Hybrid system presented in this work, on

the other hand, can use standard NAND flash chips and utilizes the DRAM main

memory as a cache.

4.5 Potential Use Cases

In this chapter we have discussed some of the potential differences between

software and hardware management of the DRAM cache. These differences could

result in the software or hardware approach being better suited to certain use cases.

For instance, one potential benefit of software management that we have not dis-

cussed extensively until now is the flexibility of software. It is much easier to change

the replacement or prefetching policy of a software managed cache than a hardware

managed one. As a result, software managed DRAM caches might be better suited

to situations where the workload characteristics change frequently. Also, the addi-

tional complexity of the prefetching policy in software managed caches could allow

for much more accurate prefetches. However, the storage and management of the

state required to implement such complex policies would probably be prohibitive in

most cases. So, for systems that run a wide variety of workloads or workloads the

81

have extremely different phases of operation that change frequently, the benefits of

this flexibility could outweigh the performance improvement provided by the low

overhead of the hardware approach.

Furthermore, the ability to carefully tailor a workload or operating system

to a particular memory system, as is sometimes the case in super computing envi-

ronments, could also result in significant performance improvements for a software

managed DRAM cache. However, this requires a considerable amount of effort on

the part of the software developers who must have a detailed understanding of how

to optimize the workload or operating system effectively. This is generally only the

case in a very small number of specialized high performance computer applications

where such optimizations are possible and worth while.

For all other systems, though, the low overhead hardware managed approach is

probably the most beneficial implementation. The hardware managed approach pro-

vides near optimal performance for many workloads and does not require potentially

complex and difficult modifications to either the user software or the operating sys-

tem. Additionally, the hardware managed approach will almost certainly be prefer-

able for systems with backing stores that are significantly faster than SLC flash,

such as PCM. In those systems, even the slightest software overhead would repre-

sent a significant source of delay in handling misses to the DRAM cache. Therefore,

developing and incorporating hardware managed DRAM caches into the memory hi-

erarchy now is also beneficial because it will help to facilitate a more straightforward

adoption of alternative backing store memory technologies in the future.

82

Chapter 5: Simulation Framework

By now it is hopefully clear to the reader that the potential design space for

multi-level main memories is extremely large. In order to explore this design space

we needed to develop a simulation infrastructure that would be open ended enough

to enable the study of vastly different organizations comprised of technologies with

indeterminate timings and uncertain access protocols. Furthermore, we needed an

infrastructure that would provide detailed simulation of both the actual memory

arrays and the cache controller that would manage page placement between the

various levels of the hierarchy. We also needed to be able to accurately simulate the

impact of software on the designs. This would allow us to compare our hardware

based approaches to existing software based approaches. Finally, we also needed to

accurately gauge the performance impact of the potential designs. To this end we

developed an extensive suite of simulators to model the entire memory hierarchy,

including a memory array simulator, a specialized cache controller simulator, and

a PCIe root complex simulator. Furthermore, we incorporated our simulators into

an existing full system simulator (MARSSx86) in order to capture the effects of

software and to provide a complete feedback loop between the software, processor,

and memory.

83

5.1 Open Memory Simulator

One of the primary contributions of this work was the development of the Open

Memory Simulator (OMS). OMS is written in C++ and was originally developed

as a NAND flash DIMM simulator. It is organized so that each logical component

of the system is represented by a software object and its associated parameters in

order to give the designer control over all aspects of the system. By setting these

parameters in the simulator’s ini file, the designer can determine almost all aspects

of the systems overall structure and general timing characteristics. For example,

the designer is able to specify the read/write/erase times, the number of channels in

the system, the number of dies per channel, etc. This utilization of software objects

also makes OMS modular and easy to customize as it is relatively easy to locate

the code associated with different aspects of the system. The simulator includes a

detailed model of all of the components of a typical NAND flash memory system in-

cluding the Flash Translation Layer (FTL), the controller, and the memory devices

themselves. Features such as dynamic wear leveling, garbage collection, and cache

register operations are all accurately represented in the simulator. Furthermore, the

simulator also includes a detailed channel model that captures the complex inter-

actions that take place when multiple concurrent units (dies, ranks, etc) contend

for the same bus. Often these interactions are prevented by memory access tim-

ings that ensure that no two units attempt to use the same channel at the same

time. However, the development of tight memory access protocols is difficult, time

consuming, and must often be repeated when other timing parameters are changed.

84

As a result, modeling and resolving bus contention in software rather than in the

memory access protocol allows for a faster experimentation and prototyping process

when investigating novel memory technologies that do not already have established

protocols. Over time, the feature set of OMS was extended to enable it to simulate

other non-volatile technologies such as PCM. This included adding a DRAM-like

addressing mode as an alternative to the flash-style address translation and adding

the option to disable garbage collection. All of these features combined allow OMS

to easily simulate any non-volatile technology, even purely theoretical technologies

with timings that did not resemble any existing devices.

However, as the work into multi-level memory systems progressed, it became

apparent that alternative versions of DRAM, such as LPDDR and RLDRAM, would

also be of interest. In order to be able to do that, though, several major changes

needed to be made to OMS in order to allow for the accurate simulation of DRAM

devices. One of the more complex changes that needed to be made had to do with

the difference in access protocols used by DRAM and flash systems. DRAM systems,

as we discussed in Chapter 3, use a fine grained access protocol that takes several

commands to perform a single memory access operation. Flash systems, on the other

hand, use a relatively simple protocol which only requires a single command to be

issued for a memory access operation. The differences in these two access protocols

can be seen in Figure 5.1. In general, the differences in access process do not affect

much of the overall system usage; commands are issued, devices and channels are

busy for some amount of time and then data returns. However, the complex DRAM

access protocol allows for data to be returned at different times in the overall access

85

process. As can be seen in Figure 5.1, the data is sent back towards the end of

an open page DRAM access while it comes back towards the middle of a closed

page access. And both of these situations are different than a flash accesses where

the data always comes back after the read access time is complete. Therefore, in

order to develop a simulator that was capable of modeling all three kinds of memory

access processes some method was needed to generalize the timings involved.

Data Sense Bank Access Data Restore Array Precharge

Data Burst

Col Read PrechargeCommands

Bank Activity

Bus Activity

Time

tRC

tRAS

Closed Page DRAM Read

Bank AccessData Restore Array Precharge

Data Burst

Col ReadPrecharge

Time

tRC

Open Page DRAM Read (Miss)

Data Sense

Data Sense

Row Access

Row AccessCommands

Bank Activity

Bus Activity

Array Read

Data Burst

Read

Time

Die Busy

Flash Read

Commands

Bank Activity

Bus Activity

Array Read

Data Burst

Read

Time

Memory Busy

Generalized Access

Commands

Bank Activity

Bus Activity

Time to Data

Figure 5.1: A comparison of different memory access timings).

The timing model that is used by OMS is pictured in Figure 5.1. This model

86

simplifies the access process of all memory technologies into two components: the

time that the memory is busy and the time until data is returned. By specifying

these two times, it is possible to simulate all three of the access processes that have

been discussed thus far as well as any other processes that a designer might wish

to simulate. By combining this simplified access model with its detailed channel

simulation, OMS is able to generalize any memory technology by specifying signif-

icantly fewer parameters than are normally required to describe the timings of a

typical DRAM system. As a result, OMS loses a small amount of accuracy in terms

of command scheduling but still provides an accurate performance estimate overall

because it models the resource contention aspects of the memory system that seem

to dominate its behavior. We quantify this difference in accuraccy by comparing

OMS to DRAMSim2.

Some additional modifications needed to be made to OMS to enable the simu-

lation of DRAM-based technologies including refresh support, more complex device

interfaces, and open page support. One of the biggest differences between DRAM-

based devices and the non-volatile devices that OMS was developed to simulate is

the need for refresh. Refresh support was added in the form of a new refresh com-

mand and logic in the controller to issue the refreshes to the appropriate units at the

appropriate times. In addition, DRAM devices generally feature a separate com-

mand and address bus that is distinct from the data bus while flash devices utilize a

single bus for all data, command and address data. Support for this more complex

device interface was also added to the controller and device objects in OMS after

it became clear that it could also have a notable impact on performance. Finally,

87

NAND flash generally does not include a row buffer in the same way that DRAM

does and so initially OMS had no concept of an open page system that would en-

able faster accesses to the same row. In DRAM systems, though, sometimes open

page or closed page approaches can have a significant impact on the performance of

the system so we added some additional timing and row tracking code to the con-

troller to model open page systems. With these changes OMS was able to simulate

DRAM-like systems with an average absolute value difference of 8% compared to

DRAMSim2, which has been hardware verified. Details regarding the verification

of OMS against DRAMSim2 can be found in Appendix B.

5.2 HybridSim

Another critical portion of the system which required custom simulation was

the cache controller that schedules operations between the DRAM cache and the

backing store. Due to the novel nature of multi-level memory systems this controller

simulation had to be specially developed. Like OMS, the controller simulator, Hy-

bridsim, was written in C++ and features software objects and parameters for

every significant logical aspect of the system. This allows the designer a great deal

of freedom when investigating different multi-level system designs. For instance, it

is possible in HybridSim to build a system which features a 15 way set associative

cache with an access granularity of 64 bytes and a backing store with an access gran-

ularity of 1024 bytes. HybridSim also features some prefetching techniques such as

sequential prefetching and stream buffers.

88

The simulator was originally developed by Jim Stevens, another member of

the memory research lab at UMD. However, in the course of this work several

significant modifications needed to be made to the simulator. These modifications

generally related to the metadata storage of the DRAM cache and to the way in

which HybridSim interfaced with the other simulators in the suite. HybridSim

was originally designed with the assumption that the tags and other cache meta

data would be stored in a small separate memory that could be quickly accessed.

Additionally, methods of storing and accessing the tags for the DRAM cache had to

be added to the simulator to enable the work that is presented in the DRAM cache

portion of this dissertation. The goal of that was to investigate different ways of

collocating tags and data in the DRAM in an efficient way. To that end, HybridSim

was modified to to simulate a DRAM cache that requires a separate access for the

tags and data in order to perform a cache access. A direct mapped DRAM cache

design similar to Alloy cache [81] was also implemented to allow for comparisons

against this latency optimized design. Finally, the Combo-Tag design proposed by

this work was also implemented in HybridSim in detail. This required extensive

changes to the cache address translation code in HybridSim as well as the addition

of the tag buffer and it various replacement policies.

HybridSim was also modified to allow it to utilize different memory simulators

in different positions of the main memory hierarchy. For the work in this disser-

tation the two memory simulators that are used are OMS and DRAMSim2 [96], a

cycle accurate, hardware verified DRAM memory system simulator. HybridSim was

originally designed to use DRAMSim2 as the cache and OMS as the backing store.

89

However, other organizations are possible which would require OMS to simulate the

cache technology (such as RLDRAM) and DRAMSim2 to simulate the backing store

technology (such as LPDDR). To enable investigations into many different multi-

level memory system technology choices, several different versions of HybridSim

were created for each possible combination of the two memory simulators.

5.3 Full System Simulation

The full system simulation environment used in this work is an extension of the

MARSSx86 cycle-accurate full system simulator, which is comprised of the PTLSim

CPU simulator and QEMU emulator sub-components. PTLSim models an x86-64

Multicore processor with full details of the pipeline, micro-op front end, trace cache,

reorder buffers, and branch predictor. This processor simulation also includes a

full cache hierarchy model and implements several cache coherency protocols. In

addition, MARSSx86 utilizes QEMU [97] as an emulation environment to support

any hardware not explicitly modeled by the full system environment, such as net-

work cards and disks. This full system simulation environment is able to boot a

full, unmodified operating system, such as any modern Linux distribution, and run

standard benchmarks such as PARSEC or SPEC. The simulator captures both the

user-level and kernel-level instructions, unlike other simulations that are user-level

only, enabling the study and modification of the operating system.

To model the memory system, DRAMSim2 has been integrated into MARSSx86

to service last level cache misses. Like OMS, DRAMSim2 is highly parameterizable

90

PTLSim QEMU

Detailed CPU
Timing Simulation

Memory
Interface

IRQ
Handler

Functional CPU
Emulation

Peripheral
Device

Emulation

Disk
Interface

Open Memory
Simulator

HybridSim

DRAMSim2

Detailed Cache Controller
Simulation

Detailed Cycle Accurate
DDRx DRAM Simulation

Last Level Cache

Detailed Memory Simulation

Non-Volatile Backing Store

Hybrid/Multi-Level
Simulator Configuration

Figure 5.2: Block diagram of a simulation environment for systems with a multi-level

organization. The placement of the memory simulators (DRAMSim2 and OMS) in

this diagram represent only one of several possible organizations.

91

MARSSx86

PTLSim QEMU

Detailed CPU
Timing Simulation

Memory
Interface

IRQ
Handler

Functional CPU
Emulation

Peripheral
Device

Emulation

Disk
Interface

Open Memory
Simulator

HybridSim

DRAMSim2

Detailed Cache Controller
Simulation

Detailed Cycle Accurate
DDRx DRAM Simulation

SSD Buffer Cache

Detailed Memory Simulation

SSD Storage Array

DRAMSim2

Detailed Cycle Accurate
DDRx DRAM Simulation

Main Memory

PCIe_SSD

PCIe Root Complex Simuation

SSD Simulator Configuration

Figure 5.3: Block diagram of the simulation environment for systems with an SSD

organization.

92

and allows for the modification of DRAM memory system organization, including the

number of channels, ranks, banks, and so on. The multi-level memory system sim-

ulator suite extends the base MARSSx86 + DRAMSim2 system further by adding

OMS and HybridSim. OMS provides the detailed simulation of the non-volatile or

non-traditional DRAM memory systems that are used in the main memory hierar-

chy. HybridSim simulates the memory controller for a hybrid main memory system,

providing cache management mechanisms to utilize the DRAM and non-volatile

memory systems efficiently. A block diagram of the multi-level main memory ver-

sion of our simulation suite is shown in Figure 5.2. The version of the simulator

shown in Figure 5.2 is organized so that DRAMSim2 is providing the DRAM cache

simulation while OMS is performing the non-volatile backing store simulation. This

was the original way in which the simulation suite was organized. However, exten-

sions to HybridSim have made it possible to utilize both DRAMSim2 and OMS to

simulate either level of the main memory hierarchy.

Finally, to understand the performance of the hybrid main memory relative to

current systems that utilize solid state drives, we created a full-system SSD simu-

lation and integrated it into MARSSx86. The block diagram of the SSD version of

our simulation is shown in the bottom of Figure 5.3. In this configuration, the main

memory consists only of a typical DDRx DRAM main memory system simulated

using DRAMSim2. Pages that then miss the DRAM main memory are requested

from an SSD by the unmodified OS that is running in the full system simulation.

The SSD simulator is implemented as a module wrapped around HybridSim called

PCI SSD that simulates the host interface and DMA engine simulation. The SSD

93

model also explicitly simulates direct memory access (DMA) via a callback to the

DRAMSim2 main memory. The addresses for these DMA requests are extracted

from QEMU’s scatter-gather lists. These lists consist of pairs of pointers and sizes

to enable the DMA request to access non-contiguous locations in the DRAM ad-

dress space. The work developing the PCI SSD wrapper was primarily performed by

Jim Stevens. To the best of our knowledge, this simulation suite provides the first

full-system SSD simulation. Prior SSD simulation work [98, 99] exclusively utilized

trace-based simulation to study SSD performance.

94

Chapter 6: Overall System Organization Analysis

CPU

On-Die
Cache

Hierarchy

Off-Die
Main

Memory
Hierarchy

Hybrid/Multi-Level System Organization
Hybrid uses a large shared L3 cache, a last-level DRAM

cache, and an extremely large non-volatile memory-based
main memory

State of the Art Enterprise System Design
Current servers use shared L3 caches, large DDRx DRAM

main memories, and PCIe SSDs as extremely large backing
stores

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or

eDRAM

Shared
DRAM Cache

(~128MB – 512MB
In-Package or

~10-100GB Off-Chip)

Main Memory
Direct Hardware Access
Non-Volatile Memory

(~1-10TB)

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or

eDRAM

CPU

I/O
Subsystem
Software
Access via
Operating

System

SSD
NAND Flash
(~1-10TB)

Main Memory
DRAM

(~10-100GB Off-Chip)

OS

Figure 6.1: Hybrid organization versus a typical enterprise-class SSD organizataion

The first goal of this work is to better understand how certain features of the

underlying hardware architecture or workloads affect the performance of systems

that utilize either a software or a hardware managed DRAM cache. To achieve

that understanding we began by identifying the two principle factors that affected

performance in both types of system: the miss rate of the DRAM cache and the

average hit/miss latency ratio. The experiments that make up this study therefore

95

focus on the features that affect those two principle factors such as backing store

latency, cache size, associativity, etc. Together these experiments provide a clear

picture of which architectural and workload features benefit or harm the performance

of both SSD and Hybrid systems and why. For the purposes of this study we do

not focus on any particular backing store technology but instead examine points of

interest on the range of possible backing store latencies.

6.1 Evaluation Methodology

The system that we use to perform the experiments in this chapter is described

in Table 6.1. For these studies we use the MARSSx86 simulator to perform full sys-

tem simulations. We use MARSSx86 here because it captures both the user-level

and kernel-level instructions, unlike other simulations that are user-level only, en-

abling the study of the operating system. The memory systems in this work are

modeled with HybridSim, OMS, and DRAMSim2. For the SSD portions of these ex-

periments we utilize our PCI SSD module which allows us to use HybridSim, OMS,

and DRAMSim2 to model the internals of a typical SSD. The SSD implementation

also uses an AHCI driver instead of the default IDE drivers in QEMU. This enables

Native Command Queueing and allows the SSD-based system to take advantage of

hardware parallelism.

96

Table 6.1: Baseline Simulator Configuration

Processor

Number of cores 4-core

Issue Width 4

Frequency 2GHz

On Chip Caches

L1I (private) 128 KB, 8-way, 64 B block size

L1D (private) 128 KB, 8-way, 64 B block size

L2 (private) 256 KB, 8-way, 64 B block size

L3 (shared) 32 MB, 20-way, 64 B block size

In-Package DRAM Cache

Organization 16-way, 4 KB page size

DRAM Bus Frequency DDR3-1333

DRAM Bus Width 64 bits per channel

DRAM Channels 1-16

DRAM Ranks 1 Ranks per channel

DRAM Banks 8 Banks per rank

Row Size 1024 Bytes

tCAS-tRCD-tRP-tRAS 10-10-10-24

Backing Store

Organization 4 KB page size

Backing Store Bandwidth PCIe 3.0 x16 equivalent

6.1.1 Benchmarks

To simulate random read access, we utilize the GUPS and MMAP benchmarks.

GUPS is based on an implementation of the Giga-Updates Per Second benchmark

97

by Sandia National Labs [100]. In our experiments, this benchmark allocates a table

that is one eighth the size of the simulated backing store in the virtual memory space

and then randomly updates locations within it 5000 times. Since the table is larger

than main memory, GUPS forces the virtual memory system to swap the tables

pages to the backing store.

Our MMAP experiment maps a file that is half the size of the simulated

backing store into the virtual address space with the mmap() system call and then

performs 10000 random reads to the file. Once again, since the file is larger than

main memory, the file system cannot read the entire file into the buffer cache and is

forced to read the random addresses from the backing store. For the Hybrid memory

version, we overlay a filesystem on top of the memory address space using a tmpfs

ramdisk. The purpose of MMAP is to provide a filesystem workload in contrast to

the swapping workload of GUPS so that we can understand different aspects of OS

overhead when comparing the SSD and Hybrid architectures.

Both MMAP and GUPS also incorporate OpenMP to allow for multiple threads

performing random accesses to utilize more parallelism at the hardware level for our

study. To understand the effect of varying the degree of random access within our

workloads, the gups benchmark also has a random probability, which determines

if the next access will be sequential following the current access or if it will be an

independent random access. Finally, because both of these benchmarks are run to

completion in our tests, execution cycles are used to measure performance.

To test the Hybrid and SSD systems with a large sequential workload, we built

the microbenchmarks DD READ and DD WRITE based on the dd Linux utility.

98

Both benchmarks measure the time required to move a 64 MB file between the

backing store and DRAM. For DD READ, the 64 MB file is created and then forced

to the backing store with sync and cache flush operations. The dd program is then

used to copy that file into memory. In the case of the Hybrid memory, a file system

is created using a tmpfs ramdisk and we force the sections of main memory that

make up the ramdisk to be flushed to the backing store before the DD READ starts.

DD WRITE performs a dd run to copy data from /dev/zero and write the data to

the disk. For the SSD case, we ensure that the DD WRITE actually writes to the

disk rather than the RAM buffer cache by using the conv\=fdatasync option to dd.

