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INTRODUCTION
Few fi rms innovate with any degree of consistency. Despite 
a signifi cant body of in-depth analysis and academic 
research on the topic of technology innovation, most 
high-tech businesses are not particularly innovative, and 
numerous industry watchers and pundits wonder aloud 
how the truly innovative companies make it look so easy 
(for example, Burrows 2004; Economist 2007; Grossman 
2005; Murphy 2008). The problem of how to innovate at 
the organizational level is clearly not solved. 

Although there is more to a successful business venture 
than just innovation or creating useful stuff (for example, 
that stuff needs to be manufactured reliably, packaged 
attractively, marketed successfully, sold at a reasonable 
profi t, maintained over time, protected from any public 
relations scandals, and so forth), nonetheless, innova-
tion is at the very heart of high tech: it is the necessary, 
if not suffi cient, ingredient for success. Any technology 
company without innovation at its core is either a com-
modity, a monopoly, or a vaporfi rm (a seller of modern-
day snake oil). The intellectual component of production 
that defi nes an organization is its technology innovation, 
its successful high-tech design. Accordingly, a manager in 
the high-tech sector must produce innovation to be suc-
cessful, and it is unlikely that one will produce it with-
out fi rst understanding it. The focus of this chapter is to 
provide some of that understanding: an insight into inno-
vation that will enable an executive to create a culture 
within the corporate environment that produces innova-
tive results regularly. 

The understanding begins with an acceptance that the 
process of innovation is non-trivial (engineering-speak for 
“extremely diffi cult”), or else everyone would be doing it. 
The natural conclusion of this simple observation is that 
traditional attitudes toward the innovative process and 

those who innovate must be reconsidered. To wit, either 
innovation is important to your organization, or it is not: 
if it is important, then it should be treated as such. 

To occur regularly and to be sustainable, technology 
innovation must be nurtured: encouraged and rewarded 
at a level commensurate with its importance. To innovate 
consistently, an organization must identify who typically 
innovates within a given organization, understand them 
well enough to motivate them, and then reward them 
appropriately for their successes. The remainder of this 
chapter discusses these issues.

ACCEPT (ADMIT) THAT IT IS DIFFICULT
Recognizing the problem, understanding the diffi culty of 
the task, is half the solution: full awareness enables the 
executive to see opportunities that others will miss. To 
become an innovator, one must identify who in the indus-
try is innovating, comprehend what they do differently 
from you, and emulate their process. Most business arti-
cles and research papers focus on individual corporations 
and individual executives, relaying their success stories 
and processes. Yet these success stories are the outliers, 
not the rule, and studying the processes of exceptions is 
not likely to yield fruit easily. It is perhaps better to under-
stand the processes at work across an entire industry—in 
particular, the one industry that is known for being inno-
vative: the high-tech startup industry. 

Paul Graham, co-founder of 1990s start-up Viaweb and 
co-developer of its software, which now powers Yahoo! 
Stores, depicts the inherent tension and challenge of tech-
nology innovation in a typical corporate setting:

. . . In the right kind of business, someone who 
really devoted himself to work could generate 
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ten or even a hundred times as much wealth as 
an average employee. A programmer, for exam-
ple, instead of chugging along maintaining and 
updating an existing piece of software, could 
write a whole new piece of software, and with it 
create a new source of revenue.

Companies are not set up to reward people who 
want to do this. You can’t go to your boss and 
say, “I’d like to start working ten times as hard, 
so will you please pay me ten times as much?” 
For one thing, the offi cial fi ction is that you are 
already working as hard as you can. But a more 
serious problem is that the company has no way 
of measuring the value of your work. . . .

A company that could pay all its employees so 
straightforwardly [as its executives and sales-
men, based upon revenue generated] would be 
enormously successful. Many employees would 
work harder if they could get paid for it. More 
importantly, such a company would attract peo-
ple who wanted to work especially hard. It would 
crush its competitors. . . .

That’s the real point of startups. Ideally, you are 
getting together with a group of other people 
who also want to work a lot harder, and get paid 
a lot more, than they would in a big company. 
And because startups tend to get founded by 
self-selecting groups of ambitious people who al-
ready know one another (at least by reputation), 
the level of measurement [of individual skill and 
contribution] is more precise than you get from 
smallness alone. A start-up is not merely ten peo-
ple, but ten people like you. . . .

Big companies can develop technology. They just 
can’t do it quickly. Their size makes them slow 
and prevents them from rewarding employees for 
the extraordinary effort required. So, in practice, 
big companies only get to develop technology in 
fi elds where large capital requirements prevent 
startups from competing with them, like micro-
processors, power plants, or passenger aircraft. 
And even in those fi elds, they depend heavily on 
startups for components and ideas. . . .

(pages 96–97, 99, 101, from chapter 6, “How 
to Make Wealth,” in Hackers and Painters: Big 
Ideas from the Computer Age) (Graham 2004)

Your job as an executive is to fi gure out how to turn 
your large company into an innovation machine—to gen-
erate new ideas and technology well and relatively often. 
To anyone who creates, the notion itself should smack of 
incredible hubris: Innovation is the creation of really useful 
stuff, and so to declare one’s company innovation-oriented 
is essentially to mandate creativity. As any creative person 
will attest, however, creativity stubbornly refuses to be man-
dated, or else the term writer’s block would hold no meaning 
whatsoever. So how, then, could one possibly center one’s 
business model around something as slippery as innovation 
and retain any hope of staying alive?

Some Perspective
Let us get a few facts out onto the table to begin with. It 
would be good to bear these in mind; they are the obsta-
cles that stand in the way of the executive or manager 
who desires his organization to innovate. Overcoming 
these obstacles is the focus of this article.

• Technology innovation is ridiculously diffi cult; it requires 
extraordinary effort, dedication, time, and focus of 
attention on the part of extremely talented individuals. 

Technology innovation is driven by individuals, not organi-
zations: If you do not have extremely good people, it sim-
ply will not happen. The role of the organization is to help 
foster innovation, that is, to participate somewhere on the 
scale from not stifl ing it (at a bare minimum, compare to 
Elenkov and Manev 2005) to rewarding it at a level com-
mensurate with its importance to the organization.

Innovation usually, but not always, comes from engi-
neers; “worldwide, the engineer is a key driver of techno-
logical innovation and new venture creation.” (Menzel 
et al. 2007) Good ideas do come from all sources (Kickul 
and Gundry 2001), but even when an idea originates 
outside of engineering, it is the engineer who makes the 
idea work. This chapter, therefore, focuses on under-
standing and motivating the individual engineer. 

The majority of engineers tend to be good at only one of 
the following two skills: their job and promoting them-
selves. Some are good at neither, and it is the rare case 
in which an individual is good at both. Consequently, in 
almost every large engineering organization, in which 
evaluation and reward is typically done by nontech-
nical managers, there is a rough inverse relationship 
between people’s salaries and their contribution to the 
organization’s bottom line.

On top of salary issues within engineering (that is, sala-
ries’ frequent lack of correlation to skill), a signifi cant 
disparity exists between engineering salaries and those 
of management and sales (Salary.com 2008). The direct 
message to engineers is that innovation is valued by 
the company far less than management or marketing. 
Engineers are torn between the desire to innovate and 
the desire to become wealthy, because within a large 
company, it is nearly impossible to do both—that is, 
become wealthy while remaining an engineer in R&D.

• The issues of salary are quite well known to the engi-
neers themselves. This generates unvocalized morale 
problems and causes the extremely talented individuals 
to leave large companies (or avoid them to begin with) 
and instead seek their fortune elsewhere, typically in 
start-up companies where, despite the 10 percent rule 
of thumb for start-up success, these individuals still 
have a far better chance of being rewarded at a level 
commensurate with their skills.