For the Hybrid case, we use a special MMIO operation to tell the memory controller

to flush dirty pages in the cache to the backing store.

Together we refer to these four workloads as the targeted benchmarks as their

intent is to isolate certain behaviors of the systems in question.

To provide context for the results from our targeted workloads, we also uti-

lize several representative benchmarks from the Filebench workload generator [101].

Filebench is a benchmarking tool for the storage system that utilizes scripts written

in the Workload Modeling Language (WML) to specify file system interactions for

different types of workloads [102]. In WML, users specify a set of processes, which

can contain multiple threads, to interact with a number of filesets. The filesets can

contain any number of files and any desired directory depth necessary to simulate

files used by a real application. Each thread performs a sequence of file operations

such as create, delete, read, write, and append, as well as operations to synchronize

between threads. Filebench workloads execute with the run command that specifies

99

the number of seconds to execute. Threads repeat their operations in a loop until

the time expires. Therefore, unlike the targeted benchmarks, performance for these

workloads is measured in IOP/S because they run for a fixed time of 250 ms in the

ROI of each workload.

Filebench provides a large number of pre-defined WML files to model common

workloads. In this chapter, we chose to utilize the four pre-defined full application

workloads: fileserver, varmail, webproxy, and webserver. Fileserver creates a large

number of threads that perform a sequence of create, write, append, read, and stat

operations on a large number of files to simulate the I/O operations on a typical file

server. Varmail simulates a mail server by having a moderate number of threads

interact with a large set of small files (which simulate emails) with appends, reads,

and deletes. Webproxy simulates a proxy server by having a large number of threads

read, write, and delete a large number of small files, which simulates proxy caching

operations, and an append operation to a log file. Webserver has a large number

of threads perform a number of file reads and an append to a logfile to simulate a

website being uploaded to a large number of simultaneous users.

6.2 The Effect of Prefetching

We begin our investigation by looking at the effects of prefetching on the

performance of the Hybrid approach compared to the SSD approach. We noted

in some of our earliest observations of the SSD based system that the operating

system could, in some circumstances, begin to very aggressively prefetch data from

100

the SSD. This led us to conclude that some considerable speedup could be achieved

by introducing prefetching to the Hybrid system in an attempt to minimize the

number of misses that occur in the DRAM cache. To investigate the impact of

prefetching we performed an experiment where we gradually increased the size of

the prefetching degree in the Hybrid system in order to determine the extent to

which prefetching could improve the performance of the hybrid system.

0

5000

10000

15000

20000

25000

SSD
IDE

SSD
AHCI

Base 4 8 16 SSD
IDE

SSD
AHCI

Base 4 8 16 SSD
IDE

SSD
AHCI

Base 4 8 16 SSD
IDE

SSD
AHCI

Base 4 8 16

Fileserver Varmail Webproxy Webserver

IO
P

/S
 (

la
rg

e
r

is
 b

e
tt

e
r)

Hybrid Prefetching Degree

SLC MLC

Figure 6.2: The effect of different degrees of prefetching on Hybrid system perfor-

mance for the representative file system benchmarks. We include SSD performance

values for comparison. The Y-Axis is IO operations per second, so larger is better.

Figure 6.2 shows the results of our prefetching experiment compared to the

SSD performance for systems with both SLC and MLC flash backing stores. From

this graph we can see that prefetching helps to provide the performance needed to

bridge the gap between the baseline Hybrid system and the SSD system in 3 of

the 4 file system workloads. This makes sense because, as we have mentioned, the

SSD system is already aggresively prefetching so adding prefetching to the Hybrid

101

system simply makes them more equal in terms of features. The results indicate that

even an aggressive sequential prefetching degree of 16 pages provides a performance

improvement in all cases so for the rest of this chapter we will use a prefetching

degree of 16 pages for the Hybrid system. We chose not to extend the prefetching

degree beyond the 16 page size because increasing the number of prefetches greatly

increases the simulation time and because our initial investigations showed dimishing

returns beyond the 16 page size.

6.3 The Effect of Backing Store Latency

Having established the importance of prefetching, we continue our investiga-

tion by looking at the effects of the backing store latency on the performance of

the SSD and Hybrid approaches. This is a logical next step since the difference

between storage and memory technologies has traditionally largely been determined

by their access latency. The potential to task switch and perform useful work while

a page fill is taking place makes the SSD approach better suited to longer latency

technologies. However, it is unclear exactly how long that latency should be in or-

der to see any benefit from the SSD approach. So, we are looking for the crossover

point where the backing store is too slow for the Hybrid approach and better suited

to the SSD approach. To find this crossover point, we steadily increase the read

latency of the backing store by a factor of 10 from 125 to 12500 ns. In addition, we

also include some additional latencies at particular points of interest. For instance,

25000 ns is the read latency of SLC NAND Flash and 75000 ns is the read latency

102

of MLC NAND Flash. Because most non-volatile technologies feature asymmetric

read to write latencies, we use a write latency that is 10x the read latency for these

experiments. However, with the exception of DD Write, the benchmarks in this

study do not feature write traffic to the backing store as a system bottleneck.

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1.40E+09

125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000

GUPS MMAP DD_Read DD_Write

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
e

tt
er

)

Backing Store Read Latency (ns)

Hybrid - 1 thread

SSD - 1 thread

Hybrid - 16 thread

SSD - 16 thread

Figure 6.3: The effect of different backing store read latencies on System Perfor-

mance for the targeted benchmarks. The Y-Axis is the execution time in cycles, so

smaller is better. DD Read and DD Write are single threaded only.

0

5000

10000

15000

20000

25000

125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000

Fileserver Webserver Webproxy Varmail

IO
P

/S
 (

la
rg

e
r

is
 b

e
tt

e
r)

Backing Store Read Latency (ns)

Hybrid

SSD

Figure 6.4: The effect of different backing store read latencies on System Perfor-

mance for the representative file system benchmarks. The Y-Axis is IO operations

per second, so larger is better.

Comparing the results in Figure 6.3 it is clear that for the random workload

103

GUPS, the Hybrid architecture performs considerably better at all backing store

latencies. This suggests that the cost of a cache miss is considerably greater for

the storage implementation than it is for the memory one. In addition, the Hybrid

approach is clearly advantageous at all backing store latencies for the single threaded

case of MMAP. However, increasing the thread count from 1 to 16 improved the

performance of the SSD based system considerably more than the Hybrid system

and resulted in the SSD system out performing the Hybrid system. This was not

the case with GUPS and that suggests that tmpfs may be responsible for some of

the lost performance in the multi-threaded Hybrid MMAP runs.

DD Read shows the performance of the SSD to be slightly faster than the

Hybrid system. At this point we hypothesized that the superior sequential per-

formance of the SSD system was probably due to its prefetching and associativity

which helped to keep its miss rate lower. This also explains why DD Write does not

show a similar advantage for the SSD. The prefetching and associativity of the stor-

age implementation cannot help with a write heavy workload even if it is streaming.

Also, because the writes are triggering page faults and cache misses there is a slight

edge for the Hybrid system in the DD Write benchmark due to the additional page

fill overhead suffered by the storage system.

The results in Figure 6.4, however, tell a slightly different story. In these repre-

sentative workloads we see the SSD system pulling ahead in quite a few benchmarks.

At MLC latencies the Hybrid system is only better in the Varmail workload. This

indicates that many realistic workloads benefit from the prefetching and associa-

tivity advantages that enabled the SSD system to outperform the Hybrid system

104

in the DD Read workload. Also, even though DD Read is only one of three target

workloads, this result demonstrates how important this workload is for capturing

the more easily prefetched and cached address streams of many common storage

workloads.

An important feature of this experiment is that we can see the crossover points

where the performance of the storage system surpasses the performance of the mem-

ory architecture. The crossover points are really only visible in the representative

workloads as the targeted workloads tend to always favor either the SSD or the Hy-

brid system. Among those workloads that have a crossover point we see that at SLC

latencies the Hybrid and SSD architectures are very close in terms of performance

while the storage system performs much better at MLC latencies in almost all cases.

These results show that technologies such as SLC NAND Flash could be used more

aggressively as the backing store technology of some Hybrid systems. SLC NAND

backed Hybrid systems break even with SSD systems in most cases and achieve

significant performance gains in others.

6.4 The Software Overhead of the Storage System

Table 6.2: Software and Hardware Access Time
Total Time (ns) Hardware Time (ns) Software Time (ns)

Mean Stdev Mean Stdev Mean Percent Software Delay

SLC Latency 85360.93 33837.39 38900.67 6689.59 46460.26 54.43

MLC Latency 162148.72 61060.33 88750.12 13016.83 73398.60 45.27

From the latency sweep results we can clearly see that at lower backing store

105

latencies there is some overhead in the storage system that is negatively affecting

its performance. In order to characterize the nature of the storage overhead we

need to quantify the contribution of the software portion of a storage access. We

accomplished this by instrumenting our MMAP benchmark to log when a request

began and ended at the application level. We created the instrumentation by using

x86 rdtsc instructions that ran immediately before and after each access. We also

implemented code in the SSD host interface to record when accesses began and ended

at the hardware level. The hardware time includes the host interface time, the time

it took to process the access in the SSD controller, and the time it took to perform

the DMA. Since the raw time from the software level logs include the hardware time,

we must subtract the hardware time from those raw values to compute the actual

time spent processing the access in software. To provide an accurate picture of the

associated delays, 10000 accesses were measured and their delays were averaged.

Also, the same analysis was performed with a backing store that had a read latency

roughly equivalent to SLC NAND Flash (25000 ns) and MLC NAND Flash (75000

ns). The resulting values are presented in Table 6.2.

From these results it is clear that the software level of a storage system access

represents a significant portion of the total delay. As the latency of the backing

store increases, the relative percentage of the delay that is due to software decreases

because it remains relatively constant. However, even at MLC NAND Flash latencies

the software delays represent almost half of the time it takes to access the backing

store.

It is also worth pointing out that the standard deviation of the total delay is

106

roughly five times the standard deviation of the hardware delay. This indicates that

the software layer introduces a significant amount of nondeterminism to the system.

This same effect can clearly be seen in our other results where the traditional SSD

approach exhibits considerably more nondeterminism than the Hybrid architecture.

6.5 The Effect of Random Access

The impact of high miss rate applications on the performance of both Hybrid

and SSD systems led to questions about the importance of miss rate on the overall

performance of both systems. As a result, the following experiment was developed

to gauge the effect of varying degrees of randomness in the memory access pattern

on both the Hybrid and SSD systems when they are swapping. For this experiment,

each access has a probability of being either sequential or random and by changing

the probability, we can adjust the degree of randomness in the workload. For this

experiment we held the latency constant at 25000ns for all data points.

In Figure 6.5, we can see that only 10 percent random reads introduces signifi-

cant performance degradation compared to the purely sequential case. This suggests

that even programs which are largely sequential can benefit from the Hybrid archi-

tecture’s efficient handling of random reads. In addition, the multithreaded version

of the workload appears to introduce additional randomness that further degrades

performance for the SSD versions of the system when the workload is relatively se-

quential. This is because the relatively sequential threads interfere with one another

and produce memory traffic that is largely random. However, as the randomness of

107

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

Percent Random Access

Hybrid 1 Thread

SSD 1 Thread

Hybrid 16 Thread

SSD 16 Thread

Figure 6.5: The effects on system performance from different percentages of random

access for the GUPS benchmark. The Y-Axis is the execution time in cycles, so

smaller is better.

the workload increases the performance benefits of the multithreaded version begin

to outweigh the randomness introduced by the multithreading interference. This

transition appears to occur at around 70 percent random access. However, the con-

siderable involvement of the OS in the SSD version of the system introduces some

nondeterminism to the results. The Hybrid architecture, on the other hand, is much

more deterministic due to the reduced dependence on the OS. The Hybrid architec-

ture also benefits from the additional threads for all levels of random access. As the

degree of randomness increases, the performance boost provided by the Hybrid ar-

chitecture increases from around 2X at the 10 percent randomness point to 5x when

the workload is totally random. Furthermore, the Hybrid architecture handles the

purely sequential workload almost as well as the SSD despite lacking many of the

optimizations that have been developed for sequential disk accesses.

108

It is important to note though that the performance differences seen in this

experiment do not reflect the results from the representative workloads. In those

workloads the SSD performed better or equal in most cases at 25000ns but in this

experiment it is surpassed by the Hybrid organization at just 10 percent random

reads. To further investigate these results we next analyze the aspects of the cache

that tend to affect the miss rate in an effort to determine if some other factor besides

randomness is contributing to the representative workload performance of the SSD.

6.6 The Effect of Associativity

Associativity is often an effective way to reduce the miss rate of a workload.

However, while the page table of the OS is functionally fully associative the Hybrid

system was limited to 16 ways of associativity in the prior experiments. To investi-

gate the effects of associativity we swept the degree of associativity available to the

Hybrid system from direct mapped to 64 way set associative. For this experiment

and the remaining two experiments we set the backing store latency to 17000 ns.

This value was selected because it represents a middle value that does not overly

favor any particular aspect of the system that has been studied thus far.

The results in Figure 6.6 show that associativity has a relatively minimal effect

on performance. Both MMAP and DD Read experience a roughly 30% speedup

as a result of increasing the associativity from direct mapped to 64 way. It is

interesting to note that the multi-threaded workloads appear to benefit more from

the added associativity. This indicates that the different threads are creating some

109

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

1 2 4 16 64 1 2 4 16 64 1 2 4 16 64 1 2 4 16 64

GUPS MMAP DD_Read DD_Write

Ex
e

cu
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
e

tt
er

)

Cache Associativity

Hybrid - 1 thread

Hybrid - 16 thread
> 3.00E+08

Figure 6.6: The effect of different levels of DRAM cache associativity on the per-

formance of the Hybrid system for the targeted benchmarks. The Y-Axis is the

execution time in cycles, so smaller is better.

set contention in the lower associativity cases. However, the multi-threaded MMAP

runs exhibit some additional non-determinism as a result of the OS scheduler and

so it is difficult to accurately gauge the precise speedup. Finally, the direct mapped

and 2 way associative runs of DD Write failed to complete in all attempts. The

additional write pressure on the backing store created by the lack of associativity

seems to have overwhelmed the backing store resulting in extremely long access

latencies.

Given the 30% improvement seen in DD Read it seemed that the superior

associativity of the storage implementation might have been a contributing factor

to its performance. So, we repeated this same experiment with the representative

workloads. However, we found that only fileserver exhibited any sensitivity to as-

sociativity. Moreover, fileserver was slowed by reducing the associativity to direct

mapped but did not receive any boost from increasing associativity beyond 4 way.

Therefore, associativity on its own could not be the source of the SSD’s performance

110

advantage.

6.7 The Effect of Cache Size

Another possible source of misses could come from the cache being too small

for the working set. However, this can be mediated by clever cache management

schemes that retain only the most useful data thereby maximizing the available

cache space. By varying the size of the cache we can expose the cache management

scheme and determine how effective it is at utilizing the space in the cache.

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

8x 4x 2x 1x 0.5x

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

Workload Size Relative to Cache Size

Hybrid - 1 thread

SSD - 1 thread

Hybrid - 16 thread

SSD - 16 thread

Figure 6.7: The effect of cache size relative to workload size on System Performance

for the GUPS targeted benchmark. The Y-Axis is the execution time in cycles, so

smaller is better.

We can see right away in Figure 6.7 that the cache management schemes in

the SSD and Hybrid approaches are doing something very different. The size of

the cache has almost no effect on the Hybrid system while the SSD benefits greatly

111

from increasing the cache size. This seems to confirm that the SSD is prefetching

very aggressively as the randomness of GUPS should limit the effectiveness of most

prefetches. We confirmed this by checking the size of the requests being issued by

the OS and noted that they can grow to be quite large (on the order of megabytes).

By prefetching so much the SSD is benefiting from a birthday attack-like effect, in

which prefetching the pages from the backing store is helping some future accesses

with a certain probability. However, this prefetching results in greatly reduced

performance when the cache is small because the replacement policy is unable to

prevent the cache from being polluted by useless prefetched data.

6.8 The Effect of Cache Concurrency

In addition to potentially polluting the cache, aggressive prefetching can also

place a greater strain on the concurrency of the cache. In order to determine if the

available cache concurrency was a bottleneck we performed an experiment where we

swept the number of channels in the DRAM cache from 1 to 16.

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

GUPS MMAP DD_Read DD_Write

Ex
e

cu
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
e

tt
er

)

Number of Cache Channels

Hybrid - 1 thread

SSD - 1 thread

Hybrid - 16 thread

SSD - 16 thread

Figure 6.8: The effect of cache concurrency on system performance for the targeted

benchmarks. The Y-Axis is the execution time in cycles, so smaller is better.

112

From the results in Figure 6.8 we can see that increasing the available con-

currency in the cache does not significantly speed up most of the SSD runs. So, we

can be reasonably sure that though the SSD is exerting a lot of prefetch pressure

on the cache, that pressure is not interfering with normal requests in most cases.

However, the single threaded GUPS SSD benchmark shows a nearly 2x speedup

due to increasing the concurrency. This suggests that cache pressure is a major

bottleneck for the SSD in the single threaded GUPS runs. The ability to switch

to other threads while waiting on a DRAM cache accesses appears to negate this

effect in the multithreaded GUPS runs. Interestingly, some of the Hybrid runs also

show some improvement with increased cache concurrency suggesting that the Hy-

brid system is using the cache less efficiently in certain workloads. In particular,

the MMAP workload shows a considerable speed up. This could account for some

of the performance difference between the SSD and Hybrid systems that was noted

earlier for this workload.

6.9 Comparison to DRAM-only

Finally, we are also interested in how both of the Hybrid and SSD systems

compare to a system that had enough DRAM to store the entire workload of the

benchmarks we’re using. This test gives us an idea of how closely these two al-

ternative systems come to the traditional main memory architecture in terms of

performance. In addition, we perfromed these experiments with SSDs using both

the older IDE drivers and the newer AHCI drivers to demonstrate the impact that

113

driver efficiency can have on disk performance. We used the representative file

system benchmarks for these tests because they provide the most accurate repre-

sentation of the sort of traffic that real world system might encounter.

0

0.2

0.4

0.6

0.8

1

Fileserver Varmail Webproxy Webserver Average

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

SSD IDE SLC

SSD AHCI SLC

Hybrid SLC

SSD IDE MLC

SSD AHCI MLC

Hybrid MLC

Figure 6.9: The performance of both the Hybrid and SSD system organizations

normalized to a system with more than enough DRAM to contain the working sets

of each of the workloads.

The results in Figure 6.9 show that even with the considerably longer access

latencies of SLC flash, the Hybrid system is able to achieve roughly 50% of the

performance of the DRAM only system on average. We can also see that employing

the AHCI driver greatly improves the efficiency of the SSD as it enables native

command queuing and allows the system to fully utilize the available hardware

parallelism.

6.10 Summary

In this chapter, we have presented a series of experiments which clearly il-

lustrate the advantages and disadvantages of Hybrid and SSD-based multi-level

memory architectures. These experiments have demonstrated that SSD-based sys-

114

tems perform best when workloads are highly sequential, DRAM cache sizes are

large, and backing store technologies are slow. Conversely, the Hybrid-based system

performs best when the workload is more random and the backing store is fast.

In addition, we have quantified the direct delay introduced by the software during

storage system access and have shown that the total cost of a software overhead (file

system, task switch, etc.) is a significant component of the storage approachs access

latency. Finally, we have also shown that slower technologies such as SLC NAND

Flash can be successfully utilized in more aggressive Hybrid systems. Overall, this

work has shown that there is a clear place for both the hardware and software man-

aged approaches to building multi-level memory systems. Furthermore, by taking

certain specific system and workload attributes into account it is possible to safely

decide which approach is best suited to a particular use case.

115

Chapter 7: DRAM Caches

Stacked
DRAM
Cache
Layers

Processor
Cores

Silicon Interposer

Processor Cores Cache Interface (WIO) DRAM Cache Layers

Stacked DRAM Cache Side-by-side DRAM Cache

Figure 7.1: Some examples of recently proposed in package DRAM caches.

The advent of in-package DRAM caches has opened the door for a wide variety

of potential system architectures which utilize different memories and organizations

to build faster, larger, and more energy efficient main memory systems. However,

DRAM caches have their own set of unique design decisions that are different from

both memory and cache design considerations. This places the design of DRAM

caches in an interesting space that simultaneously involves cache-like trade-offs such

as tag lookup time versus miss rate and main memory concerns such as channel

utilization. The interplay between these different aspects of the DRAM cache ar-

chitecture can result in some complex performance effects at the system level. As

we have seen in the previous chapter, the DRAM cache often plays a significant role

116

in the performance of the multi-level main memory system. Therefore, effectively

balancing all of these concerns is critical to the performance of the cache and to the

performance of the system as a whole. In this chapter, we will provide an overview

of these different DRAM cache design considerations.