These may be hard truths to admit, but this is the real-
ity in industry today. By defi nition, large companies tend 
not to innovate. The inability of (nontechnical) managers 
to identify and reward talent causes most employees to do 
what is expected of them: average, far less than spectacular, 
work—but without spectacular contributions, innovation 

•

•

•

•
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simply will not occur. The most innovative individuals often 
gravitate toward start-ups where, unlike the environments in 
large corporations, they tend to be rewarded in proportion 
to their accomplishments. As King et al. (2003) note, there is 
a constant confl ict because “an employee may obtain greater 
fi nancial rewards by joining or founding an entrepreneurial 
fi rm than by remaining an employee of a large fi rm.”

Start-ups, high-tech fi rms in their infancy, are often 
run by engineers or at least have extremely talented engi-
neers directing the entire R&D operation. Thus, start-ups 
tend to excel at recognizing and rewarding good design, 
which is why the uber-talented join them: Good engineers 
can identify good designs and good designers, and, more 
importantly, they appreciate their value, which is why 
start-ups reward good designs and good designers in the 
fi rst place. Good design, the heart of innovation, is infi -
nitely more valuable than money . . . you cannot buy your 
way into a good design just as you cannot buy the ability 
to innovate. Good engineers know this. The only way to 
buy innovation is to purchase an innovative company or 
hire an accomplished design team—and even then you 
risk losing all the innovative individuals you just hired 
if your corporate environment fails to reward them. As 
an anecdote, many purchased companies experience so-
called brain drains as soon as the papers are signed; the 
purchasing company acquires the innovative company’s 
name and technology but not its innovators.

To sustain innovation, to accomplish the goals of becom-
ing and remaining a technology-innovation company, an 
organization must foster an environment that retains its 
best engineers by enabling, recognizing, and rewarding 
innovation and good design. By and large, the only envi-
ronments that do this are those of start-up companies. 
This is not a fact of life, however, only a historical trend.

The Opportunity
There exists a powerful opportunity to turn this reality to 
one’s advantage: the fl ip side of the trend is that any large 
company that does learn how to identify, retain, motivate, 
and reward its best engineers would position itself success-
fully as an innovator and would most surely dominate its 
industry. Witness Apple’s original emergence and recent re-
emergence as a technology-innovation company. Witness 
Google’s rise; their treatment of their engineers is legendary. 

So how can an organization become innovative? How 
can an executive successfully mandate creativity? Though 
one may not be able to guarantee creativity, there is much 
an executive can do to foster it, which is certainly an 
attainable goal and quite possibly “the least one can do” 
as the person in charge, as this is something of a sine 
qua non, an essential component (Menzel et al. 2007). As 
you will see, motivating engineers is relatively easy: give 
them challenging problems to solve. The real issue for the 
executive is that of reward—how do you convince your 
engineering staff that it is worth their while to go above 
and beyond on a daily basis? 

MOTIVATION
There are two questions to address: how to motivate engi-
neers to build innovative products, and how to keep the 
most innovative from leaving to join a start-up company.

A Page from the Graphing Calculator Story
First of all, what motivates engineers? The story of Apple’s 
graphing calculator application provides good insight. 
The software was developed by two contractors whose 
projects were terminated prematurely but who nonethe-
less remained for months afterward, unpaid, sneaking 
into the facility to fi nish (Avitzur 2004). Here is some 
insight into the engineers’ motivation:

Why did Greg and I do something so ludicrous 
as sneaking into an eight-billion-dollar corpo-
ration to do volunteer work? Apple was hav-
ing fi nancial troubles then, so we joked that we 
were volunteering for a nonprofi t organization. 
In reality, our motivation was complex. Partly, 
the PowerPC was an awesome machine, and we 
wanted to show off what could be done with it; 
in the Spinal Tap idiom, we said, “OK, this one 
goes to eleven.” Partly, we were thinking of the 
storytelling value. Partly, it was a macho compu-
ter guy thing—we had never shipped a million 
copies of software before. Mostly, Greg and I felt 
that creating quality educational software was a 
public service. . . .

I view the events as an experiment in subverting 
power structures. I had none of the traditional 
power over others that is inherent to the struc-
ture of corporations and bureaucracies. I had 
neither budget nor headcount. I answered to no 
one, and no one had to do anything I asked. Doz-
ens of people collaborated spontaneously, moti-
vated by loyalty, friendship, or the love of crafts-
manship. We were hackers, creating something 
for the sheer joy of making it work.