7.1 DRAM Cache Design

The design of DRAM caches involves both cache-like and main memory-like

design elements. In this section we will provide some examples of those decisions

and explain why they are important. In addition, we will also cover several design

considerations that are unique to DRAM caches.

Some of the cache-like design considerations that must be taken into account

when designing a DRAM cache include determining the degree of associativity, de-

ciding on a replacement policy, and settling on whether or not to use virtual ad-

dresses for either the tags or indexes of the cache. As is the case with SRAM

caches, implementing associativity in DRAM caches is a possible source of perfor-

mance, especially in systems with longer latency backing stores. In addition, in

some multi-level main memories the size of a cache fill from the backing store could

be potentially much larger than the block size of the cache. As a result, replacement

policies that take into account the differences in block size, fill size, and reuse dis-

tance of the DRAM cache are another important design consideration. Finally, like

other caches, the tags and indexes of the DRAM cache can be derived from virtual

or physical addresses. In all of the designs that we consider in this dissertation, we

117

use only physical addresses for both the tags and index because all of the requests

seen by the cache controller are for physically addressed memory accesses. However,

it is possible to conceive of a system that does not perform the virtual to physical

translation until after the DRAM cache level which would enable the utilization of

virtual tags or indexes in the DRAM cache.

The main memory-like design considerations are more related to the actual

structure of the DRAM memory that we are using to implement the cache and in-

clude providing enough bandwidth for the system, providing enough concurrency in

the system and deciding whether or not to provide open page support. A typical

DRAM transaction takes much longer to complete than a normal SRAM transac-

tion and so ensuring that there are enough concurrent units to satisfy all of the

outstanding requests at each point in time is very important. Also, because the

DRAM channel is shared between many different concurrent units it is critical that

there is enough bandwidth to handle all of the traffic. Finally, open page support

can provide some latency speedup in certain situations but can also result in lost

performance if the address stream does not take advantage of it. Therefore, imple-

menting an open page policy DRAM cache requires the design of an effective address

mapping scheme and the careful analysis of the types of workloads that the system

might encounter to ensure that the open page policy will result in a speedup.

118

RLDRAM Read Burst

Tag Fetch Data Access

RLDRAM Read BurstTags in DRAM

Data Access

RLDRAM Read BurstSRAM

Tag Fetch

Tags in SRAM

Tag and Data Access

RLDRAM Read Burst
Direct Mapped

(Alloy)

Figure 7.2: A comparison of the different tag access schemes for DRAM caches.

7.1.1 Meta-Data Storage

One of the most important decisions that must be made when designing a

DRAM cache is where to store the meta-data (such as tags and valid bits). The

simplest approach is to store the meta-data in SRAM, either on chip or off. By

storing the tags in SRAM we can ensure that the tag lookup time will be relatively

negligible compared to the data access time in the DRAM. However, the amount of

SRAM required to store all of the tags is prohibitively large. For instance in a 48-bit

address space, the tags for a 128MB cache would need roughly 6MB of SRAM for

storage. This represents a significant portion of the on-chip SRAM that is typically

used for caches. More importantly, though, the size of the SRAM tag store would

need to scale with the size of the DRAM cache. So, a 1GB DRAM cache would

need roughly 8x the SRAM to store its tags or 48MB, which is larger than most

CPU caches today. Clearly then, a straightforward SRAM tag store is impractical

in the long run and some other solution for tag storage is needed.

119

The primary alternative to an SRAM tag store is to store the tags in DRAM

along with the data. The problem with storing the meta-data in DRAM, though,

is that it negatively impacts the latency of the cache. This is because two DRAM

accesses are required for each cache hit access, one to fetch the tags and another to

fetch the data. Figure 7.2 provides a comparison of the DRAM access process to

the fast SRAM tag store access process. As we will see in the next chapter, this two

stage access process can result in a system that is relatively slow due to the long hit

access latency and the extra bandwidth utilization of this approach.

The most straightforward way to address the problem of storing meta-data

is to simply make the DRAM cache direct mapped. This eliminates most of the

meta-data that is needed in associative caches. However, a tag is still needed to

determine whether the data accessed is the desired data. Extending the size of a

DRAM cache access is one way that has been proposed to enable the fetching of

tags and data in the same operation [81]. Making the DRAM cache direct mapped

solves the problem of tag accesses but it introduces a potential problem of miss rates.

In many real world applications associativity is a valuable aspect of cache design

that can help to prevent a considerable number of misses. Removing the possibility

of associativity from the DRAM cache design space, therefore, is only acceptable

as long as the miss rate remains low for the DRAM cache or the miss penalty is

not significantly greater than the hit latency. The is the case in the current usage

model for DRAM caches today, which frequently pairs a high bandwidth in-package

DRAM cache with a low bandwidth DRAM backing store. The miss penalty in this

system organization is not that much worse than the hit latency and so the direct

120

mapped DRAM cache provides acceptable performance. However, as alternative

memory technologies are utilized to build the backing store, this miss penalty will

increase and so will the importance of associativity. So, in the long run, a direct

mapped DRAM cache may be unacceptable for many systems.

Storing all of the tags for the entire cache in an SRAM store has been shown to

be impractical. However, a middle solution exists that utilizes a smaller SRAM to

store only a portion of the total tags for the DRAM cache. The remainder of the tags

are then stored in DRAM. This approach has several advantages when compared

to the other three methods of storing meta-data that we have discussed thus far.

First, it allows for SRAM latency tag look ups in many cases, provided that the

correct tags are currently being stored in the small SRAM buffer. Second, it allows

for the size of the DRAM cache to scale without necessarily needing to increase the

size of the tag store at the same rate. And finally, it allows for the implementation

of associativity. The problem with this approach is that it is vital that the tag

store contain the desired tags most of the time. If the tags are not in the SRAM

tag store then they must be fetched from the DRAM and the overall access latency

approaches that of the tags in DRAM implementation. Therefore, maximizing the

efficiency of the SRAM tag store is the key to achieving good performance with

these designs.

121

7.1.2 Address Mapping

Another aspect of DRAM cache design that differs from SRAM cache design is

the importance of correctly utilizing the available concurrency and bandwidth in the

system. In SRAM caches the access times are relatively short compared to DRAM

and so it is relatively uncommon to have more than a few accesses in flight at any

given time. The DRAM system, on the other hand, features many separate levels of

concurrent units and often has many operations in flight. As a result, making good

use of the available concurrency is critical to achieving acceptable performance in a

DRAM system. This is generally accomplished by setting up the address mapping

of the DRAM controller so that it spreads the addresses evenly across as many

different concurrent units as possible. Because the underlying system is the same in

a DRAM cache, setting up the address mapping is also just as important. Treating

the DRAM cache as a flat address space without regard for its channels, ranks,

and banks can result in multiple accesses contending for the same resources and

significant increases in average access latency.

The row buffer in the typical DRAM device is yet another aspect of the DRAM

systems internal structure that needs to be kept in mind when deciding how to map

addresses. This row buffer can provide a significantly reduced access latency on

sequential accesses to the same row in the DRAM if the system is using a open row

policy. Therefore, ensuring the nearby addresses hit in the same row is an important

aspect to achieving good performance in open page DRAM systems.

Interestingly, many DRAM cache designs recognize the importance of the row

122

buffer and take care to utilize it with their mapping schemes. However, most of

the same designs appear to not incorporate channels, ranks, and banks into their

mapping schemes. And this can have serious negative impacts on performance as

utilizing channels is often more important than utilizing row buffers.

7.1.3 Commodity Versus Custom Parts

DRAM based main memory systems generally utilize commodity parts that

are relatively cheap and widely available. DRAM caches however, could potentially

be built using customized DRAM cache devices that provide features that are ben-

eficial to DRAM caches. One such potential customization would be to include

additional concurrency in the device, either by adding additional channels or banks

to the die. This additional concurrency would allow for more complex tag stor-

age organizations such as putting tags on dedicated channels or putting tags on

different channels from their corresponding data. This would enable simultaneous

access of both tags and data at the cost of significant bandwidth utilization. How-

ever, if the cache provided enough excess bandwidth, this simultaneous access might

provide enough of a performance improvement to justify the additional bandwidth

utilization. Also, the additional bandwidth could be used to enable more extensive

prefetching algorithms. The available bandwidth of current DRAM devices limits

the potential speedup that can be gained using prefetching because prefetching often

leads to a large increase in bandwidth utilization. This can result in longer access

latencies for demand accesses because all of the available concurrency and band-

123

width is being used by prefetch accesses. Increasing the available bandwidth and

concurrency could help to alleviate this problem and provide for more aggressive

prefetching approaches.

2KB DRAM Row

T T T D

T D T T T

Tags

D

One 29- Way Cache Set

64B

72B

Tag Data

8B 64B

64B

One 7-way Cache Set
Tag

Block 0
Tag

Block 1
Tag

Block 7
Unused. . .

7B x 6 = 42B 22B

Loh-Hill

Direct Mapped Cache

Alloy Cache

LAMOST

Figure 7.3: A comparison of some of the different possible row layouts for DRAM

caches.

An additional potential DRAM cache device customization could be to imple-

ment wider row buffers than the standard 2KB row buffers found in most DRAM

devices today. These wider row buffers could increase the chance of row buffer

hits, which could provide a significant performance improvement for many potential

DRAM cache designs. They could also allow for more complex data and tag layouts

which could be used to increase the available associativity without increasing the

number of tag accesses. For instance, in Figure 7.3 we can see several different ways

124

of organizing tags and data within a single DRAM cache row. One of the major

limiting factors of these designs is that the standard 2KB row buffer will only hold

32 64 byte DRAM accesses so any organization has to fit neatly into that number

of accesses. This limits the degree of associativity that can be implemented without

introducing unused portions of the DRAM row. By allowing for wider row buffers

or row buffers that are not a power of 2, more organizations and higher degrees of

associativity would be possible.

However, there are several downsides to utilizing custom DRAM cache parts.

One of the primary concerns facing the development of custom parts is that they

would have be specially fabricated and could therefore be very expensive. This

is because such special parts would not benefit from the economy of scale that

helps keep most memory prices down. Also, adding wider row buffers or additional

concurrency would increase the overall complexity of the device significantly and

that could reduce the potential density of the devices and also increase their cost.

As a result, custom DRAM cache devices could provide some benefits in terms of

DRAM cache organization and performance but could also limit the capacity of the

cache and greatly increase its cost. In this work, we focus on DRAM cache designs

that utilize commodity parts but the potential benefits of custom DRAM cache

devices make them an promising area of future research.

125

7.2 Preliminary Studies

In order to understand the role that associativity plays in stacked DRAM

cache systems we conducted a series of simple experiments using a selection of

different benchmarks from the SPEC CPU2006, NPB, and PARSEC suites. In these

experiments we try to establish the role of associativity by examining how cache

performance varies when both associativity and size or miss penalty are varied.

7.2.1 The Effect of Cache Size on the Impact of Associativity

Table 7.1: The differences in hit rate for different levels of associativity for a 128MB

cache that is smaller than the working sets of all of the benchmarks used in this chap-

ter. The percent improvement column indicates the improvement of each successive

increase in associativity over the previous level.

Associativity Direct 2-Way 4-Way 8-Way 16-Way 32-Way

Benchmark Hit % Hit % % Improve Hit % % Improve Hit % % Improve Hit % % Improve Hit % % Improve

ft 45.0% 46.5% 2.7% 47.3% 1.7% 47.5% 0.3% 47.5% 0.0% 47.4% 0.0%

is 37.7% 33.6% -6.3% 30.7% -4.2% 28.9% -2.7% 27.9% -1.3% 27.3% -0.8%

mg 39.6% 45.4% 10.2% 46.4% 1.8% 46.1% -0.6% 46.1% -0.1% 46.0% 0.0%

blackscholes 12.4% 12.4% 0.0% 12.4% 0.0% 12.4% 0.0% 12.4% 0.0% 12.4% 0.0%

bodytrack 47.8% 53.2% 10.8% 51.9% -2.7% 49.6% -4.6% 47.8% -3.6% 46.1% -3.2%

canneal 64.6% 69.2% 13.9% 71.4% 7.3% 71.8% 1.4% 72.0% 0.9% 72.1% 0.4%

freqmine 53.3% 55.5% 4.8% 55.8% 0.8% 55.9% 0.1% 55.9% 0.1% 55.9% 0.0%

bzip2 42.2% 44.6% 4.3% 45.3% 1.3% 45.4% 0.2% 45.4% 0.0% 45.4% 0.0%

gcc 47.2% 52.0% 9.5% 53.9% 4.0% 54.9% 2.0% 55.2% 0.8% 55.2% 0.0%

leslie3d 40.6% 44.4% 6.6% 45.9% 2.6% 46.5% 1.1% 46.6% 0.2% 46.7% 0.1%

milc 33.7% 35.1% 2.2% 35.6% 0.7% 35.6% 0.1% 35.6% 0.0% 35.6% 0.0%

average 42.2% 44.7% 5.3% 45.1% 1.2% 45.0% -0.2% 44.8% -0.3% 44.6% -0.3%

126

Table 7.2: The differences in hit rate for different levels of associativity for a 256MB

cache that is only slightly smaller than the working sets of all of the benchmarks

used in this chapter. The percent improvement column indicates the improvement

of each successive increase in associativity over the previous level.

Associativity Direct 2-Way 4-Way 8-Way 16-Way 32-Way

Benchmark Hit % Hit % % Improve Hit % % Improve Hit % % Improve Hit % % Improve Hit % % Improve

ft 49.9% 50.6% 1.5% 50.2% -0.8% 49.6% -1.2% 49.4% -0.4% 49.3% -0.2%

is 92.6% 91.4% -15.2% 89.6% -19.0% 86.6% -25.1% 82.5% -26.6% 76.9% -27.5%

mg 51.5% 64.4% 30.5% 58.0% -16.4% 54.5% -8.1% 53.5% -2.0% 52.7% -1.8%

blackscholes 79.6% 76.7% -13.3% 72.4% -16.9% 60.7% -35.0% 41.3% -39.5% 22.5% -27.6%

bodytrack 55.2% 61.4% 15.0% 62.3% 2.2% 62.3% 0.2% 62.4% 0.1% 62.4% 0.0%

canneal 84.6% 86.5% 13.2% 87.5% 7.6% 87.9% 3.6% 88.0% 0.8% 88.1% 1.0%

freqmine 60.1% 60.7% 1.5% 61.0% 0.6% 60.9% -0.1% 60.9% -0.1% 60.9% 0.0%

bzip2 44.0% 45.2% 2.2% 45.4% 0.4% 45.4% 0.0% 45.5% 0.0% 45.5% 0.0%

gcc 60.7% 66.4% 15.6% 67.9% 4.6% 68.5% 2.0% 68.9% 1.1% 69.0% 0.4%

leslie3d 56.8% 57.8% 2.5% 57.9% 0.0% 57.3% -1.3% 57.1% -0.4% 57.0% -0.2%

milc 33.7% 35.1% 0.7% 35.6% 0.1% 35.6% 0.0% 35.6% 0.0% 35.6% 0.0%

average 60.8% 63.3% 4.9% 62.5% -3.4% 60.9% -5.9% 58.6% -6.1% 56.4% -5.1%

Comparing the values in Tables 7.1, 7.2, and 7.3, we can see that the effects of

cache size and associativity vary greatly from workload to workload. For instance,

canneal is sensitive to associativity at all three cache sizes. However, freqmine

reacts very differently to associativity. For all three cache sizes, freqmine shows

almost no effect from increasing associativity. As a result of this, the average effects

of size and associativity across all benchmarks appears to indicate that associativity

has an insignificant effect for all but the smallest caches. However, this obfuscates

the important fact that while associativity is not always helpful on average, it is

sometimes very helpful in specific cases.

127

Table 7.3: The differences in hit rate for different levels of associativity for a 512MB

cache that is only slightly smaller than the working sets of all of the benchmarks

used in this chapter. The percent improvement column indicates the improvement

of each successive increase in associativity over the previous level.

Associativity Direct 2-Way 4-Way 8-Way 16-Way 32-Way

Benchmark Hit % Hit % % Improve Hit % % Improve Hit % % Improve Hit % % Improve Hit % % Improve

ft 56.9% 57.8% 2.1% 58.3% 1.0% 59.1% 2.0% 59.6% 1.2% 59.8% 0.5%

is 95.8% 95.8% 0.0% 95.8% 0.0% 95.8% 0.0% 95.8% 0.0% 95.8% 0.0%

mg 94.8% 94.8% 0.0% 94.8% 0.1% 94.8% 0.0% 94.8% 0.0% 94.8% 0.0%

blackscholes 86.0% 86.2% 1.5% 86.2% 0.0% 86.2% 0.0% 86.2% 0.0% 86.2% 0.0%

bodytrack 60.1% 63.4% 8.7% 64.0% 1.5% 64.5% 1.4% 64.7% 0.5% 64.8% 0.3%

canneal 91.8% 93.9% 29.7% 94.7% 14.4% 95.2% 8.8% 95.4% 3.8% 95.5% 2.3%

freqmine 73.0% 73.5% 1.7% 72.5% -3.5% 71.8% -2.7% 70.8% -3.5% 70.5% -1.0%

bzip2 46.5% 46.5% 0.0% 46.0% -1.0% 45.6% -0.7% 45.5% -0.2% 45.5% 0.0%

gcc 75.9% 76.1% 1.0% 76.3% 0.8% 76.3% 0.0% 76.3% 0.1% 76.3% 0.0%

leslie3d 73.0% 78.2% 21.3% 79.9% 8.0% 82.0% 11.0% 82.9% 5.2% 83.7% 4.4%

milc 35.4% 35.7% 0.4% 35.7% 0.0% 35.7% 0.0% 35.7% 0.0% 35.7% 0.0%

average 71.8% 72.9% 6.0% 73.1% 1.9% 73.4% 1.8% 73.4% 0.7% 73.5% 0.6%

7.2.2 The Effect of Miss Latency on the Impact of Associativity

Figure 7.4 displays the effects of backing store speed on the impacts of asso-

ciativity. From these results it is clear that, as the ratio of backing store latency to

cache latency increases, the role of associativity in preventing misses becomes more

and more important. However, even at a ratio of 8x, little benefit is seen from in-

creasing associativity beyond 4-way. The results also show that 2-way associativity

provides the greatest difference in performance. Interestingly, the performance of

the 8x ratio system actually degrades after peaking at 4-way associativity. Similar

trends can also be noted for the other systems but to a lesser degree. To check this

128

somewhat odd result we reran the experiment using the Dinero cache simulator and

got similar trends [103]. We believe that this behavior is due to the additional set

contention that can result from increasing the associativity. Adjusting the replace-

ment algorithm for LRU to RRIP or something similar may help to alleviate this

effect.

Overall, the preliminary experiments show us several important aspects of

these stacked DRAM cache systems that we must take into account when inves-

tigating their design. First, the value of associativity varies with different system

parameters, unless care is taken when evaluating associative caches that value can

be inadvertently diminished. In other words, if a cache is too large or too small or its

backing store is not slow enough, the effects of associativity will be obscured. Sec-

ond, the value of associativity varies greatly with different workloads and averaging

across all workloads often conceals the real impacts of associativity. Therefore, it is

important to consider each benchmark’s performance individually when exploring

the benefits of associativity.

7.3 Block Based Designs

One of the first DRAM cache architectures was proposed by Loh et al. and

stored the meta-data for a set in the same row as the data for the set [83]. This

leveraged row buffer locality to reduce the access latency of the subsequent tag and

data accesses after the initial access had opened the row. However, this design used

an entire DRAM row for each set and so the row buffer locality was only exploited for

129

a single set access. The LAMOST design improved upon Lohs design by reducing

the degree of associativity from 28-way to 7-way, which allowed for 4 sets to be

placed in a row instead of just one [104]. As a result, row buffer locality could be

leveraged for multiple set accesses thereby improving performance. However, both

of these designs still require multiple accesses to the DRAM for each cache hit and

this ultimately becomes a limiting factor in the performance of system.

To address this problem of multiple DRAM accesses to fetch tags, Qureshi et

al. proposed Alloy cache which stores the tag and data together and fetches them

with a single 72 bit DRAM access [81]. This approach provides good performance for

many workloads at the expense of higher miss rates due to the lack of associativity.