The story might well be read by nonengineering types 
with a kind of horror; I don’t know. It is certainly read 
by engineers as a modern Robin Hood, as an example of 
heroes to honor and emulate. 

Engineers want to create superbly beautiful things; 
the less encumbered by bureaucracy, the better (compare 
to Menzel et al. 2007). As the story suggests, engineers 
will work ridiculous hours and go to absurd lengths to 
ensure that what they create is enviably good design; all 
they need is the proper motivation—and in this exam-
ple, the work itself was its own motivation. Though this 
is an extreme example, it is indicative of the mindset of 
an engineer: A tough technical challenge is often the best 
motivation (compare to Kostoff 1999).

A Page from the Start-Up Story
How to attract and retain the top engineers is the next 
issue; start-ups attract top engineers but ultimately lose 
them as the successful start-ups transition into large cor-
porations. This is the heart of the issue, the problem that 
must be understood and addressed to retain engineering 
talent.

Consider the normal life cycle of a company that starts 
out as a technology innovator and, in this case, succeeds. 
Normally, start-ups begin as a small group of like-minded 
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individuals who solve an important problem that other 
people want solved badly enough to pay for the solution. 
This is innovation. Start-ups by defi nition must innovate, 
or else they fail to thrive. Innovation is the one thing that 
allows them to compete with established companies.

At the outset, all tasks are handled by the individu-
als in this small group, but that at some point the start-
up becomes successful enough to warrant additional 
employees to handle the noninnovative tasks considered 
mundane by the innovators but are nonetheless essential: 
answering the phones, manufacturing and packaging the 
product, taking orders, handling customer service, pro-
viding quality assurance, maintaining and refi ning the 
existing product line, and so forth. The company’s focus, 
as measured by the number of staff hours spent doing the 
various tasks, shifts from innovating to staying profi table. 
As soon as there are more people in the company spend-
ing more time doing anything other than innovating, the 
company has changed, and the shift is palpable to anyone 
there since the beginning.

Meanwhile the original innovators often do one of two 
things: they remain focused on innovation, either by hid-
ing themselves in their offi ces and developing the next-
generation product, or by leaving the company to start 
up another. 

This is merely Start-Up 101, the life cycle of nearly all 
high-tech start-up companies; anyone who has worked at 
a successful start-up recognizes the story. The life cycle of 
the typical innovation-based company historically includes 
a slowdown in innovation and a resultant brain drain, 
but it is exactly this historical trend that one must over-
come to remain innovative as an organization.

How is an executive to reverse this trend? Primarily by 
maintaining the innovative atmosphere associated with the 
origins of the company. However simple this may sound, 
there is no obvious mechanism; companies the world over 
are scrambling for a successful recipe. 

Many companies address the issue with outside peo-
ple; they either collaborate with smaller start-up fi rms 
(King et al. 2003), or they bring in hired guns to do the 
really innovative work for a new design. Collaboration is 
both more likely to succeed and more risky than hiring 
outside help, as there is an obvious loss of control in shar-
ing your IP with an outside fi rm, NDAs notwithstanding. 
Hiring outside help can prove successful, but it can also 
backfi re if the existing staff feels passed over. Also, it is 
just as sensitive to whimsy as relying upon your own staff 
for innovation if you have not instituted a culture or envi-
ronment conducive to innovation: The contractor’s suc-
cess or failure is effectively out of your control. 

It would be more prudent to maximize the probabil-
ity of success by creating the right environment, whether 
contracted help is used or not. One approach would be to 
emulate the risk-and-reward structure of a start-up envi-
ronment directly. One can tie fi nancial reward directly to 
the commercial success of an engineering team’s designs, 
mirroring the fi nancial reward structure of a start-up 
company. The risk would be that of failing to produce 
a winning design: the risk of not receiving a large mon-
etary payout (more psychological defeat than a monetary 
risk, for example, if combined with a skunkworks type 
of competition within R&D). Such a reward structure, if 

implemented correctly, would appeal to the top engineers 
in the organization and would likely attract top engineers 
from other fi rms as well.