Another approach is to store a subset of tags in SRAM while the majority of

tags are stored in DRAM. In effect these designs, such as [82], create an additional

structure to cache the tags from the DRAM cache. In [82], this tag cache is struc-

tured and operates in much the same way as any other cache. It attempts to retain

tags that have been accessed and replaces ones that aren’t used. This approach

achieves some considerable speedups over tags in DRAM cache but requires 46KB

of SRAM for the tag cache. Another similar design which also used an SRAM tag

cache was proposed in [105].

Still another way to reduce the overhead of storing meta-data is to compress it.

This is explored in the Tag Tables paper which proposes a novel compression scheme

for DRAM cache tags [106]. The compression scheme achieves a significant reduction

in the amount of space needed to store the tags for the DRAM cache. However,

despite its notable compression ratio, this design still often requires 1-2MB of tag

130

storage.

7.4 Page Based Designs

All of the previous approaches that we have discussed have utilized standard

64B block sized accesses in their designs. However, another way to approach build-

ing a DRAM cache is to use large pages. This is the approach that is explored by

the Unison and Footprint cache designs [107,108]. Utilizing large page sized accesses

results in higher hit rates and reduced tag overhead for the cache. However, addi-

tional mechanisms are required to manage the contents of the pages in the cache to

prevent wasting bandwidth to fetch data that won’t be used.

Another interesting page based DRAM cache design was proposed in [109].

This design utilizes the existing TLB infrastructure to keep track of the contents of

the DRAM cache, essentially indexing the cache with virtual addresses.

131

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Associativity

bodytrack

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

ft

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1 2 4 8 16 32

Associativity

is

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 4 8 16 32

Associativity

mg

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

blackscholes

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

1 2 4 8 16 32

Associativity

canneal

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

1 2 4 8 16 32

Associativity

milc

2x Miss Penalty 4x Miss Penalty 8x Miss Penalty

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

freqmine

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 4 8 16 32

Associativity

bzip2

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Associativity

gcc

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

leslie3d

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 4 8 16 32

Associativity

Average

Figure 7.4: The effect of different miss penalties relative to hit latency and different

degrees of associativity on the average access latency of the cache.

132

Chapter 8: DRAM Cache Design Analysis

In this chapter we continue the discussion on DRAM cache design by present-

ing our novel design for an efficient associative DRAM cache: Combo-Tag. Pre-

viously, we have talked about the importance of associativity and the difficulties

of storing the tags for a large DRAM based cache. The design we present here

balances the need for associativity against the necessity of maintaining a low cache

hit latency. This is accomplished by organizing the layout of sets in the DRAM

so that multiple set’s worth of tags are combined into a single DRAM access and

by utilizing a specially designed buffer to temporarily store the fetched tags in a

relatively small amount of SRAM.

After presenting our design, we then perform a series of studies that compare

the performance of our design to several other DRAM cache architectures. In par-

ticular, we compare our design against two versions of Alloy Cache; a serial version

and an interleaved version. The serial version organizes its sets so that sequential

sets will map to the same row buffer, while the interleaved version organizes its sets

so that sequential sets will map to different channels. In addition, we also compare

our design to LAMOST which is a 7-way associative system without a tag buffer. By

comparing these different approaches we can determine the benefits of concurrency,

133

associativity, and compact tag buffering.

8.1 Evaluation Methodology

The primary test system used in this work is described in 8.2. This system

utilizes RLDRAM as the cache technology and LPDDR as the backing store tech-

nology. Similar architectures which also use these technologies have been suggested

in the literature [27,48]. This architecture was selected because it represents a het-

erogeneous memory system with a large miss penalty that uses technologies with

well established timing parameters. These timing parameters can be found in table

8.1 and are derived from publicly available data sheets.

For these studies we utilize a cache with a data capacity of 128MB. We use

this size because we found in our preliminary work that a 256MB cache captures

most of the working set of too many benchmarks. This emphasizes hit latency

above all other system parameters and results in an skewed evaluation of the cache

architecture that over values hit latency. By focusing on a 128MB cache, we ensure

that the miss pressure will be more realistic and all aspects of the cache architecture

will play a role in the evaluation. We believe that this better represents the situation

that these sorts of systems will encounter in real world data center environments

where working sets are often very large and miss handling plays a significant role in

system performance. Futhermore, the tag buffer utilized by the combo-tag approach

does not need to scale with cache size. Therefore, increasing the size of the cache

would not add additional overhead to our design. In addition, for these studies the

134

Table 8.1: Timing Parameters [2]

Parameter RLDRAM3 LPDDR3

tRC 12ns 64ns

tRCD - 18ns

tRRD - 10ns

tRP - 18ns

tRAS - 42ns

tFAW - 50ns

tWTR 0ns 7.5ns

tWR - 15ns

size of the cache only refers to the portion of the cache available for data.

Most of the studies presented in this work were performed using detailed trace

based simulation using HybridSim with OMS and DRAMSim2 providing the de-

tailed memory simulations. Each of these studies was warmed for 10 million mem-

ory transactions to eliminate any cold cache effects. The simulations were then run

for an additional 100 million memory transactions or until the trace completed (this

represents considerably more processor instructions).

To determine the IPC performance impact of the proposed design relative to

other DRAM cache organizations we performed full system simulations using the

MARSSx86 full system simulator [110]. The configuration of the DRAM cache

and main memory portions are identical between the trace based and full system

simulations. The full system simulations were started at the ROI of each bench-

mark, warmed for 100 million instructions, and then run for an additional 1 billion

instructions.

135

Table 8.2: Baseline Simulator Configuration

Processor

Number of cores 8-core

Issue Width 4

Frequency 3.2GHz

On Chip Caches

L1I (private) 128 KB, 8-way, 64 B block size

L1D (private) 128 KB, 8-way, 64 B block size

L2 (private) 256 KB, 8-way, 64 B block size

L3 (shared) 32 MB, 20-way, 64 B block size

In-Package RLDRAM Cache

Organization 128MB, 4-way, 64 B block size

Bus Frequency DDR-3200

Bus Width 64 bits per channel

Channels 8

Ranks 1 Ranks per channel

Banks 8 Banks per rank

LPDDR Backing Store

Organization 64 B block size

Bus Frequency DDR-1600

Bus Width 64 bits per channel

Channels 1

Ranks 2 Ranks per channel

Banks 8 Banks per rank

8.1.1 Benchmarks

For the studies presented in this chapter we use a selection of multi-threaded

workloads from the SPEC CPU2006 [111], NPB [112], and PARSEC [113] bench-136

mark suites. The SPEC workloads were run in rate mode with 8 copies while the

NPB and PARSEC benchmarks were run with 8 threads. Table 8.3 presents the rel-

evant characteristics of the chosen benchmarks. These particular benchmarks were

selected from the various suites because they had working sets that were significantly

larger than 128MB and exhibited a particularly high MPKI.

We also include data from an additional set of benchmarks that represent

real world server workloads. These workloads are included because they provide

a perspective of the situation currently faced in data centers. The names of the

workloads are generally illustrative of the types of activity that is taking place on

the server in each case. For instance, web search is a trace representing the memory

traffic of a server performing tasks for a search engine, internet support is a trace

representing a server running an internet based customer support application, etc.

8.2 DRAM Set Layout

One of the central innovations of the Combo-Tag design is the way in which

the tags and data are laid out in the DRAM. The key observation behind the layout

strategy is that if 4-way associativity is used then more than one set’s tags can fit

in a single DRAM accesses. We leverage this in Combo-Tag by coalescing the tags

of multiple sets in a single DRAM access. This allows us to amortize the cost of

fetching tags from the DRAM because we always get more than one set’s worth of

tags on a tag fetch. We then store the extra tags in a small SRAM based tag buffer

that enables us to often quickly look up tags and avoid a DRAM access for tags.

137

Table 8.3: Benchmark Characteristics

Observed Footprint L3 MPKI

ft 1287.27 MB 7.115501

is 264.87 MB 10.424386

mg 430.87 MB 13.5972049

blackscholes 269.53 MB 0.6400292

bodytrack 534.28 MB 0.4995586

canneal 497.60 MB 6.50089792

freqmine 894.04 MB 1.31842398

bzip2 2559.93 MB 61.0071412

gcc 441.31 MB 6.0996348

leslie3d 601.15 MB 18.724911

milc 1909.66 MB 22.4704558

We can fit multiple sets worth of tags in a single DRAM access in our approach

because each tag + other meta-data is less than 4 bytes in size. Figure 8.1 shows

how the tags and data are laid out in a row and compares our design to several other

designs that have been proposed in the literature. Figure 8.2 provides sizes for the

various components of the meta-data and shows how 4 sets worth of tags can fit in a

single 64B DRAM access. In addition, in order to leverage the spacial locality of tags,

we group sets sequentially per DRAM row. This helps to ensure that the tag buffer

will have an acceptable hit rate. However, to leverage the concurrency available in

the system, we interleave the rows of sets across the channels, ranks and banks. So,

sets 0-6 will map to channel 0 but sets 7-13 will map to channel 1. This is critical to

the performance of the system as concurrency is a major source of performance in the

138

2KB DRAM Row

T T T D

T D T T T

Tags

D

One 29- Way Cache Set

64B

72B

Tag Data

8B 64B

64B

One 7-way Cache Set
Tag

Block 0
Tag

Block 1
Tag

Block 7
Unused. . .

7B x 6 = 42B 22B

T D T

64B

Three 4-way Cache Sets

Tag Group 0 Tag Group 1 Tag Group 3

16B x 4 = 64B

TT D

Four 4-way Cache Sets

Set 0 Set 2Set 1 Set 3

Unused

Tag Group 2

4 Tags
4B x 4 = 16B

Loh-Hill

Direct Mapped Cache

Alloy Cache

LAMOST

Combo-Tag

Figure 8.1: The DRAM row layouts of different DRAM cache approaches.

DRAM cache and so mapping sets sequentially results in a significant reduction in

performance. We will see this effect later in the results section. We also investigated

fully interleaving the sets across channels in the Combo-Tag design so that set 0

would map to channel 0 and set 1 would map to channel 1 and so forth. But this

resulted in a significant drop in tag buffer hit rate and unacceptable performance.

Finally, in all of the associative DRAM cache designs there is some lost DRAM

139

48 Bit Address Space

64B Cache Block Offset = 6 bits 48 – 6 = 42 bits

42 – 19 = 23 bits

23 bits of Tag

128MB = 221 64B Blocks

219 4-Way Sets = 19 bits

2 bits of Status
 4 bits of State

29 bits of meta-data per Cache Block
4x29 bits = 15B of meta-data per Set

Block Offset
6 bits

Set Index
19 bits

Tag
23 bits

48 bit Address

Figure 8.2: An explanation of the sizes of tags and other meta-data.

capacity due to the tags taking up space in the cache. Our design has roughly the

same meta-data storage overhead as the other designs.

There are two minor drawbacks to our method of mapping sets into the DRAM

row. First, we are unable to use 2 columns per standard DRAM row due to the

size of the rows. We can fit 7 4-way sets in a single 2KB DRAM row (28 of 32

available columns) because we need to reserve several DRAM columns for tags. By

coalescing the tags we can reduce the required number of tag columns to 2 which

leaves 2 unused columns in the row. These columns could potentially be used to

store other information, though, and so represent an interesting area for future

research. Alternatively, the DRAM row could be expanded so that it would contain

3 additional columns for tags. This would allow for 8 sets of data to be stored per

row and would eliminate the need to leave columns unused. This would not be an

overly difficult change to make since DRAM caches will almost certainly need to be

built using custom devices anyway. It is also worth mentioning that using 2-way

140

sets allows for full utilization of a DRAM row at the cost of some performance.

Second, we are only able to efficiently accommodate up to 8-way associativity with

this scheme. Beyond 8-way associativity, we can no longer fit more than one set’s

worth of tags into a single DRAM access and the benefits of coalescing tags are lost.

8.3 Tag Buffer Design

RLDRAM Read Burst

Tag Fetch Data Access

RLDRAM Read BurstTags in DRAM

Data Access

RLDRAM Read BurstSRAM

Tag Fetch

Tags in SRAM

Data Access

RLDRAM Read Burst

RLDRAM Read Burst

Tag Fetch Data Access

RLDRAM Read Burst

Tag and Data Access

RLDRAM Read Burst
Direct Mapped

(Alloy)

Tag Buffer
Lookup

Combo-Tag
(Tag Buffer Hit)

Combo-Tag
(Tag Buffer Miss)

Figure 8.3: The access latencies of different DRAM cache approaches (not to scale).

In order to take advantage of the additional sets of tags that are fetched on

each tag access we implement a small prefetched tag buffer which stores the tags

temporarily. We implement the tag buffer as a cache-like structure that stores each

set’s tags as a separate tag group entry. In other words, the total tags for each

set are stored as a single block in the cache and each set’s tags (a tag group) are

141

managed independently of the others. In our design multiple sets worth of tags are

fetched with each DRAM tag access so each DRAM tag access results in multiple

evictions from the tag buffer. However, each entry is a separate set’s tags so the

entries which are evicted could have been from different DRAM tag accesses.

Figure 8.3 presents the access process of several different DRAM cache archi-

tectures. For Combo-Tag, some accesses will result in a hit in the tag buffer and

so the tag lookup operation will occur very quickly. We assume that because the

SRAM tag buffer is so small, it will be possible to access it in roughly 1 ns. In

contrast, the accesses to a large SRAM tag store that contains all of the tags will

take considerably longer. These assumptions are based off of similar CACTI-based

calculations performed in [82]. Therefore, by utilizing the tag buffer, we can have

some tag accesses complete essentially instantaneously. But in order for the tag

buffer and coalesced DRAM tag accesses to be worth while, the tag buffer must

have a decent hit ratio. This is because a miss in the tag buffer results in a DRAM

tag access process that takes slightly longer than a standard tags in DRAM access.

Initially, however, it was not clear how this buffer should be structured in order

to maximize its hit rate. For instance, should the buffer simply be a direct mapped

cache or was associativity necessary at this level of the design as well. To investigate

the impact of size and associativity on tag buffer performance, we performed a series

of experiments. The results of these experiments are summarized in Figure 8.4.

From the data presented in Figure 8.4, we can see that 256 tag group entries

(or 4KB) is enough capacity to provide roughly a 40% hit rate for the tags on average

across all benchmarks. Some additional benefit can be achieved by increasing the size

142

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Ta
g

B
u

ff
er

 H
it

 R
at

io

Associativity

ft
0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Associativity

mg

128 Tag Groups

256 Tag Groups

512 Tag Groups

1024 Tag Groups

2048 Tag Groups

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Associativity

is

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 4 16 64 Full

Associativity

canneal

128 Tag Groups

256 Tag Groups

512 Tag Groups

1024 Tag Groups

2048 Tag Groups

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Associativity

bodytrack
0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Ta
g

B
u

ff
er

 H
it

 R
at

io

Associativity

blackscholes

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Ta
g

B
u

ff
er

 H
it

 R
at

io

Associativity

freqmine
0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Associativity

gcc

128 Tag Groups

256 Tag Groups

512 Tag Groups

1024 Tag Groups

2048 Tag Groups

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Associativity

bzip2

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 16 64 Full

Associativity

Average

128 Tag Groups

256 Tag Groups

512 Tag Groups

1024 Tag Groups

2048 Tag Groups

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 16 64 Full

Associativity

bodytrack
0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 16 64 Full

Ta
g

B
u

ff
er

 H
it

 R
at

io

Associativity

leslie3d

Figure 8.4: The effect of size and associativity on the tag hit rate of the tag buffer.

143

of the tag buffer but 256 entries represents the best balance of size to performance.

Associativity also plays an important role in the performance of the tag buffer. We

find that 16-way set associativity represents the best balance between complexity

and performance.

Another interesting aspect of these experiments is that the impact of size and

associativity vary greatly depending on the workload. Some workloads, like mg, are

very sensitive to changes in size or associativity while others, like freqmine, are not.

Also, while most workloads see a tag hit rate of greater than 50%, some workloads,

such as caneal, have very low tag hit rates that drag down the average hit rate.

Therefore, for many workloads our tag buffer achieves a hit rate comparable to

the much larger tag cache presented in [82]. Also, unlike a traditional cache, the

tag buffer’s hit rate does not vary with the size of the DRAM cache, it is purely a

product of the spatial locality of the workloads. Therefore, while other designs must

scale their tag stores to accomodate larger caches, Combo-Tag’s tag buffer does not.

Instead, the tag buffer will need to be scaled in proportion to the number of threads

that can run in a system in order to capture enough of the spatial locality of each

thread.

8.4 Tag Buffer Management

In addition to the physical structure of the tag buffer, the way in which the

buffer is managed can also have a significant effect on its hit rate. To maximize

the performance of the tag buffer, we develop two novel replacement policies that

144

Algorithm 1 UF-LRA/NNN Replacement Algorithm

1: found used← false

2: victim pointer← first tag group in tag set

3: for each tag group in tag set do

4: if found used = false then

5: if i.used = true then

6: found used← true

7: victim pointer← i

8: else if i.age = victim pointer.age then

9: victim pointer← i

10: else if i.age = victim pointer.age then

11: victim pointer← i

145

take into account the unique nature of the tag buffer’s contents. We base our first

replacement policy design for the tag buffer on the observation that the likelihood

is quite low that a tag will be accessed again after it is used. As a result of this

it is typically not useful to keep tags around in the tag buffer after they have been

used. To take advantage of this, we propose a Used First - Least Recently Accessed

(UF-LRA) replacement policy which prefers to evict the oldest used tags first. If

no used tags are available, then the oldest unused tag is evicted. A pseudo code

representation of our algorithm can be found in Algorithm 1. This policy results in

up to a 12% improvement in hit rate in the tag buffer versus the next best policy

which is a basic FIFO queue.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

1 2 3 4 5 6 7 8

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Set Index Stride on Next Access

Figure 8.5: The probability of a next accesses arriving with an address that is a

stride of 8 or less away from the last access.

The second replacement policy that we propose is based upon the observation

that, while tags are not often reused, they do tend to display spatial locality. By this

we mean that if a set is accessed, it is highly likely that a nearby adjacent set will

146

Algorithm 2 NNN Update Algorithm

1: for each set in set accessed+1 : set accessed+8 do

2: for each tag group in tag set for set i do

3: if j = i then

4: j.age is reset

also be accessed in the near future. In our studies we found there was a roughly 10%

chance that the very next access to the cache would hit a set index that was within a

distance of 8 from the previously accessed set index. To leverage this fact, we modify

the UF-LRA policy described above to also update the eviction priority of the next

8 sets when a set is accessed (provided that the tag groups for those sets are present

in the tag buffer). This ensures that if the tags for any nearby sets are present in the

tag buffer, then they won’t be evicted in the near future, even if they’ve been present

in the tag buffer for a long time. The process of searching and updating the nearby

sets is expensive but it can be done in the background and should not affect the

critical path of the system. This policy provides an additional 3-5% improvement

in tag hit rate. The differences between the policies mentioned here are for a very

small 256 entry tag buffer. These differences vary with the size and associativity of

the tag buffer. If the size of the tag buffer is increased, eventually, it becomes large

enough to accommodate enough tags to make the replacement policy irrelevant.

Similarly, if the tag buffer is too small then the replacement policy also becomes

irrelevant as the pressure on the tag buffer is too great. The 256 entry buffer used in

these evaluations was selected because it represents the most economical tag buffer

solution as determined by the physical structure experiments discussed earlier. A

147

comparison of the tag hit rates of several different replacement policies can be found

in Table 8.4.

8.5 Miss Map and Compression

Unlike other similar DRAM cache designs, our design does not currently in-

clude a miss map or incorporate any tag compression schemes. The miss map and

compression techniques described in several other papers are orthogonal to this work.

We chose not to include them in these evaluations in order to keep the focus on the

design decisions being investigated and to avoid any noise that those approaches

might have introduced to the results. We leave investigations on the interaction

between our proposed approach and those techniques to future work.

8.6 Trace Based Design Comparison

8.6.1 Standard Benchmarks

Figures 8.6, 8.7, 8.8, and 8.9 compare several of the different types of DRAM

cache architectures that we have discussed in this work. From these results we can

see that Combo-Tag does quite well when compared to the other approaches. The

4-way version of Combo-Tag is as fast or faster than the direct mapped approaches

in all but two cases. Furthermore, in several cases, such as mg and blackscholes, the

4-way Combo-Tag approach is roughly 30% faster. Interestingly, the speedup of the

Combo-Tag approach does not seem to be the result of the improvement in hit rate.