The point of identifi cation is to ensure that the appro-
priate individuals are rewarded—that is, an organiza-
tional structure is needed to answer the questions who is 
good and which design is best. 

IDENTIFICATION AND REWARD: 
HOW TO BUILD A TECHNOLOGY-
INNOVATION CULTURE WITHIN AN 
ORGANIZATION
In a large engineering organization, the identifi cation 
of the best designers and best designs is problematic. 
Identifying quality is diffi cult, especially for nontechnical 
managers and executives, and the larger the organization 
the higher the probability that engineers are evaluated by 
nontechnical managers or executives (for example, the 
middle management of Hornsby et al. (2002)). It often 
takes a competent engineer to adequately evaluate another 
engineer, but few competent engineers would rather man-
age than design.

For a company to attract talent, the problem must be 
solved: To retain good engineers, a company must reward 
substance, not decoration. Nothing destroys R&D morale 
faster than good engineers knowing they are paid less than 
other employees, engineering or otherwise, who don’t con-
tribute as much to the bottom line. Exacerbating the prob-
lem is the previously mentioned issue that engineers tend 
to be good at either their job or promoting themselves. 
Really good engineers often have understated or low-key 
personalities, wishing for their accomplishments to speak 
for themselves. They are thus often undervalued by their 
company, so the issue is how to identify those really good 
individuals. 

One answer is to let them do it themselves; as men-
tioned earlier, good engineers are very good judges of 
design. Typically, the most talented denizens of R&D 
know perfectly well who is good and who is not—let them 
identify the cream of the crop by self-selection; let them 
create self-selected teams to work on projects, indirectly 
identifying the best designers in engineering. This emu-
lates the start-up industry, in which innovation comes 
from self-selected groups of extremely competent engi-
neers. Let the best engineers form groups that, at least on 
average, produce the best designs: ecce innovation.

The Proposed Structure
To repeat, the real issue for the executive is that of identi-
fi cation and reward—how do you identify the best of your 
engineering staff and convince them that it is worth their 
while to go above and beyond on a daily basis? How do 
you make them more interested in staying than leaving 
for a start-up company? How do you convince the excep-
tionally talented that it is worth their while to work for 
you instead of working for themselves?

When the question is put that way, it almost answers 
itself: You persuade talented engineers to work exception-
ally hard for you by structuring their work environment 
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so that they are working for themselves. This is exactly 
the reward structure of start-up companies: Those who 
help start the company are given a relatively large portion 
of the company and thus benefi t directly and signifi cantly 
from their successful innovations. Since many talented 
engineers leave large corporate environments for start-
ups, one obvious approach to enable innovation within 
large companies is to identify and reward engineers in 
exactly the same manner as start-up companies.

Envision a skunkworks-type competition within R&D 
for the next-generation design in which the design teams 
are self-selected, and the winning team is given a (small 
but signifi cant) direct, proportional share of the product’s 
revenue. This emulates the start-up environment very 
closely—by defi nition, a team must innovate to succeed, 
and, all else being equal, the team that does the best job 
is rewarded in proportion to their efforts and skills. The 
reward is tied directly to revenue generated by the team; 
this mirrors the reward structure for salesmen and execu-
tives, who get paid to produce results. This form of incen-
tive (tying one’s reward to the revenue generated) can be 
extremely effective at motivating people’s best efforts, so 
it is surprising that, outside of the start-up arena, it is 
rarely used to motivate innovation in engineering.

Because it is important, I will repeat that last bit: Tying 
one’s fi nancial reward to revenue generated has proven to 
be extremely effective at motivating people’s best efforts. 
It is most commonly used to motivate and reward sales-
men and executives, who get paid to produce results. 
However effective it may be, this approach is rarely used 
to motivate innovation in engineering. The exception is 
the start-up arena, in which it is the primary tool for moti-
vation, and in which innovation occurs regularly. 