As we can see in Figure 8.7, the addition of associaitivity only really seems to benefit

148

Table 8.4: Percentage improvement of replacement policies compared to LRU

LRU Random MRU FIFO UF LRA NNN

ft 128 Entry - -97.50% -97.32% 1.25% 2.04% 5.01%

256 Entry - -91.96% -91.35% 2.01% 3.12% 5.63%

is 128 Entry - -165.76% -165.23% 0.57% 0.82% 7.64%

256 Entry - -125.61% -124.47% 0.23% 0.04% 0.94%

mg 128 Entry - -187.57% -187.32% 2.79% 3.92% 4.96%

256 Entry - -164.79% -163.98% 0.28% 0.21% 0.38%

blackscholes 128 Entry - -180.83% -176.55% 25.16% 26.48% 14.06%

256 Entry - -197.69% -196.29% 20.36% 31.72% 34.90%

bodytrack 128 Entry - -45.83% -45.67% 0.07% -0.63% -0.39%

256 Entry - -28.00% -27.80% 0.01% -0.35% -0.15%

canneal 128 Entry - -174.69% -174.66% 0.10% -0.26% 2.38%

256 Entry - -161.58% -161.52% 0.13% -0.49% 1.14%

freqmine 128 Entry - -28.99% -28.90% 0.05% 0.36% 0.49%

256 Entry - -18.69% -18.47% 0.02% 0.09% 0.12%

bzip2 128 Entry - -140.65% -140.42% 2.38% 5.92% 10.97%

256 Entry - -119.76% -119.04% 0.64% 1.46% 1.99%

gcc 128 Entry - -86.37% -86.25% 0.78% 2.62% 5.62%

256 Entry - -79.14% -78.85% 0.40% 1.67% 3.35%

leslie3d 128 Entry - -103.20% -103.15% 4.69% 10.30% 17.34%

256 Entry - -111.19% -110.76% 3.59% 7.91% 12.27%

milc 128 Entry - -133.20% -132.59% 2.45% 5.84% 10.93%

256 Entry - -120.36% -119.26% 0.96% 2.23% 3.79%

average 128 Entry - -122.23% -121.64% 3.66% 5.22% 7.18%

256 Entry - -110.80% -110.16% 2.60% 4.33% 5.85%

149

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

er
) Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

6.63 5.72 7.28 3.01 2.95 3.15 3.61

Figure 8.6: A comparison of the average access latencies of different DRAM cache

architectures for normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an RLDRAM cache and

a LPDDR backing store. The selected benchmark suite workloads are used for this

evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
at

io

(L
ar

ge
r

is
 B

e
tt

er
)

Ideal

Direct - Serial

Direct- Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.7: A comparison of the hit rates of different DRAM cache architectures.

The ideal system has 4-way associativity and SRAM latency tag lookups. These

results are for a system with an RLDRAM cache and a LPDDR backing store. The

selected benchmark suite workloads are used for this evaluation.

150

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 A
ve

ra
ge

 M
is

s
La

te
n

cy

(S
m

al
le

r
is

 B
e

tt
e

r)
 Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

4.33 4.08 4.33

Figure 8.8: A comparison of the average miss latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an RLDRAM cache and

a LPDDR backing store. The selected benchmark suite workloads are used for this

evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
g

B
u

ff
er

 H
it

 R
at

e

(L
ar

ge
r

is
 B

et
te

r)

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.9: A comparison of the tag buffer hit rate of the two Combo-Tag cache

architectures. These results are for a system with an RLDRAM cache and a LPDDR

backing store. The selected benchmark suite workloads are used for this evaluation.

151

milc. Instead, it appears to be the case that the speedup is due to the reduction in

miss latency that we can see in Figure 8.8. We believe that this reduction in miss

latency in the Combo-Tag case is due to the tag buffer which allows some misses to

be detected without an access to the DRAM cache thereby reducing the miss latency

even compared to the Alloy cache approach. The tag buffer hit rate is higher for

the 2-way case in Figure 8.9 because it is possible to fit more tags into a single

DRAM access in the 2-way organization. This results in additional tag prefetches

and improves the odds of getting a useful set of tags. Also, because the sets are half

as large, we can fit twice as many sets worth of tags into the same size tag buffer

compared to the 4-way case.

It is also interesting to note the severe performance difference between the

serial and interleaved versions of the direct mapped DRAM cache. This may be

partially due to the lack of a row-buffer in RLDRAM, which eliminates the primary

reason for organizing the sets sequentially within rows. However, it also emphasizes

the importance of concurrency in the effective utilization of these DRAM caches.

8.6.2 Server Benchmarks

The benchmarks in Figures 8.10, 8.11, 8.12, and 8.13 represent real-world

server workloads and demonstrate the increased importance of associativity in real-

world applications. We can see that these benchmarks are much more sensitive to

associativity by comparing the change in hit ratios in Figure 8.11 to those in Figure

8.7. As a result of this sensitivity to associativity, we see even larger improvements

152

0.5

1

1.5

2

2.5

Web Search Database Internet
Banking

Internet
Commerce

Internet
Support

Database 2 Enterprise Virtualization Average

N
o

rm
al

iz
ed

 A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

er
) Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

2.64 3.30 4.13 2.83 2.99 2.91 2.58 2.69

Figure 8.10: A comparison of the average access latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an RLDRAM cache and a

LPDDR backing store. The server trace workloads are used for this evaluation.

0.4

0.5

0.6

0.7

0.8

0.9

1

Web Search Database Internet
Banking

Internet
Commerce

Internet
Support

Database 2 Enterprise Virtualization Average

H
it

 R
at

io

(L
ar

ge
r

is
 B

et
te

r)

Ideal

Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.11: A comparison of the hit rates of different DRAM cache architectures.

The ideal system has 4-way associativity and SRAM latency tag lookups. These

results are for a system with an RLDRAM cache and a LPDDR backing store. The

server trace workloads are used for this evaluation.

153

0.5

1

1.5

2

2.5

Web Search Database Internet
Banking

Internet
Commerce

Internet
Support

Database 2 Enterprise Virtualization Average

N
o

rm
al

iz
ed

 A
ve

ra
ge

 M
is

s
La

te
n

cy

(S
m

al
le

r
is

 B
e

tt
er

) Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.12: A comparison of the average miss latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an RLDRAM cache and a

LPDDR backing store. The server trace workloads are used for this evaluation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ta
g

B
u

ff
er

 H
it

 R
at

e

(L
ar

ge
r

is
 B

et
te

r)

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.13: A comparison of the tag buffer hit rate of the two Combo-Tag cache

architectures. These results are for a system with an RLDRAM cache and a

LPDDR backing store. The server trace workloads are used for this evaluation.

154

0.75

0.8

0.85

0.9

0.95

1

1.05

N
o

rm
al

iz
ed

 IP
C

 (

La
rg

e
r

is
 B

e
tt

e
r)

Direct- Interleaved

Combo-Tag 4-Way

Figure 8.14: A comparison of the IPC of different DRAM cache architectures nor-

malized to an ideal system with 4-way associativity and SRAM latency tag lookups.

These results are for a system with an RLDRAM cache and a LPDDR backing store.

They were produced with a full system simulation using MARSSx86.

for the 4-way Combo-Tag approach in these results. Both commerce and support

see around a 45% improvement while enterprise shows a 60% improvement. Mean-

while, there is only one case where the interleaved Alloy cache approach outperforms

Combo-Tag.

These results seem to suggest that Combo-Tag could significantly improve

performance for many real-world workloads because it can significantly reduce the

average access latency seen by those workloads. However, full system simulation

is needed to accurately gauge the effect that those latency reductions will have on

actual workload performance.

8.7 Full System Design Comparison

The results of our full system simulation experiments can be found in Figure

8.14. These results confirm that Combo-Tag does provide a considerable perfor-

155

mance speedup for some workloads. The workloads mg and blackscholes in par-

ticular show considerable IPC speedups of 11% and 18% respectively. There are

a few benchmarks that show a slight slowdown compared to Alloy cache and one

benchmark, bodytrack, that shows a significant slowdown. This is primarily due

to bodytrack’s low sensitivity to associativity. However, for the most part the per-

formance of the Combo-Tag architecture is either comparable to or better than the

direct mapped architecture’s performance. This fits the expected effects of associa-

tivity, which will benefit some workloads a great deal and others not at all.

8.8 Alternative Technology and Organization Choices

In addition to the primary RLDRAM-LPDDR results that we have already

presented in this chapter, we also investigated several other memory technology

choices and organizations in our attempts to understand the dynamics of this system.

In particular, we looked at the effects of adding or removing complexity from the

backing store, of using standard DDRx DRAM at both levels of the hierarchy, and of

using an open or closed page cache. In the next sections we present the trace based

results for these different organizations for the selected benchmark suite workloads.

8.8.1 Simplified LPDDR Backing Store

In the primary results, we use an LPDDR backing store that has 2 ranks. This

allows the backing store to perform more operations per unit time than if it only

had 1 rank but also adds some complexity and potential cost to the backing store.

156

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

er
) Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

5.24 5.30 3.51

Figure 8.15: A comparison of the average access latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an RLDRAM cache and a

LPDDR backing store (with 1 Rank). The selected benchmark suite workloads are

used for this evaluation.

Reducing the available concurrency in the backing store could result in longer access

latencies due to increased resource contention but only if the access pressure is high

enough to utilize the all of the available concurrency. In many situations it might

simply be the case that there are not enough outstanding accesses to warrant the

additional rank. To investigate the impact of reducing the available concurrency we

performed an experiment where we left all of the system parameters the same as in

the earlier experiments but reduced the backing store from 2 ranks to 1 rank (keeping

overall system capacity constant). The results for this experiment are presented in

Figures 8.15, 8.16, 8.17, and 8.18.

At first glance the results in Figure 8.15 seem to indicate that switching to 1

rank has improved the performance of the system, since the values are closer to ideal

in this case. However, this is just the product of the increased miss latency slowing

157

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
at

io

(L
ar

ge
r

is
 B

e
tt

er
)

Ideal

Direct - Serial

Direct- Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.16: A comparison of the hit rates of different DRAM cache architectures.

The ideal system has 4-way associativity and SRAM latency tag lookups. These

results are for a system with an RLDRAM cache and a LPDDR backing store (with

1 Rank). The selected benchmark suite workloads are used for this evaluation.

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 A
ve

ra
ge

 M
is

s
La

te
n

cy

(S
m

al
le

r
is

 B
et

te
r)

 Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

3.33 3.71

Figure 8.17: A comparison of the average miss latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an RLDRAM cache and a

LPDDR backing store (with 1 Rank). The selected benchmark suite workloads are

used for this evaluation.

158

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
g

B
u

ff
er

 H
it

 R
at

e

(L
ar

ge
r

is
 B

et
te

r)

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.18: A comparison of the tag buffer hit rate of the two Combo-Tag cache

architectures. These results are for a system with an RLDRAM cache and a LPDDR

backing store (with 1 Rank). The selected benchmark suite workloads are used for

this evaluation.

down all of the systems and reducing the significance of the design differences in

some cases. In other words, the slower backing store has hindered the performance

of the ideal case and made it easier for the other designs to approach its performance

as a result. On average, the 4-way Combo-Tag design achieves roughly the same

speedup compared to the Alloy cache as it did in the 2 rank case. The increase

in miss latency, however, has led to an increase in the importance of lowering miss

rates. As a result, the higher associativity of the LAMOST design allows it to

achieve a performance that is closer to that of the Combo-Tag 4-way system.

159

8.8.2 DDR DRAM Cache and Backing Store

Most of the existing studies on DRAM caches utilize only the standard DRAM

technology for both the cache and backing store levels. This different technology

choice results in hit and miss latencies that are much closer and should theoretically

result in a smaller impact from associativity due to the reduced importance of miss

avoidance. To analyze if combo-tag would still perform well against the other state-

of-the-art DRAM cache designs in this environment we also performed an experiment

where the cache and backing store had the same timings derived from a typical

DDR3 SDRAM part. The organization of the system in this experiment is exactly

the same as in the other experiments. Another interesting side effect of utilizing

DDR DRAM for the cache technology is the introduction of the possibility to utilize

the cache in an open page configuration to take advantage of row buffer hits. We

present the results for this experiment in Figures 8.19, 8.20, 8.21, and 8.22.

From the results in Figure 8.19 we can see that even with the relatively similar

hit and miss latencies of this system, the Combo-Tag design still provides some

performance benefits over the other designs. The open page policy of the cache

is at least partially responsible for this because it allows for some cache accesses

to be relatively fast compared to the backing store latency thereby increasing the

relative miss penalty. Interestingly, the 2-way design outperforms the 4-way design

in this case. This highlights the importance of the tag buffer in this organization

and its ability to reduce load on the cache. Each hit in the tag buffer means that

the relatively slow DDR3 cache does not need to be accessed in order to retrieve

160

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

er
) Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

29.4 18.8
11.8

5.97 34.4
4.50

3.30

Figure 8.19: A comparison of the average access latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an open-page DDR3 DRAM

cache and a DDR3 DRAM backing store. The selected benchmark suite workloads

are used for this evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
at

io

(L
ar

ge
r

is
 B

e
tt

er
)

Ideal

Direct - Serial

Direct- Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.20: A comparison of the hit rates of different DRAM cache architectures.

The ideal system has 4-way associativity and SRAM latency tag lookups. These

results are for a system with an open-page DDR3 DRAM cache and a DDR3

DRAM backing store. The selected benchmark suite workloads are used for this

evaluation.

161

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
e

d
 A

ve
ra

ge
 M

is
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

e
r)

 Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

21.0 14.0 3.5
14.2

34.9
4.62

4.82

Figure 8.21: A comparison of the average miss latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with an open-page DDR3 DRAM

cache and a DDR3 DRAM backing store. The selected benchmark suite workloads

are used for this evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ta
g

B
u

ff
er

 H
it

 R
at

e

(L
ar

ge
r

is
 B

et
te

r)

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.22: A comparison of the tag buffer hit rate of the two Combo-Tag cache

architectures. These results are for a system with an open-page DDR3 DRAM

cache and a DDR3 DRAM backing store. The selected benchmark suite workloads

are used for this evaluation.

162

the tags. As a result, the higher tag hit rate seen in Figure 8.22 for the 2-way case

provides a greater benefit than the reduction in miss rate granted the by 4-way

case’s higher associativity.

Another interesting feature of these results is that they demonstrate the value

of concurrency over row buffer locality in terms of average access latency. The

serial Alloy cache implementation places sequential sets in the same DRAM row

in order to maximize the number of row buffer hits experienced by the system.

Alternatively, the interleaved approach first spreads sets out across channels, ranks,

and banks before placing them in the same row in order to leverage the available

concurrency in the DRAM system. It is evident from the results in Figure 8.19

that the serial approach provides only moderate performance benefits even in an

open page environment. The interleaved approach, on the other hand, out performs

the serial approach in every case except for milc. This clearly demonstrates the

importance of utilizing concurrency in the DRAM system.

8.8.3 More Complex DDR DRAM Backing Store

Due to the reduced relative miss penalty of DDR3 cached, DDR3 backed multi-

level organizations, we expected to see a marked reduction in the improvement

of combo-tag over the alloy cache implementation. However, the miss latencies

observed in the DDR3-DDR3 experiment show that a lack of concurrency can lead

to increased resource contention and longer access latencies. To investigate this, we

next performed an experiment in which we greatly increased the concurrency of the

163

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

e
r)

 Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

34.3 23.8 9.42 10.4
73.3

3.93
9.48

5.37
7.85 3.95 8.66 3.24

Figure 8.23: A comparison of the average access latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with a DDR3 DRAM cache

and an expanded DDR3 DRAM backing store (4 Ranks). The selected benchmark

suite workloads are used for this evaluation.

backing store from 1 rank in the previous experiment to 4 ranks. The results of this

experiment can be found in Figures 8.23, 8.24, 8.25, and 8.26.

Like the results for the 1 rank RLDRAM-LPDDR system configuration, these

results appear to be worse than the previous 1 rank DDR3-DDR3 system results

despite having a much more complex and potentially faster backing store. However,

as was the case with the 1 rank RLDRAM-LPDDR system, the 4 rank system results

presented in Figure 8.23 indicate that the ideal system’s performance changed much

more dramatically than the other designs. In this case, the performance of all

of the designs improved but the performance of the ideal system improved by a

considerably larger amount. As a result, the relative distance between the other

164

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
at

io

(L
ar

ge
r

is
 B

e
tt

er
)

Ideal

Direct - Serial

Direct- Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.24: A comparison of the hit rates of different DRAM cache architectures.

The ideal system has 4-way associativity and SRAM latency tag lookups. These

results are for a system with a DDR3 DRAM cache and an expanded DDR3 DRAM

backing store (4 Ranks). The selected benchmark suite workloads are used for this

evaluation.

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 A
ve

ra
ge

 M
is

s
La

te
n

cy

(S
m

al
le

r
is

 B
et

te
r)

 Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

26.2 20.6 9.48 3.19 4.32 11.0 70.5 7.83
3.85 8.24

Figure 8.25: A comparison of the average miss latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with a DDR3 DRAM cache and

an expanded DDR3 DRAM backing store (4 Ranks). The selected benchmark suite

workloads are used for this evaluation.

165

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ta
g

B
u

ff
er

 H
it

 R
at

e

(L
ar

ge
r

is
 B

et
te

r)

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.26: A comparison of the tag buffer hit rate of the two Combo-Tag cache

architectures. These results are for a system with a DDR3 DRAM cache and an

expanded DDR3 DRAM backing store (4 Ranks). The selected benchmark suite

workloads are used for this evaluation.

designs and the ideal design has increased rather than decreased.

The relative differences between the designs have also changed as well though.

In particular, both Alloy cache implementations appear to benefit significantly less

from the improved backing store than the Combo-Tag implementations. In many

cases we can see the distance between the performance of the Interleaved Alloy

design and the 4-way Combo-Tag design in Figure 8.23 has increased relative to

the results in Figure 8.19. The LAMOST design also appears to benefit from the

increased backing store concurrency. This suggests that the ability of the associative

designs to reduce the miss rate helps to keep the pressure on the backing store to

more manageable levels and results in the improved miss latencies seen in Figure

8.25.

166

8.8.4 DDR DRAM Closed Page Cache and Backing Store

One of the more interesting differences between the RLDRAM cache and the

DDR3 DRAM cache is the possibility to use an open page policy to speed up sequen-

tial accesses to the same row. Many of the potential DRAM cache designs attempt

to leverage the potential for row buffer hits by carefully laying out their sets in rows

such that sequential sets will result in row buffer hits. In the earlier DDR DRAM

cache experiments we also used an open row policy in our cache to take advantage

of row buffer hits. However, in order to understand the full impact of the open page

policy we need to see what happens when the system in switched to a closed page

policy instead. To this end we performed an experiment where we used the same

DDR3 cached, DDR3 backed organization as our earlier experiment but switched

the cache to a closed page policy. We show the results for this experiment in Figures

8.27, 8.28, 8.29, and 8.30.

The lack of row buffer hits clearly results in a massive slowdown for the serial

case in Figure 8.27. This makes sense because the serial implementation relied solely

on row buffer hits to provide performance and the closed page system has eliminated

those. This same effect also appears to have affected the 2-way case as well because

its relative performance in this system is worse than it was in the other DDR3-DDR3

organizations. This suggests that at least some of the performance benefits of the

2-way approach compared to the 4-way approach were coming from an increased

number of row buffer hits in the 2-way case. The interleaved Alloy system, however,

appears to be relatively unaffected by the switch to a closed page system because

167

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

e
tt

er
)

Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

140 262 15.8 3.46 68.6
58.3

12.1
3.28

11.3 6.0 4.34 4.05
102 3.29

6.68
488

4.98
129

Figure 8.27: A comparison of the average access latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with a closed-page DDR3 DRAM

cache and a DDR3 DRAM backing store. The selected benchmark suite workloads

are used for this evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
at

io

(L
ar

ge
r

is
 B

e
tt

er
)

Ideal

Direct - Serial

Direct- Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.28: A comparison of the hit rates of different DRAM cache architectures.

The ideal system has 4-way associativity and SRAM latency tag lookups. These

results are for a system with a closed-page DDR3 DRAM cache and a DDR3

DRAM backing store. The selected benchmark suite workloads are used for this

evaluation.