It stands to reason that giving small design teams a 
signifi cant, proportional share of the revenue they gener-
ate would encourage good design and consistent innova-
tion just as well in a large corporate environment as it 
does in the start-up environment. 

A few of the details in this arrangement are under-
stated but are quite important:

• The teams must be small. This is for two reasons; 
fi rst, the productivity of a team is roughly inversely pro-
portional to the team’s size (Brooks 1995). Second, the 
share of revenue will be split among the entire team, so 
the larger the team, the smaller the individual reward. 
In the limiting case, one could reward the entire R&D 
department for a design success, but that would do lit-
tle to motivate the most talented.

The teams must be self-selected. This is the solution to 
the identifi cation problem posed earlier: Nontechnical 
managers are nowhere near as adept at identifying 
design talent as are the engineers themselves. Faced 
with a nontrivial challenge, engineers will want none 
other than the best on their teams; all else would be dead 
wood slowing the team down. Note that this will work 
well only in organizations with some degree of trans-
parency; engineers must be given a good idea of what 
everyone else is working on, otherwise there is no basis 
for judgment of individual skill. There do exist R&D 
organizations in which only management knows what 
the individual engineers are doing; I suspect it would be 

•

extremely diffi cult to introduce the proposed structure 
into these environments. 

The reward must be real. For quite a while, top execu-
tives and salesmen have been paid staggering and highly 
publicized bonuses for their results (and, in many cases, 
even their failures). It is hard to get past the surreal 
juxtaposition of handing a $25 million bonus to an 
executive for his efforts and handing a congratulatory 
plaque to an engineering team for their efforts, if the 
engineering team’s efforts affect the company’s bottom 
line just as signifi cantly as the executive’s (for example, 
by developing a new product and thus a new source 
of revenue). This incredible disparity of reward is one 
of the primary reasons the exceptionally talented take 
matters into their own hands by leaving the corporate 
environment to start something up on their own.

• The reward must be tied to the product, not the com-
pany in general. The typical reward in high tech takes the 
form of stock options. While this is an appropriate moti-
vator for new hires (like welcoming someone into your 
family), it becomes watered down with the size and scope 
of the company when used to reward technical innova-
tion on a particular product. Give an engineer a piece of 
the company, and the engineer will work hard, in a vague 
sense, to ensure the long-term success of the company. 
Promise an engineer a piece of his product’s revenue, and 
the engineer will work hard on the design and develop-
ment of that product to ensure its fi nancial success. The 
carrot dangled dictates the resulting behavior.

This identifi cation-and-reward structure emulates the 
competitive engineering environment of the start-up indus-
try and, given an appropriate level of reward, would likely 
attract and retain the same uber-talented engineers as the 
high-tech start-up industry. The bottom line is that, to remain 
competitive in the modern economy, fi rms must now tar-
get engineering talent in the same way they have targeted 
executive and managerial talent in the past. Interestingly, a 
similar conclusion was reached by a year-long study com-
missioned to determine how Pittsburgh could revitalize 
itself (Florida 2000). Florida advises regional transforma-
tions appealing to knowledge talent, that is, high-tech engi-
neers, in the same way Pittsburgh transformed itself in the 
past to attract executive and management talent:

The Pittsburgh region has many assets and a long 
tradition of investing in amenities and quality of 
life from which to build this (proposed) agenda—
its spectacular riverfronts, the cultural district, 
professional sports, the pioneering smoke and 
fl ood control measures of the Allegheny Confer-
ence and subsequent environmental revitaliza-
tion, and the downtown renewal of the (1950s) 
renaissance. These measures were undertaken at 
least in part to improve the quality of life required 
to attract high-caliber executive and management 
talent to the region. To be successful in the new 
economy, the greater Pittsburgh region must build 
on its remarkable legacy of achievement in inno-
vation, research and education, and revitalization 
to create the amenities and lifestyle required to 
compete effectively in the age of talent.

•
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Also, the self-selective creative aspect mirrors the 
environment at Disney under Bob Iger, where a six-fold 
increase in revenue resulted from supporting director-
driven movie creation over management-driven movie 
creation (Economist, 19 April 2008). 