168

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

liz
e

d
 A

ve
ra

ge
 M

is
s

La
te

n
cy

(S

m
a

lle
r

is
 B

e
tt

e
r)

 Alloy - Serial

Alloy - Interleaved

LAMOST

Combo-Tag 2-Way

Combo-Tag 4-Way

74.8 176 27.2 10.0 37.1
59.5

14.6 9.29 5.05
65.5 3.33

6.85 304 4.06 73.0

Figure 8.29: A comparison of the average miss latencies of different DRAM cache

architectures normalized to an ideal system with 4-way associativity and SRAM

latency tag lookups. These results are for a system with a closed-page DDR3 DRAM

cache and a DDR3 DRAM backing store. The selected benchmark suite workloads

are used for this evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ta
g

B
u

ff
er

 H
it

 R
at

e

(L
ar

ge
r

is
 B

et
te

r)

Combo-Tag 2-Way

Combo-Tag 4-Way

Figure 8.30: A comparison of the tag buffer hit rate of the two Combo-Tag cache

architectures. These results are for a system with a closed-page DDR3 DRAM

cache and a DDR3 DRAM backing store. The selected benchmark suite workloads

are used for this evaluation.

169

0

10

20

30

40

1 1.25 1.5 1.75 2

Speedup Factor

blackscholes

Direct - Interleaved Combo-Tag 4-Way

0

0.5

1

1.5

2

1 1.25 1.5 1.75 2

Speedup Factor

leslie3d
0

2

4

6

8

1 1.05 1.1 1.15 1.2

N
o

rm
al

iz
e

d
 A

ve
ra

ge

A
cc

e
ss

 L
at

e
n

cy

(S
m

al
le

r
is

 B
et

te
r)

Speedup Factor

Internet Commerce

Figure 8.31: The effect of increasing the pressure on the cache by marginally speed-

ing up the trace normalized to an ideal system system with 4-way associativity,

SRAM latency tag lookups, and a speedup factor of 1.

most of its performance was derived from concurrency utilization rather than row

buffer hits.

8.9 Bandwdith Sensitivity

Finally, another aspect of these systems that we are interested in is how they

react to increased cache pressure. Bandwidth pressure on DRAM caches is likely to

continue to increase in the future as more cores and threads are added to systems.

Therefore, it is important to understand how the different stacked cache approaches

will react as the cache pressure is increased. Figure 8.31 shows the effects of grad-

ually increasing the cache pressure by incrementally speeding up the traces. This

simulates the effect of having additional threads generating requests. Here we can

see again that the effects are highly workload dependent, with some workloads, like

leslie3d, showing almost no response and others, like blackscholes, that do. More

170

importantly, though, we can see from the internet commerce result that for some

workloads, the ability of the different DRAM cache architectures to handle addi-

tional pressure varies greatly. As the pressure is increased, Alloy cache is quickly

overwhelmed and its performance degrades. Combo-tag, on the other hand, han-

dles the pressure better because the tag buffer acts as a sort of filter which reduces

the amount of transactions that are going to the cache. Every access, regardless

of whether it is a hit or a miss, is handled by the cache in the direct mapped sys-

tem but some misses are handled only by the tag buffer in the Combo-Tag system.

This reduces some of the load on the cache in the Combo-Tag case. Therefore, the

Combo-Tag architecture is better able to handle cache pressure and better suited

to handle the additional traffic of future workloads.

8.10 Summary

The architecture presented in this chapter enables DRAM cache associativity

in a way that is efficient both in terms of tag storage and bandwidth utilization.

Our novel tag buffer design and replacement policies enable the temporary buffering

of tags in just 4KB of SRAM. Additionally, our method of mapping sets within the

DRAM row and coalescing tags into a single DRAM access reduces the bandwidth

load on the cache due to tag lookups while also amortizing the latency cost of a

tag lookup. As a result of these features, Combo-Tag is able to achieve a speedup

over direct mapped caches while more efficiently utilizing cache bandwidth and tag

storage space than the alternative associative DRAM cache architectures. We also

171

demonstrate the importance of taking into account the concurrency in the DRAM

address space when designing DRAM based caches.

172

Chapter 9: Backing Store Design Analysis

Having optimized the cache to minimize misses as much as possible, we now

turn our attention to reducing the miss penalty by optimizing the backing store.

In this chapter we will investigate the effects of different organizations, page sizes,

prefetching degrees, and host channel organizations on the performance of the back-

ing store. We perform this analysis for a range of cache sizes and potential backing

store technologies in order to determine how the design of the backing store needs

to change to accommodate the operating characteristics of different kinds of mem-

ory. In this chapter we focus on backing store technologies that have characteristics

which lie between the extremes of NAND Flash and DRAM. This is because NAND

Flash and DRAM have typical organizations and page sizes that are the result of

years of development whereas the correct parameters for other types of memory are

less well understood. The results of these studies reveal the complex relationships

that exist in the backing store between access size, access latency, and concurrency.

9.1 Evaluation Methodology

The parameters of the test system used in this chapter were selected to maxi-

mize the stress on the backing store while remaining realistic. To this end we utilize

173

a direct mapped organization for our DRAM cache to provide the highest possible

miss rate for a reasonably sized DRAM cache. Alternatively we could have used

even smaller caches to create additional miss pressure on the backing store. How-

ever, the resulting system and miss traffic would have been less indicative of the

actual systems that would employ a multi-level main memory architecture. We also

provide the DRAM cache with enough concurrency to ensure that the cache will

not be a system performance bottleneck in these simulations. Table 9.1 provides

the parameters of the test system used in this chapter.

We present results for three different backing store technologies in these exper-

iments. They are classified according to their read latency and represent memories

that are twice as slow as DRAM, twenty times as slow as DRAM, and twice as fast

as SLC Flash. These three hypothetical memory technologies therefore represent

the full range of possible memory latencies between the two established extremes in

terms of memory technology. Furthermore, because we assume these hypothetical

technologies to be similar to the proposed non-volatile main memory technologies,

we simulate them with an asymmetric write latency that is 10x the read latency.

This is similar to the latencies that we used in Chapter 6.

The studies presented in this chapter were performed using detailed trace based

simulation using HybridSim with OMS and DRAMSim2 providing the memory sim-

ulations. Each of the experiments was warmed for 1 million memory transactions

in order to eliminate most of the cold cache effects. After the cache was warmed,

the simulations were run for an additional 10 million memory transactions or until

the trace completed. The number of accesses is lower in these experiments than

174

they were in earlier chapters of this dissertation because the page sizes used in these

studies can be much larger. For instance, the page size in chapter 8 was just 64B

while the page sizes in this chapter can reach up to 16KB. As a result, the amount

of data that is transfered in some of these experiments is actually 25 times greater

than it was in Chapter 8 despite the smaller number of overall transactions.

9.1.1 Benchmarks

The studies in this chapter use the same benchmarks that where used in Chap-

ter 8. These benchmarks were selected from the SPEC CPU2006 [111], NPB [112],

and PARSEC [113] benchmark suites because they have large working sets and a

particularly high MPKI. We reuse these workloads because they place pressure on

the cache and as a result tend to induce a higher miss rate. The increased miss

pressure is desirable for these tests because it helps to highlight the performance

of the backing store. The relevant properties of these benchmarks can be found in

Table 9.2.

9.2 Ranks versus Page Size

DRAM and NAND Flash represent two different extremes of memory tech-

nology in terms of their organization, page size, and access latency. DRAM, for

example, utilizes a relatively small 64B access size and groups together 8 devices

into a rank that then services each access as one unit. NAND flash, on the other

hand, utilizes much larger access sizes to help amortize the cost of its long access

175

Table 9.1: Baseline Simulator Configuration

Processor

Number of cores 8-core

Issue Width 4

Frequency 3.2GHz

On Chip Caches

L1I (private) 128 KB, 8-way, 64 B block size

L1D (private) 128 KB, 8-way, 64 B block size

L2 (private) 256 KB, 8-way, 64 B block size

L3 (shared) 32 MB, 20-way, 64 B block size

In-Package DRAM Cache

Organization Direct Mapped, 64B - 16KB page size

Bus Frequency DDR-1333

DRAM Bus Width 64 bits per Channel

DRAM Channels 4

DRAM Ranks 4 Ranks per Channel

DRAM Banks 8 Banks per Rank

Row Size 2048 Bytes

tCAS-tRCD-tRP-tRAS 10-10-10-24

Backing Store

Organization 64B - 16 KB page size

Backing Store Channels 1-64

Backing Store Ranks 1 Ranks per channel

Backing Store Dies 1-64 Dies per Rank

176

Table 9.2: Benchmark Characteristics

Observed Footprint L3 MPKI

ft 1287.27 MB 7.115501

is 264.87 MB 10.424386

mg 430.87 MB 13.5972049

blackscholes 269.53 MB 0.6400292

bodytrack 534.28 MB 0.4995586

canneal 497.60 MB 6.50089792

freqmine 894.04 MB 1.31842398

bzip2 2559.93 MB 61.0071412

gcc 441.31 MB 6.0996348

leslie3d 601.15 MB 18.724911

milc 1909.66 MB 22.4704558

latencies. In addition, NAND flash systems are generally organized so that each

device operates independently of the others in the system. As a result, NAND flash

systems are capable of having many more operations in flight at the same than a

typical DRAM system. However, this additional concurrency comes at the cost of

reduced bandwidth per access as the Flash access has to be transported via only 8

pins while the DRAM rank is capable of utilizing 64 pins (8 pins per chip for a typical

rank size of 8 devices). Based on the standard organizations of Flash and DRAM,

this trade-off between bandwidth and concurrency seems to favor bandwidth for

faster devices and concurrency for slower ones.

It is not clear, though, whether technologies that are 2, 20, or 200 times slower

than DRAM will benefit more from bandwidth or concurrency in the system. To

177

test this we perform a series of experiments where we group together the memory

devices to form ranks of various sizes. This is similar to the superblock configuration

that has been utilized to improve NAND flash bandwidth [98,114]. However, in our

evaluations we hold the number of dies constant in the entire system rather than

the total capacity so that increasing the size of a rank decreases the amount of

concurrency available in the system. In addition, we also vary the total page size

for each rank so that in some configurations the contribution of each die is actually

quite small. This allows us to determine the relationship between bandwidth, page

size, and concurrency for different classes of memory technology from relatively fast

ones to relatively slow ones. We also vary the size of the cache to expose the role

that miss pressure plays in the effectiveness of each organization.

We present the results of this investigation first for each workload individually

and then present an average of all of the workloads.

9.2.1 128MB Cache

Figure 9.12 shows the results for the sweep of rank sizes versus page sizes for

64 dies total. The cache in these experiments is 128MB and is smaller than all

of the workloads that we’re testing. We can see quickly that the different access

latencies produce very different results for the different organizations. For instance,

smaller pages seem to work better for the fastest memory while the longer latency

memory benefits from larger pages. Interestingly, though, all of the memories do

not benefit from the largest page size regardless of organization. This would seem

178

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.1: The average access latencies for ft that result from using different sized

ranks and different sized pages with a 128MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

179

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.2: The average access latencies for is that result from using different sized

ranks and different sized pages with a 128MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

180

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.3: The average access latencies for mg that result from using different sized

ranks and different sized pages with a 128MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

181

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.4: The average access latencies for blackscholes that result from using dif-

ferent sized ranks and different sized pages with a 128MB cache that is significantly

smaller than all of the working sets of the benchmarks used in this chapter. Several

different read latencies are shown to demonstrate the impact that technology choice

has on the potential organizations.

182

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.5: The average access latencies for bodytrack that result from using different

sized ranks and different sized pages with a 128MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

183

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.6: The average access latencies for canneal that result from using different

sized ranks and different sized pages with a 128MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

184

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.7: The average access latencies for freqmine that result from using different

sized ranks and different sized pages with a 128MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

185

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.8: The average access latencies for bzip2 that result from using different

sized ranks and different sized pages with a 128MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

186

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.9: The average access latencies for gcc that result from using different sized

ranks and different sized pages with a 128MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

187

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.10: The average access latencies for leslie3d that result from using different

sized ranks and different sized pages with a 128MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

188

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.11: The average access latencies for milc that result from using different

sized ranks and different sized pages with a 128MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

189

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

es
s

La
te

n
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.12: The average access latencies averaged across all workloads that result

from using different sized ranks and different sized pages with a 128MB cache that

is significantly smaller than all of the working sets of the benchmarks used in this

chapter. Several different read latencies are shown to demonstrate the impact that

technology choice has on the potential organizations.

to indicate an upper bound on the usefulness of the additional information received

in larger pages. In addition, all of the memories appeared to benefit from at least

some degree of concurrency with 16 ranks providing the greatest benefit for all three

technologies. The 1250ns memory also shows some interesting trends regarding the

impact of concurrency on systems using the 2 largest page sizes. In both cases, the

190

addition of concurrency helps to improve the performance of the system but only up

to a point. This seems to suggest that using larger pages can result in the system

becoming more sensitive to bandwidth.

9.2.2 256MB Cache

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.13: The average access latencies for ft that result from using different sized

ranks and different sized pages with a 128MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

191

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.14: The average access latencies for is that result from using different sized

ranks and different sized pages with a 256MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

192

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.15: The average access latencies for mg that result from using different sized

ranks and different sized pages with a 256MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

193

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.16: The average access latencies for blackscholes that result from using dif-

ferent sized ranks and different sized pages with a 256MB cache that is significantly

smaller than all of the working sets of the benchmarks used in this chapter. Several

different read latencies are shown to demonstrate the impact that technology choice

has on the potential organizations.

194

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.17: The average access latencies for bodytrack that result from using dif-

ferent sized ranks and different sized pages with a 256MB cache that is significantly

smaller than all of the working sets of the benchmarks used in this chapter. Several

different read latencies are shown to demonstrate the impact that technology choice

has on the potential organizations.

195

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

250

500

750

1000

1250

1500

1750

2000

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.18: The average access latencies for canneal that result from using different

sized ranks and different sized pages with a 256MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

196

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.19: The average access latencies for freqmine that result from using different

sized ranks and different sized pages with a 256MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

197

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.20: The average access latencies for bzip2 that result from using different

sized ranks and different sized pages with a 256MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

198

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.21: The average access latencies for gcc that result from using different sized

ranks and different sized pages with a 256MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

199

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

500

1000

1500

2000

2500

3000

3500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.22: The average access latencies for leslie3d that result from using different

sized ranks and different sized pages with a 256MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

200

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.23: The average access latencies for milc that result from using different

sized ranks and different sized pages with a 256MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

201

0

500

1000

1500

2000

2500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

500

1000

1500

2000

2500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

500

1000

1500

2000

2500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.24: The average access latencies that result from using different sized ranks

and different sized pages with a 256MB cache that is only slightly smaller than most

of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

In the next study, pictured in Figure 9.24, we double the size of the cache

to 256MB so that it is only slightly smaller than average workload size. The first

thing to note in Figure 9.24 is that the larger cache size has significantly reduced

the pressure on the backing store and the access latencies are nearly a third shorter

as a result. This study shows many of the same trends as the 256MB study pictured

202

in Figure 9.12 for the 125ns and 1250ns memories. However, the 12500ns memory

shows some slightly different effects than what we previously saw with the smaller

cache. Specifically, the fastest organization for this type of memory has shifted from

the 64 rank, 4KB page size organization in the previous experiment to the 16 rank,

16KB page size organization in this study. We believe that this indicates a dynamic

between the pressure on the backing store, the amount of concurrency available, and

the page size. Larger pages take longer to move off of a die and so tend to use up

more of the available concurrency. When there is pressure on the backing store, that

concurrency becomes more important to the overall performance of the system than

the reduction in misses that can result from larger page sizes. As a result, when

the backing store is under pressure it tends to perform better with smaller pages

because the same degree of concurrency can serve a greater volume of accesses.

9.2.3 512MB Cache

In the last rank and page size experiments, we double the size of the cache

again to 512MB so that it is now larger than most of the workloads. The results from

the experiments using this cache can be seen in Figure 9.36. The most interesting

aspect of this study is that the differences between the different organizations appear

to be much less significant than they were in the previous tests. This suggests that

as the pressure on the backing store is relaxed, the impact of both concurrency and

bandwidth are reduced.

203

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.25: The average access latencies for ft that result from using different sized

ranks and different sized pages with a 512MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

204

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.26: The average access latencies for is that result from using different sized

ranks and different sized pages with a 512MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

205

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.27: The average access latencies for mg that result from using different sized

ranks and different sized pages with a 512MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

206

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.28: The average access latencies for blackscholes that result from using dif-

ferent sized ranks and different sized pages with a 512MB cache that is significantly

smaller than all of the working sets of the benchmarks used in this chapter. Several

different read latencies are shown to demonstrate the impact that technology choice

has on the potential organizations.

207

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1750

2000

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.29: The average access latencies for bodytrack that result from using dif-

ferent sized ranks and different sized pages with a 512MB cache that is significantly

smaller than all of the working sets of the benchmarks used in this chapter. Several

different read latencies are shown to demonstrate the impact that technology choice

has on the potential organizations.

208

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

250

500

750

1000

1250

1500

1750

2000

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.30: The average access latencies for canneal that result from using different

sized ranks and different sized pages with a 512MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

209

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.31: The average access latencies for freqmine that result from using different

sized ranks and different sized pages with a 512MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

210

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)

1250ns Read Latency

0
250
500
750
1000
1250
1500
1750
2000
2250
2500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.32: The average access latencies for bzip2 that result from using different

sized ranks and different sized pages with a 512MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

211

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.33: The average access latencies for gcc that result from using different sized

ranks and different sized pages with a 512MB cache that is significantly smaller than

all of the working sets of the benchmarks used in this chapter. Several different read

latencies are shown to demonstrate the impact that technology choice has on the

potential organizations.

212

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.34: The average access latencies for leslie3d that result from using different

sized ranks and different sized pages with a 512MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

213

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.35: The average access latencies for milc that result from using different

sized ranks and different sized pages with a 512MB cache that is significantly smaller

than all of the working sets of the benchmarks used in this chapter. Several different

read latencies are shown to demonstrate the impact that technology choice has on

the potential organizations.

214

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

125ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

A
ve

ra
ge

 A
cc

e
ss

 L
at

en
cy

(S

m
al

le
r

is
 B

et
te

r)
 1250ns Read Latency

0

250

500

750

1000

1250

1500

1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1 1-64 2-32 4-16 16-4 64-1

64 256 1024 4096 16384

Number of Ranks - Number of Dies per Rank
Page Size (Bytes)

12500ns Read Latency

Figure 9.36: The average access latencies that result from using different sized

ranks and different sized pages with a 512MB cache that is larger than most of the

working sets of the benchmarks used in this chapter. Several different read latencies

are shown to demonstrate the impact that technology choice has on the potential

organizations.

215

9.3 Prefetching

One way to reduce the miss ratio of a cache and thereby improve overall

performance is to prefetch data from the backing store in order to bring it into the

cache before it is explicitly requested. By prefetching data based on previous access

patterns, it is possible to leverage spatial locality and frequently bring useful data

into the cache before it is needed. However, prefetching does not always bring in

useful data and can use up bandwidth and concurrency that would have been put

to better use serving actual requests. Furthermore, prefetching can also lead to

cache pollution which is caused by filling the cache with useless data while evicting

potentially useful data.

In the following experiments we use a simple sequential prefetching algorithm

to evaluate the potential benefits that can result from reducing the miss rate of the

cache. This algorithm simply prefetches the next n addresses worth of data after the

requested address every time a miss occurs. We use a 16 rank, 4 die organization

for all of these experiments because that organization appeared to most consistently

outperform the other organizations regardless of memory speed or page size. In

addition, we utilize a 256MB cache for these experiments because this size generates

sufficient miss pressure on the backing store while being less susceptible to cache

pollution than a 128MB cache.

Figure 9.40 shows the latency results of our prefetching experiments. We

normalize these results to the fastest observed latency for each of the three mem-

ory technologies in order to gauge the speedup that was achieved by introducing

216

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

ft

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

is

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

Prefetching Degree (Pages)
Page Size (Bytes)

mg

125ns 1250ns 12500ns

Figure 9.37: The average access latencies for the NPB workloads that result from

different degrees of prefetching normalized to the base average access latency that

was observed without prefetching for each workload. The ranks organizations used

in these experiments are the best values for each read latency as observed in the

ranks versus page size experiments.

217

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

blackscholes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

e
ss

 S
p

e
ed

u
p

(L

ar
ge

r
is

 B
et

te
r)

bodytrack

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

canneal

0

0.5

1

1.5

2

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

Prefetching Degree (Pages)
Page Size (Bytes)

freqmine

125ns 1250ns 12500ns

Figure 9.38: The average access latencies for the PARSEC workloads that result

from different degrees of prefetching normalized to the base average access latency

that was observed without prefetching for each workload. The ranks organizations

used in these experiments are the best values for each read latency as observed in

the ranks versus page size experiments.

218

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

bzip2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
e

ed
u

p

(L
ar

ge
r

is
 B

et
te

r)

gcc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

leslie3d

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

Prefetching Degree (Pages)
Page Size (Bytes)

milc

125ns 1250ns 12500ns

Figure 9.39: The average access latencies for the SPEC workloads that result from

different degrees of prefetching normalized to the base average access latency that

was observed without prefetching for each workload. The ranks organizations used

in these experiments are the best values for each read latency as observed in the

ranks versus page size experiments.

219

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

ee
d

u
p

(L

ar
ge

r
is

 B
et

te
r)

Prefetching Degree (Pages)
Page Size (Bytes)

125ns

1250ns

12500ns

Figure 9.40: The average access latencies that result from different degrees of

prefetching normalized to the base average access latency that was observed without

prefetching. The ranks organizations used in these experiments are the best values

for each read latency as observed in the ranks versus page size experiments.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 16 1 2 4 16 1 2 4 16 1 2 4 16

64 256 1024 4096

M
is

s
R

at
io

(S

m
al

le
r

is
 B

et
te

r)

Prefetching Degree (Pages)
Page Size (Bytes)

Figure 9.41: The average miss ratios that result from different degrees of prefetching.

The ranks organizations used in these experiments are the best values for each read

latency as observed in the ranks versus page size experiments.

220

prefetching. One hypothesis that we had going into this experiment was that by

prefetching smaller pages, it would be possible to surpass the benefits that were

seen when large pages were used in the previous study. The thought here is that

prefetching would allow the same amount of data to be acquired on each access but

the smaller pages would allow for better utilization of the available cache capacity.

Large pages can often lead to wasted cache capacity because significant portions of

a large page can go unused but the page cannot be evicted to make space for useful

data because other parts of the large page are being used. We see that our hypothe-

sis was true for the slowest memory which achieved a performance that was roughly

equivalent to its 16KB page performance with 1KB pages and a 4 page prefetching

degree. This is interesting because the total amount of data being transfered in both

cases is not equivalent. We would have expected the 4KB page, 4 page prefetching

degree setup to do as well as the 16KB page because in both cases 16KB are fetched

each time. We believe that this is due to a trade off between hit rate and bandwidth

utilization that tends to favor hit rate when the backing store latency is long and

the miss penalty is severe. Prefetching spreads the accesses out across ranks though

and so it winds up utilizing less bandwidth per individual device to access the data.

In the 12500ns case, this appears to result in a better utilization of the available

concurrency that, in turn, improves performance.

However, from the other results in Figure 9.40 we can see that our hypothesis

does not hold true for the faster memories. In the case of the 125ns memory, the

optimal page size based on the previous studies was 256B. In this test, the 256B

page once again provided the best performance but also did benefit somewhat from

221

limited prefetching. The same trend can also be observed for the 1250ns memory

which did best with the 1KB page size in both this study and the previous one. This

suggests that there was some available bandwidth and concurrency in the system

that could be used by prefetching to improve performance. However, the drop in

performance at the 16 page prefetching degree shows that there is a definite limit

to the available bandwidth and concurrency.

We also include the miss ratio results for these experiments in Figure 9.41.

These results show that the improved performance in the previous experiments can

be attributed to the reduction in misses provided by prefetching. Increasing the

prefetching degree reduced the miss ratio in all cases. This means that the cases

where prefetching does not provide a performance benefit are due to a bandwidth

and concurrency over utilization and not cache pollution.

9.4 Channel Organization

In all of the studies that we have done thus far, we have assumed that the

memory devices were directly connected to the memory controller. This allowed

us to focus on other important aspects of the system without introducing system

bandwidth as a potential bottleneck. However, in a real system attaching all of the

memory devices directly to the memory controller is simply not an option. The

number of pins required to accomplish this would be too great and the resulting

cost of the system would be too high. Instead, narrow host channels are typically

shared by multiple devices.

222

For these experiments we investigate the effect of adding a host channel on the

performance of our backing store. Sharing high speed buses between many devices

ultimately results in less bandwidth being provided per device if the backing store

memory traffic is particularly severe. However, if the traffic is more moderate, it

may be possible to transparently share the channel between the devices provided

the channel bandwidth is sufficiently higher than the device bandwidth. The goal

of these experiments is to determine if it is possible to effectively share a host

channel in this way. In addition, we also investigate the benefits of different channel

organizations to see if separate request/response buses or separate address buses

can make better use of the available pin count.

The architecture that we utilize in these experiments places a buffer between

the host interface and the device interfaces. This is similar to several research

proposals that have attempted to utilize a buffer to decouple the host channel archi-

tecture from the device channel architecture [40–42]. It also bears some resemblance

to the FBDIMM and LRDIMM designs. We utilize this channel architecture be-

cause it allows us to investigate a wide range of host channel organizations while

not having to modify the device channel.

We look at the effects of three different channel organizations on the total

system performance in these tests. First, we look at the effect of adding a separate

command/address bus to the devices like DRAM devices have. This is not a common

feature in Flash devices and so we were interested to see if it would provide any

noticeable benefits for the slower memory technologies. We also investigate the

benefits of full-duplex versus half-duplex bus organizations when the pin count is

223

held constant. As a result, the half-duplex channel has twice as much bandwidth

going in one direction compared to the full duplex. The question is whether that

bandwidth will be more useful than simultaneous bi-directional communication.

Finally, we also consider the effects of splitting off the addresses and commands

from the data and putting them on their own bus. This could help improve access

times by ensuring that commands and data do not block one another. Unlike the

other bus organizations, we do not split off the command and address pins from the

data pins, instead we simply add a small number of additional pins to the system

for this separate command/address bus. As the results will show, the bandwidth

impact of these additional pins is minimal.

We perform these experiments for two different speeds of host channel to de-

termine the impact that the overall host channel bandwidth has on the effectiveness

of the different organizations.

The results of our channel organization experiments are presented in Figures

9.48 and 9.49. In these graphs we can see clearly that the fastest memory technology

is the most sensitive to variations in the host channel architecture. This is because

the transfer time makes up a much more significant portion of the overall delay for

that memory. Also, the greatest impact seems to result from adding a host channel

to the device. This provided a reasonable speedup in both the 125ns and 1250ns

cases suggesting that all but the slower memory technologies can benefit from a

slightly more complex device interface. Interestingly, the other parameters, host

channel organization and host channel frequency, don’t appear to have much of an

effect on the performance of the system in most cases. The only exception to this

224

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

ft 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

is 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

e
ed

u
p

(L

ar
ge

r
is

 B
et

te
r)

mg 125ns 1250ns 12500ns

Figure 9.42: The average access latencies for the NPB workloads that result from

different host and device channel organizations normalized to the average access la-

tency that was observed with all ranks directly connected to the host and prefetching

enabled. The ranks organizations, page sizes, and prefetching degree used in these

experiments are the best values for each read latency as observed in the ranks ver-

sus page size and prefetching experiments. The host channel in this experiment is

operating at a frequency of 400MHz (DDR-800).

225

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

bodytrack 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

blackscholes
125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

freqmine 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

ee
d

u
p

(L

ar
ge

r
is

 B
et

te
r)

canneal 125ns 1250ns 12500ns

Figure 9.43: The average access latencies for the PARSEC workloads that result

from different host and device channel organizations normalized to the average ac-

cess latency that was observed with all ranks directly connected to the host and

prefetching enabled. The host channel in this experiment is operating at a fre-

quency of 400MHz (DDR-800).

226

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

gcc 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

bzip2 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

milc 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

ee
d

u
p

(L

ar
ge

r
is

 B
et

te
r)

leslie3d 125ns 1250ns 12500ns

Figure 9.44: The average access latencies for the SPEC workloads that result from

different host and device channel organizations normalized to the average access la-

tency that was observed with all ranks directly connected to the host and prefetching

enabled. The host channel in this experiment is operating at a frequency of 400MHz

(DDR-800).

227

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

ft 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

is 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

e
ed

u
p

(L

ar
ge

r
is

 B
et

te
r)

mg 125ns 1250ns 12500ns

Figure 9.45: The average access latencies for the NPB workloads that result from

different host and device channel organizations normalized to the average access la-

tency that was observed with all ranks directly connected to the host and prefetching

enabled. The ranks organizations, page sizes, and prefetching degree used in these

experiments are the best values for each read latency as observed in the ranks ver-

sus page size and prefetching experiments. The host channel in this experiment is

operating at a frequency of 800MHz (DDR-1600).

228

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

bodytrack 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

1.1

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

blackscholes
125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

freqmine 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

ee
d

u
p

(L

ar
ge

r
is

 B
et

te
r)

canneal 125ns 1250ns 12500ns

Figure 9.46: The average access latencies for the PARSEC workloads that result

from different host and device channel organizations normalized to the average ac-

cess latency that was observed with all ranks directly connected to the host and

prefetching enabled. The host channel in this experiment is operating at a fre-

quency of 800MHz (DDR-1600).

229

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
e

ss
 S

p
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

gcc 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

bzip2 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
ed

 A
cc

es
s

Sp
ee

d
u

p

(L
ar

ge
r

is
 B

et
te

r)

milc 125ns 1250ns 12500ns

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

ee
d

u
p

(L

ar
ge

r
is

 B
et

te
r)

leslie3d 125ns 1250ns 12500ns

Figure 9.47: The average access latencies for the SPEC workloads that result from

different host and device channel organizations normalized to the average access la-

tency that was observed with all ranks directly connected to the host and prefetching

enabled. The host channel in this experiment is operating at a frequency of 800MHz

(DDR-1600).

230

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

e
ed

u
p

(L

ar
ge

r
is

 B
et

te
r)

125ns 1250ns 12500ns

Figure 9.48: The average access latencies averaged across all workloads that result

from different host and device channel organizations normalized to the average ac-

cess latency that was observed with all ranks directly connected to the host and

prefetching enabled. The ranks organizations, page sizes, and prefetching degree

used in these experiments are the best values for each read latency as observed in

the ranks versus page size and prefetching experiments. The host channel in this

experiment is operating at a frequency of 400MHz (DDR-800).

is that the full-duplex host channel provides some speedup for the 125ns memory

at the DDR1600 frequency. This would seem to indicate that the host channel’s

bandwidth is generally not a bottleneck in this system. Overall, the addition of

the host channel does not greatly reduce the performance of the backing store even

when it is a relatively slow DDR-800 channel. Therefore, it should be possible to

implement the backing stores of these new multi-level main memories with relatively

few CPU pins.

231

0.85

0.9

0.95

1

1.05

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

No Host Command
Bus

Host Command
Bus

Half-Duplex Host Data Bus Full-Duplex Host Data Bus Half-Duplex Host Data Bus Full-Duplex Host Data Bus

No Device Command Bus Device Command Bus

N
o

rm
al

iz
e

d
 A

cc
es

s
Sp

e
ed

u
p

(L

ar
ge

r
is

 B
et

te
r)

125ns 1250ns 12500ns

Figure 9.49: The average access latencies averaged across all workloads that result

from different host and device channel organizations normalized to the average ac-

cess latency that was observed with all ranks directly connected to the host and

prefetching enabled. The ranks organizations, page sizes, and prefetching degree

used in these experiments are the best values for each read latency as observed in

the ranks versus page size and prefetching experiments. The host channel in this

experiment is operating at a frequency of 800MHz (DDR-1600).

9.5 Summary

In this chapter we have shown that the organization and optimizations used

when designing the backing store architecture can greatly impact its overall effec-

tiveness. Selecting the wrong page size or providing too little concurrency can result

in massive increases in access latencies. Similarly, prefetching can provide a reason-

able performance benefit but prefetching too aggressively can result in a drastic loss

in performance. Therefore, while the cache is the primary bottleneck in the multi-

level memory system, properly designing the backing store still plays an important

232

role in reducing the miss penalty of the system.

233

Chapter 10: Conclusions

The slowdown in DRAM scaling and increase in application working set size

has resulted in the development of new multi-level main memory architectures.

These architectures leverage the benefits of different technologies and organizations

to enable the continued development of larger, faster, more energy effiecient main

memory systems. In this dissertation we have explored the expansive design space

of this new class of memory architecture in order to better understand the dynamics

that exist between its various components. As a result of this work, we have arrived

at the following conclusions:

• The cache is one of the most important bottlenecks in the multi-level main

memory system because preventing misses is often the key to providing ac-

ceptable performance.

• Multi-level main memory architectures can provide a considerable performance

boost over existing memory system architectures even when employing backing

store technologies that approach SLC NAND flash latencies.

• Associativity can be a critical aspect of DRAM cache design due to the im-

portance of minimizing misses in the multi-level architecture, especially when

234

backing store latencies are long. However, a careful balance has to be ne-

gotiated when building associative DRAM caches so that hit latency is not

increased by more than the latency savings introduced by associativity.

• Selecting the correct page size and concurrency for a particular backing store

access latency is critical to ensuring adequate overall performance.

• Prefetching can improve the overall system performance by allowing the cache

to avoid some misses. However, prefetching too aggressively can consume too

much of the available system bandwidth and result in a reduction in system

performance rather than an increase.

10.1 Summary of Contributions

This dissertation makes the following noteworthy contributions:

• We present an overview of multi-level main memory system architectures and

memory technologies.

• We develop a suite of detailed simulators that enable the investigation of multi-

level main memories utilizing generalized memory technologies that currently

lack specific access protocols.

• We evaluate the impact of hardware management on the performance of multi-

level main memory systems compared to the current software managed SSD

architecture.

235

• We propose a novel associative DRAM cache design that reduces miss rate

while not substantially increasing the hit latency or requiring the addition of

large amounts of on chip tag storage.

• We quantify the effects of miss rate, miss latency, and cache size on different

DRAM cache implementations.

• We demonstrate the effects of page size and concurrency on the performance

of backing stores that utilize technologies with different access latencies.

• We show the potential performance advantages of utilizing prefetching to re-

duce the misses in the DRAM cache.

10.2 Future Work

• Adaptive Prefetching. In this work we presented some initial studies on prefetch-

ing that used a sequential prefetching algorithm to improve the performance

of the system. However, other more complex prefetching algorithms are capa-

ble of delivering improved performance by detecting and adjusting to changes

in the degree of spatial locality present in the access stream. In particu-

lar, the adaptive sequential prefetching, stream buffer prefetching, or sand-

box prefetching could all potentially be used to further reduce the number of

misses in the DRAM cache [115, 116]. It would be interesting to implement

these other prefetching algorithms to see if they could provide significantly

better speedups than the improvement achieved by implementing sequential

236

prefetching.

• Higher Associativity Combo-Tag Organization. The current implementation

of Combo-Tag is capable of a maximum of 4-way set associativity. Increas-

ing the associativity beyond that point results in very inefficeint DRAM row

utilization for a standard 2KB DRAM row buffer. However, increasing the

row buffer size to 4KB allows for a 6-way implementation of Combo-Tag that

could potentially provide some additional perfromance for some workloads. In

addition, increasing the row buffer size to 4KB also improves the efficiency of

Combo-Tag in terms of DRAM row utilization. In the future, we would like

to investigate the possible benefits of implementing Combo-Tag with a 4KB

DRAM row buffer to see if can provide an even greater performance advantage

over the completing designs.

• Variable-Way DRAM Caches. Many of the workloads that we used to evaluate

our DRAM cache design responded to associativity in different ways. Some

of them, like milc, seemed to benefit significantly from high degress of asso-

ciaitivty while others, like the NAS parallel benchmakes, achieved their best

performance with just 2-way associativity. This suggests that as the programs

running on a system change, the optimal degree of associativity can change

with them. Therefore, we feel that it could be valuable to modify Combo-Tag

to enable it to change associativity levels dynamically in response to changes

in workload miss rates.

237

Appendix A: Workload Characterization

In this appendix we provide our characterization of the various suites of work-

loads that we have used in this dissertation. We preformed this characterization in

order to determine which benchmarks in each suite were best suited for use in our

studies. MARSSx86 was used to run the different benchmarks, the baseline config-

uration of the simulator can be found in Table A.1. This characterization includes

the following statistics as recoded by our HybridSim simulator: observed footprint

at the last level cache, the L3 MPKI, the ratio of read accesses to write accesses

at the DRAM cache level, and the miss ratio of a 128MB direct mapped DRAM

cache. These aspects of the workloads were of particular interest to us because they

provide a good indication of how much pressure a particular workload will place on

the memory system.

238

Table A.1: Evaulation Simulator Configuration

Processor

Number of cores 8-core

Issue Width 4

Frequency 3.2GHz

On Chip Caches

L1I (private) 128 KB, 8-way, 64 B block size

L1D (private) 128 KB, 8-way, 64 B block size

L2 (private) 256 KB, 8-way, 64 B block size

L3 (shared) 32 MB, 20-way, 64 B block size

Table A.2: Characterization of the NAS Parallel Benchmarks for 10 billion instruc-

tions

Benchmark LLC Footprint (MB) L3 MPKI R/W Ratio DRAM Direct Miss Ratio

bt 173.184082 3.913029 2.880846541 0.408046

cg 160.6359253 19.1633738 87.25277294 0.396512

ft 1287.27301 7.115501 1.109049952 0.550024

is 264.866333 10.424386 3.815548147 0.623369

lu 155.4019775 4.3579122 2.17063395 0.245093

mg 430.8671875 13.5972049 3.010531733 0.604031

sp 190.3614502 10.6178024 2.209388291 0.15951

239

Table A.3: Characterization of the PARSEC Benchmarks for 50 billion instructions

Benchmark LLC Footprint (MB) L3 MPKI R/W Ratio DRAM Direct Miss Ratio

blackscholes 269.5270996 0.6400292 7.070654346 0.876011

bodytrack 534.282959 0.4995586 1.866059588 0.521681

canneal 497.6022339 6.50089792 2.10668014 0.35405

dedup 251.3790283 0.20152436 1.736885993 0.531703

facesim 175.843811 4.10726822 7.222585035 0.0541854

ferret 92.02905273 0.87002412 9.661749326 0.05025

fluidanimate 116.5549927 1.1199417 2.019722022 0.123372

freqmine 894.0386963 1.31842398 2.795954077 0.467288

raytrace 206.8879395 0.51020034 16.78099282 0.64883

vips 168.6609497 0.13417034 2.15690758 0.435417

Table A.4: Characterization of a selection of benchmarks from the SPEC CPU2006

suite for 5 billion instructions

Benchmark LLC Footprint (MB) L3 MPKI R/W Ratio DRAM Direct Miss Ratio

bzip2 2559.927063 61.0071412 1.208938092 0.578204

gcc 441.3080444 6.0996348 3.680787119 0.527504

leslie3d 601.1542358 18.724911 3.07179435 0.593654

mcf 181.4937134 67.6635826 3.939492989 0.264314

milc 1909.656738 22.4704558 1.816159333 0.66328

soplex 130.819458 1.176362 1.588369125 0.386595

wrf 458.9356079 3.3217486 1.692260422 0.605523

240

Appendix B: Open Memory Simulator Verification

This appendix contains the average latency values for a range of SPEC bench-

marks that were produced by the Open Memory Simulator and DRAMSim2. These

values were gathered in order to establish that OMS generated latency values that

were reasonably similar to the hardware verified DRAMSim2. The tests used a

similar configuration for both OMS and DRAMSim2 with 1 channel, 1 rank, and 8

banks. This organization was selected because it was simple yet still tested the sim-

ilarity of the scheduling algorithms in both simulators. In addition, the DRAMSim2

simulator did not use tFAW or tRRD timings in this test as those limitations are not

currently implemented in OMS. The results of the test show that OMS is capable of

generating average access latency values that are within 7% of DRAMSim2’s values

on average and no more than 10% in the worst case.

241

Table B.1: A comparison of average access latencies for the SPEC traces used in

this dissertation measured using DRAMSim and OMS on a system with the same

1Channel - 1Rank - 8Bank configuration in both cases

DRAMSim NVDIMM Difference Absolute Value

bzip2 280.63 289.63 0.03156455 0.03156455

gcc 177.25 192.343 0.081673625 0.081673625

leslie3d 68.768 62.619 -0.093601346 0.093601346

mcf 391.969 406.794 0.037119897 0.037119897

milc 71.02 64.45 -0.096995645 0.096995645

soplex 67.675 60.746 -0.1079107 0.1079107

wrf 73.685 68.1156 -0.078552559 0.078552559

Average -0.032386026

Abs Average 0.075345474

242

Bibliography

[1] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd ed. Wiley-
IEEE Press, 2010.

[2] “Micron technologies, inc.” http://www.micron.com, 2015.

[3] “Samsung first to begin shipping 40nm-class, 32-gigabyte memory mod-
ule for server applications,” http://www.samsung.com/global/business/
semiconductor/newsView.do?news id=1139, Samsung, Mar 2010.