From an engineer’s perspective, this type of identifi cation 
and reward structure is ideal: It rewards talent and demands 
of a design team creativity married with competence—in all 
likelihood, for a design to succeed in this environment, the 
idea must be innovative, and it must work. There is no bet-
ter glove to throw down on an engineer’s desk.

If it strikes the reader as if the corporate entity essen-
tially becomes a high-tech VC fi rm funding its own R&D 
staff, this is exactly what is proposed. The mechanism is 
not far from Hornsby’s discussion of the role of middle 
management (2002), but Hornsby’s focus is on empowering 
middle managers who can foster innovation, as opposed 
to the engineers who actually innovate. This disjunction 
is found throughout the many studies of intrapreneurship 
(also termed corporate entrepreneurship or corporate ventur-
ing), a concept targeting technological innovation within 
the corporate environment, organizational renewal and 
revitalization, and the creation of new business opportuni-
ties (Antoncic and Hisrich 2001; Burgelman 1984; Hornsby 
et al. 2002; Kuratko et al. 1990; MacMillan et al. 1986; 
Menzel et al., 2007; Pinchot 1985; Tidd et al. 2005). Though 
literature on the topic universally recognizes that engineer-
ing creativity must be fostered within the corporate envi-
ronment for innovation to take place, few, if any, studies 
suggest that the best way to foster this creativity is to pay 
engineers on a par with managers, salesmen, and execu-
tives. This is surprising, given the vast number of articles on 
the topic (for example, several journals are devoted entirely 
to the study of intrapreneurship and related issues), which 
would seem to underscore its importance.

Similar precedents to the present proposal do exist 
in high tech today, for example, Microsoft, Google, and 
Facebook spurring third-party innovation directly through 
millions in developer seed funding (Mills 2008; Google 
2008; Farber 2007). The only difference is that these exam-
ples show companies funding external innovation rather 
than internal innovation, which benefi ts the company indi-
rectly rather than directly. Exploring an internally directed 
scenario would be worthwhile: the costs would be lower 
(payment is not speculative but based upon success), and 
the benefi ts more readily observed and quantifi ed. 

Moreover, this is arguably one of the only feasible solu-
tions to the problem of identifying, retaining, motivating, 
and rewarding the industry’s best designers—all of which 
is prerequisite to innovation taking place. As Brooks 
states, design is an individual process: “although many 
fi ne, useful software systems have been designed by com-
mittees and built by multipart projects, those software 
systems that have excited passionate fans are those that 
are the products of one or a few designing minds, great 
designers.” (Brooks 1987; compare to Menzel et al. 2007) 
Brooks goes further, and though he speaks of software 
design, the sentiment is just as applicable to hardware 
design and embedded systems design:

I think the most important single effort we can 
mount is to develop ways to grow great designers. 

No software organization can ignore this chal-
lenge. Good managers, scarce though they be, 
are no scarcer than good designers. Great de-
signers and great managers are both very rare. 
Most organizations spend considerable effort in 
fi nding and cultivating the management pros-
pects; I know of none that spends equal effort in 
fi nding and developing the great designers upon 
whom the technical excellence of the products 
will ultimately depend.

(Brooks 1987, reprinted in Brooks 1995)

As Graham suggests (Graham 2004; see earlier quote), 
were a company to adopt such tactics, it would most 
likely attract engineers who wanted to work especially 
hard. It would crush its competitors.

OPPORTUNITIES FOR TECHNOLOGY 
INNOVATION
This section describes the typical development processes 
in hardware design, software design, and embedded sys-
tems design, with the goal of giving the nontechnical 
manager an idea of what is going on and pointing out a 
few opportunities. The discussion leans toward what is 
arguably the easiest problem to solve: that of improving 
embedded systems’ reliability by importing principles of 
semiconductor design. The example illustrates that not 
all innovation produces new and better things; it is often 
just as valuable to produce new and better techniques.