[4] “Micron introduces industry’s highest density ddr3 components and mod-
ules,” http://news.micron.com/releasedetail.cfm?ReleaseID=440712, Micron,
Oct 2007.

[5] “Hynix introduces dram industry’s first jedec standard 8gb ddr2
r-dimms,” http://www.thefreelibrary.com/HynixIntroducesDRAMIndustry’
sFirstJEDECStandard8GBDDR2...-a0138702474, The Free Library, Nov
2005.

[6] “Micron touts first 4gb ddr dimm,” http://www.theregister.co.uk/2003/03/
20/micron touts first 4gb ddr/, The Register, Mar 2003.

[7] “Samsung announces industry’s first 2gb ddr dimm modules; new modules
power industry standard hp proliant servers.” http://www.thefreelibrary.com/
SamsungAnnouncesIndustry’sFirst2GBDDRDIMMModules;NewModules...
-a092809153, The Free Library, Sept 2002.

[8] “Micron technology, inc., announces industry samples of 2.5v 266mhz
256 meg ddr sdrams,” http://www.thefreelibrary.com/MicronTechnology,Inc.
,AnnouncesIndustrySamplesof2.5V266MHz...-a067130444, The Free Library,
Nov 2000.

[9] “Micron announces industry’s first monolithic 8gb ddr3 sdram,” http://
investors.micron.com/releasedetail.cfm?releaseid=859298, Micron, July 2014.

243

[10] “Samsung makes highest density dram chip,” http://techcrunch.com/2009/
01/29/samsung-makes-highest-density-dram-chip/, Samsung, Jan 2009.

[11] “Samsung shows off 2gb ddr2 drams.” http://www.xbitlabs.com/news/
memory/display/20040920150146.html, Samsung, Sept 2004.

[12] “About us: History,” http://www.samsung.com/global/business/
semiconductor/aboutus/AboutUs History.html, Samsung, 2011.

[13] P. Clarke, “Toshiba rolls 24-nm nand flash,” http://www.eetimes.com/
electronics-news/4207194/Toshiba-rolls-24-nm-NAND-flash, EE Times, Aug
2010.

[14] “Toshiba to launch 43nm slc nand flash memory,” http://www.reuters.com/
article/2008/10/28/idUS32460+28-Oct-2008+PRN20081028, Toshiba, Oct
2008.

[15] “Micron offers industry‘s first high speed nand product,” http://www.
eetimes.com/electronics-news/4207194/Toshiba-rolls-24-nm-NAND-flash,
Micron, Feb 2008.

[16] “Samsung produces first 4-gigabit nand flash memory us-
ing 70-nanometer technology; nand flash-dedicated 300mm
line delivers first wafers.” http://www.thefreelibrary.com/
SamsungProducesFirst4-GigabitNANDFlashMemoryUsing70-nanometer.
..-a0132828739, The Free Library, May 2005.

[17] “Micron ships first production 2 gigabit 90 nanometer nand
flash memory products today,” http://www.thefreelibrary.com/
MicronShipsFirstProduction2Gigabit90NanometerNANDFlash...
-a0126307978, The Free Library, Dec 2004.

[18] “Samsung mass-produces industry’s first 1gb nand flash memory device
utilizing 0.12-micron process technology,” http://www.thefreelibrary.com/
SamsungMass-ProducesIndustry’sFirst1GbNANDFlashMemoryDevice...
-a090351934, The Free Library, Aug 2002.

[19] “Toshiba introduces new high-density nand flash
memory products,” http://www.thefreelibrary.com/
ToshibaIntroducesNewHigh-DensityNANDFlashMemoryProducts.
-a065469073, The Free Library, Sept 2000.

[20] “Samsung ships world’s first 128mb flash memory chips – company gets
head start on next-generation flash memory market – stores up to 120
vga-quality pictures,” http://www.thefreelibrary.com/SamsungShipsWorld’
sFirst128MbFlashMemoryChips--Companygets...-a020460773, The Free Li-
brary, Sept 2002.

244

[21] Fusion-IO, “iodrive octal angle shot,” http://www.fusionio.com/photo/
iodrive-octal-angle, 2015.

[22] “iodrive octal flat shot,” http://www.fusionio.com/photo/iodrive-octal-flat,
Fusion-IO, 2015.

[23] B. Kiyoo Itoh, “The history of dram circuit designs; at the forefront of dram
development,” Solid-State Circuits Society Newsletter, IEEE, vol. 13, no. 1,
pp. 27–31, Winter 2008.

[24] J. Gantz and D. Reinsel, “The digital universe decade-are you ready,” External
Publication of IDC (Analyse the Future) Information and Data, pp. 1–16,
2010.

[25] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance
Main Memory System Using Phase-Change Memory Technology,” in Proceed-
ings of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 24–33.

[26] A. P. Ferreira, B. Childers, R. Melhem, D. Mosse, and M. Yousif, “Using PCM
in Next-generation Embedded Space Applications,” Real-Time and Embedded
Technology and Applications Symposium, IEEE, vol. 0, pp. 153–162, 2010.

[27] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Il-
likkal, and R. Iyer, “Leveraging heterogeneity in dram main memories to accel-
erate critical word access,” in Microarchitecture (MICRO), 2012 45th Annual
IEEE/ACM International Symposium on, Dec 2012, pp. 13–24.

[28] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable Dram Alternative,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09. New
York, NY, USA: ACM, 2009, pp. 2–13.

[29] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceedings of the
36th annual international symposium on Computer architecture, ser. ISCA ’09.
New York, NY, USA: ACM, 2009, pp. 14–23.

[30] R. C. Johnson, “Will memristors prove irresistible,” EE Times, Aug
2008. [Online]. Available: http://www.eetimes.com/electronics-products/
analog-products/4106472/Will-memristors-prove-irresistible-

[31] B. Jacob, “The memory system: you can’t avoid it, you can’t ignore it, you
can’t fake it,” Synthesis Lectures on Computer Architecture, vol. 4, no. 1, pp.
1–77, 2009.

[32] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluat-
ing stt-ram as an energy-efficient main memory alternative,” in Performance

245

Analysis of Systems and Software (ISPASS), 2013 IEEE International Sym-
posium on, April 2013, pp. 256–267.

[33] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “Nv-heaps: making persistent objects fast
and safe with next-generation, non-volatile memories,” SIGARCH Comput.
Archit. News, vol. 39, no. 1, pp. 105–118, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1961295.1950380

[34] A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM Memory Manage-
ment Made Easy,” in In Proc. 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’11), 2011.

[35] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating System
Support for NVM+DRAM Hybrid Main Memory,” in Proceedings of the 12th
conference on Hot topics in operating systems, ser. HotOS’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 14–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855568.1855582

[36] “Hybrid Memory Cube Consortium,” http://hybridmemorycube.org.

[37] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob, “Fully-buffered dimm memory
architectures: Understanding mechanisms, overheads and scaling,” in High
Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th Interna-
tional Symposium on, Feb 2007, pp. 109–120.

[38] E. Cooper-Balis, P. Rosenfeld, and B. Jacob, “Buffer On Board memory sys-
tems,” in Proceedings of the 39th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’12, 2012.

[39] “Open NAND Flash Interface Specification,” http://onfi.org/specifications,
May 2014.

[40] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Decoupled dimm: Building high-
bandwidth memory system using low-speed dram devices,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 255–266. [Online].
Available: http://doi.acm.org/10.1145/1555754.1555788

[41] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-
rank: Adaptive dram architecture for improving memory power efficiency,”
in Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on, Nov 2008, pp. 210–221.

[42] K. Fang, H. Zheng, and Z. Zhu, “Heterogeneous mini-rank: Adaptive, power-
efficient memory architecture,” in Parallel Processing (ICPP), 2010 39th In-
ternational Conference on, Sept 2010, pp. 21–29.

246

[43] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[44] “Ddr3 sdram mt41jxx datasheet,” Micron, 2006.

[45] “Samsung k4b2g0446c datasheet,” http://www.samsung.com/
global/business/semiconductor/products/dram/DDR3/downloads/
ds k4b2gxx46c 1 35v rev11.pdf, Samsung, 2010.

[46] “Process integration, devices & structures,” http://www.itrs.net/Links/
2009ITRS/2009Chapters 2009Tables/2009 ExecSum.pdf, International Tech-
nology Roadmap for Semiconductors, 2009.

[47] K. Kim and G. Jeong, “Memory technologies for sub-40nm node,” in Electron
Devices Meeting, 2007. IEDM 2007. IEEE International, dec. 2007, pp. 27
–30.

[48] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,
and M. Horowitz, “Towards energy-proportional datacenter memory
with mobile dram,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337164

[49] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories.
Springer, 2010.

[50] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,”
Proceedings of the IEEE, vol. 85, no. 8, pp. 1248 –1271, aug 1997.

[51] “Tn-29-42: Wear-leveling techniques in nand flash devices,”
https://www.micron.com/∼/media/documents/products/technical-note/
nand-flash/tn2942 nand wear leveling.pdf, Mircon, 2008.

[52] “Tn-29-19: Nand flash 101: An introduction to nand flash and how to design
it in to your next product,” https://www.micron.com/∼/media/documents/
products/technical-note/nand-flash/tn2914.pdf, Micron, 2006.

[53] J. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on
Flash: A Comprehensive Guide to Understanding and Using Flash Memory
Devices. Wiley-IEEE Press, 2008.

[54] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and J. P. Karidis,
“Morphable memory system: a robust architecture for exploiting multi-level
phase change memories,” in Proceedings of the 37th annual international sym-
posium on Computer architecture, ser. ISCA ’10. New York, NY, USA: ACM,
2010, pp. 153–162.

247

[55] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-change technology and the future of main memory,” Micro, IEEE,
vol. 30, no. 1, p. 143, jan.-feb. 2010.

[56] S. Mittal, “A survey of power management techniques for phase change mem-
ory,” Memory, vol. 1223, pp. 41–1, 2015.

[57] J. Li, B. Luan, and C. Lam, “Resistance drift in phase change memory,” in
Reliability Physics Symposium (IRPS), 2012 IEEE International, April 2012,
pp. 6C.1.1–6C.1.6.

[58] L. Chua, “Memristor-the missing circuit element,” Circuit Theory, IEEE
Transactions on, vol. 18, no. 5, pp. 507 – 519, sep 1971.

[59] S. H. Jo, K.-H. Kim, and W. Lu, “High-density crossbar arrays based on a si
memristive system,” Nano Letters, vol. 9, no. 2, pp. 870–874, 2009.

[60] D. Niu, Y. Chen, and Y. Xie, “Low-power dual-element memristor based mem-
ory design,” in Proceedings of the 16th ACM/IEEE international symposium
on Low power electronics and design, ser. ISLPED ’10. New York, NY, USA:
ACM, 2010, pp. 25–30.

[61] R. Williams, “How we found the missing memristor,” Spectrum, IEEE, vol. 45,
no. 12, pp. 28 –35, dec. 2008.

[62] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and
R. S. Williams, “Writing to and reading from a nano-scale crossbar memory
based on memristors,” Nanotechnology, vol. 20, no. 42, p. 425204, 2009.

[63] Y. Cassuto, s. kvatinsky, and E. Yaakobi, “Sneak-path constraints in memris-
tor crossbar arrays,” in Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on, July 2013, pp. 156–160.

[64] “Ddrx standards,” http://www.jedec.org/, JEDEC.

[65] “512mb c-die nor flash,” Samsung, 2010.

[66] “Numonyx strataflash cellular memory 18-90nm/65nm,” Numonyx, 2008.

[67] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-S. Lee,
H.-J. Kim, J.-M. Park, Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y. Choi, K.-S. Kim,
Y.-R. Kim, I.-C. Shin, K.-W. Lim, H.-K. Cho, C.-H. Choi, W.-R. Chung, D.-
E. Kim, Y.-J. Yoon, K.-S. Yu, G.-T. Jeong, H.-S. Jeong, C.-K. Kwak, C.-H.
Kim, and K. Kim, “A 90 nm 1.8 v 512 mb diode-switch pram with 266 mb/s
read throughput,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp.
150 –162, jan. 2008.

[68] “Omneo p8p pcm 128-mbit parallel phase change memory datasheet,” Nu-
monyx, 2010.

248

[69] D. Lewis and H.-H. Lee, “Architectural evaluation of 3d stacked rram caches,”
in 3D System Integration, 2009. 3DIC 2009. IEEE International Conference
on, sept. 2009, pp. 1 –4.

[70] K. Eshraghian, K. R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, and S.-M. S.
Kang, “Memristor mos content addressable memory (mcam): Hybrid architec-
ture for future high performance search engines,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 19, no. 8, pp. 1407 –1417, aug.
2011.

[71] Y. Chen, C. Rettner, S. Raoux, G. Burr, S. Chen, R. Shelby, M. Salinga,
W. Risk, T. Happ, G. McClelland, M. Breitwisch, A. Schrott, J. Philipp,
M. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. Chen, E. Joseph, S. Zaidi,
B. Yee, H. Lung, R. Bergmann, and C. Lam, “Ultra-thin phase-change bridge
memory device using gesb,” in Electron Devices Meeting, 2006. IEDM ’06.
International, dec. 2006, pp. 1 –4.

[72] G. Servalli, “A 45nm generation phase change memory technology,” in Electron
Devices Meeting (IEDM), 2009 IEEE International, dec. 2009, pp. 1 –4.

[73] “Nand flash memory mt29f4g08aaa, mt29f8g08baa, mt29f8g08daa,
mt29f16g08faa datasheet,” 2006.

[74] “Samsung nand flash memory k9kag08u1m, k9f8g08u0m, k9f8g08b0m
datasheet,” http://www.samsung.com/global/system/business/
semiconductor/product/2007/6/11/NANDFlash/SLC LargeBlock/8Gbit/
K9F8G08U0M/ds k9f8g08x0m rev10.pdf, 2007.

[75] “F26 32gb mlc nand flash memory h27ubg8t2btr-bc h27ucg8u5btr-bc
datasheet,” Hynix, 2011.

[76] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand flash
memory,” in Proceedings of the 10th USENIX conference on File and Storage
Technologies. USENIX Association, 2012, pp. 2–2.

[77] M. Wu and W. Zwaenepoel, “envy: A non-volatile, main memory storage
system,” in ASPLOS, 1994, pp. 86–97.

[78] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proceedings of the 2007 workshop on Experimental computer science,
ser. ExpCS ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1281700.1281702

[79] R. Budruk, “Pci express basics,” http://www.uio.no/studier/emner/matnat/
ifi/INF5063/h14/slides/03 29 pci express basics.pdf, PCI-SIG, 2007.

[80] “Pci-sig,” http://pcisig.com/, 2014.

249

[81] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with a simple
and practical design,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-45. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 235–246. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2012.30

[82] C.-C. Huang and V. Nagarajan, “Atcache: Reducing dram cache latency
via a small sram tag cache,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, ser. PACT ’14.
New York, NY, USA: ACM, 2014, pp. 51–60. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628089

[83] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked dram caches,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-44.
New York, NY, USA: ACM, 2011, pp. 454–464. [Online]. Available:
http://doi.acm.org/10.1145/2155620.2155673

[84] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than interrupt,”
in FAST’12: Proceedings of the 10th USENIX conference on File and Storage
Technologies. Berkeley, CA, USA: USENIX Association, 2012, pp. 3–3.

[85] A. Foong, B. Veal, and F. Hady, “Towards SSD-ready Enterprise Platforms,”
in 1st International Workshop on Accelerating Data Management Systems Us-
ing Modern Processor and Storage Architectures (ADMS), 2010.

[86] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A High-Performance Storage Array Architecture
for Next-Generation, Non-volatile Memories,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’43. Washington, DC, USA: IEEE Computer Society, 2010, pp.
385–395. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2010.33

[87] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 133–146.
[Online]. Available: http://doi.acm.org/10.1145/1629575.1629589

[88] T. Kgil and T. Mudge, “FlashCache: a NAND Flash Memory File Cache for
Low Power Web Servers,” in Proceedings of the 2006 International Conference
on Compilers, Architecture and Synthesis for Embedded systems, ser. CASES
’06. New York, NY, USA: ACM, 2006, pp. 103–112.

[89] D. Roberts, T. Kgil, and T. Mudge, “Using non-volatile memory to save
energy in servers,” in Proceedings of the Conference on Design, Automation

250

and Test in Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2009, pp. 743–748. [Online].
Available: http://dl.acm.org/citation.cfm?id=1874620.1874804

[90] Oracle, “Achieving new levels of datacenter performance and efficiency with
software-optimized flash storage,” http://www.oracle.com/us/products/
servers-storage/storage/tape-storage/software-optimized-flash-192597.pdf,
2010.

[91] “PCI Express OCZ Technology,” http://www.ocztechnology.com/products/
solid state drives/pci-e solid state drives, 2012.

[92] “Fusion-io,” http://www.fusionio.com, 2012.

[93] Spansion, “Using spansion ecoram to improve tco and power consumption
in internet data centers,” http://www.spansion.com/jp/About/Documents/
spansion ecoram whitepaper 0608.pdf, 2008.

[94] T. Hardware, “Samsung intros nand flash-friendly
file system,” http://www.tomshardware.com/news/
NAND-Flash-Flash-Friendly-File-System-F2FS-Jaegeuk-Kim,18229.html,
2012.

[95] InsideHPC, “Spansion packs a whole lotta ram
into your server,” http://insidehpc.com/2009/04/24/
spansion-packs-a-whole-lotta-ram-into-your-server/, 2009.

[96] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate
Memory System Simulator,” Computer Architecture Letters, vol. 10, no. 1, pp.
16 –19, Jan.-June 2011.

[97] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX An-
nual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[98] C. Dirik and B. Jacob, “The performance of PC Solid-State Disks (SSDs)
as a function of bandwidth, concurrency, device architecture, and system or-
ganization,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, ser. ISCA ’09, 2009, pp. 279–289.

[99] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, , and
R. Panigrahy, “Design Tradeoffs for SSD Performance,” in Proceedings of the
2008 USENIX Technical Conference (USENIX’08), ser. USENIX ’08, 2008.

[100] “Gups,” http://www.dgate.org/∼brg/files/dis/gups.

[101] “Filebench,” http://www.fsl.cs.sunysb.edu/∼vass/filebench.

[102] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer, “Benchmarking file system
benchmarking: It* is* rocket science,” HotOS XIII, 2011.

251

[103] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor cache simulator,”
1998.

[104] F. Hameed, L. Bauer, and J. Henkel, “Simultaneously optimizing dram cache
hit latency and miss rate via novel set mapping policies,” in Compilers, Ar-
chitecture and Synthesis for Embedded Systems (CASES), 2013 International
Conference on, Sept 2013, pp. 1–10.

[105] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling ef-
ficient and scalable hybrid memories using fine-granularity dram cache man-
agement,” Computer Architecture Letters, vol. 11, no. 2, pp. 61–64, July 2012.

[106] S. Franey and M. Lipasti, “Tag tables,” in High Performance Computer Ar-
chitecture (HPCA), 2015 IEEE 21st International Symposium on, Feb 2015,
pp. 514–525.

[107] D. Jevdjic, G. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A scalable and
effective die-stacked dram cache,” in Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on, Dec 2014, pp. 25–37.

[108] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for servers: Hit
ratio, latency, or bandwidth? have it all with footprint cache,” in Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 404–415. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485957

[109] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee,
“A fully associative, tagless dram cache,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ser. ISCA
’15. New York, NY, USA: ACM, 2015, pp. 211–222. [Online]. Available:
http://doi.acm.org/10.1145/2749469.2750383

[110] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A Full System
Simulator for x86 CPUs,” in Design Automation Conference 2011 (DAC’11),
2011.

[111] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1186736.1186737

[112] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The nas parallel bench-
marks,” International Journal of High Performance Computing Applications,
vol. 5, no. 3, pp. 63–73, 1991.

[113] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings of

252

the 17th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008, pp. 72–81.
[Online]. Available: http://doi.acm.org/10.1145/1454115.1454128

[114] “Tb-29-28: Memory management in nand flash arrays,” https://www.micron.
com/∼/media/documents/products/technical-note/nand-flash/tn2928.pdf,
Micron, 2005.

[115] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Comput. Surv., vol. 32, no. 2, pp. 174–199, Jun. 2000. [Online]. Available:
http://doi.acm.org/10.1145/358923.358939

[116] S. Pugsley, Z. Chishti, C. Wilkerson, P. fei Chuang, R. Scott, A. Jaleel, S.-
L. Lu, K. Chow, and R. Balasubramonian, “Sandbox prefetching: Safe run-
time evaluation of aggressive prefetchers,” in High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on, Feb 2014,
pp. 626–637.

253