More on Innovation and Good Design
At this point we have addressed the issues of identifying 
and rewarding the company’s most talented and innova-
tive engineers, but part of the original problem still exists: 
that is, recognizing good design. The failure of many com-
panies to capitalize on their own innovations (numerous 
historical examples spring to mind, including graphical 
user interfaces, laser printing, computer networks) sug-
gests that this is probably the most diffi cult problem to 
solve (compare to Candi and Saemundsson 2008). 

Clearly, every industry, and every different product 
within that industry, will have its own set of metrics 
for success—qualities that make one design better than 
others—so it is impossible to be comprehensive here. 
Also, most managers and executives already believe them-
selves good judges of design (indeed, the term managerial 
creativity is used in many research articles in such a way 
as to suggest that management often believes itself to be 
the source of technical innovation and design). 

As for good design, Graham (2004) discusses some 
characteristics common to particularly good examples, 
and at the very least, his list (which should be read slowly) 
will provoke thought:

 Good design is simple.

 Good design is timeless.

 Good design solves the right problem.

 Good design is suggestive.

 Good design is often slightly funny.
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 Good design is hard.

 Good design looks easy.

 Good design uses symmetry.

 Good design resembles nature.

 Good design is redesign.

 Good design can copy.

 Good design is often strange.

 Good design happens in chunks.

 Good design is often daring.

(from chapter 9, “Taste for Makers,” in Hack-
ers and Painters: Big Ideas from the Computer 
Age, which discusses each in detail)

Among other things, good design is not the same as 
choosing something safe. A safe technology choice is typi-
cally a mediocre design chosen not to inspire but rather 
to avoid failure (Kriegesmann et al. 2005; Zahra et al. 
2000). Committees typically choose safe designs. Executives 
typically choose safe designs. Innovators typically choose 
good designs. The executive who asks for innovation must 
be mindful of what she wishes for, on multiple levels:

• A request for innovation is a tacit acceptance of risk. 

Old habits die hard: Engineers accustomed to choos-
ing safe designs, and management that has historically 
rewarded safe design choices, will continue down their 
well-trodden paths until led or driven elsewhere. 

• “Industry best practice” is not. Best, that is. It is by defi -
nition the technological state of the art, which in high 
tech is merely the industry-wide status quo, because 
any advances are quickly adopted by all. More impor-
tantly, it is what the innovator is attempting to beat. 

To help reduce the risk associated with innovation, and 
to retain the company’s innovators, management must 
learn how to recognize good design (perhaps enlisting the 
aid of the company’s top engineers), whether the particu-
lar item is chosen for production or not. This is similar in 
nature to corporate efforts at rewarding creative failures, 
rather than punishing them, so as to avoid risk aversion 
and thus a stifl ing of the innovative process (Kriegesmann 
et al. 2005; Menzel et al. 2007). The difference here is to 
learn enough about good design so that, beyond avoiding 
the punishment of honest creative failures, the organiza-
tion can go out of its way to reward successes as well as 
particularly good creative failures.

Hardware versus Software
Anecdotal evidence suggests that software and hardware 
engineers tend not to interact well and that companies 
would do well to encourage collaborative efforts between 
the two. In particular, enabling such cross-disciplinary 
interaction is one of the easiest ways to make signifi cant 
innovative strides into new terrain.

Traditionally, software engineers are computer scien-
tists, and hardware engineers are electrical engineers, 
and so the division begins in the education system and 
is continued in the workplace. In academia, these topics 
are taught in separate departments, which are usually in 
separate colleges (that is, they belong to different organi-

•

zational and administrative hierarchies), and the different 
departments never interact. In industry, they are different 
groups usually housed at opposite ends of the building or 
campus, and they never interact.

The reason they do not interact is often resentment: 
in both industry and academia (note: I was a software 
engineer in industry then went to academia and evolved 
into a hardware engineer), software folks hate hardware 
folks, and vice versa. Software people consider hardware 
people unibrow Neanderthals who believe clubs, sharp-
ened rocks, and C programming to be paragons of high-
tech. Hardware people consider software people fl ighty, 
self-satisfi ed pansies (think Harvey Korman and Andréas 
Voutsinas as the bickering French noblemen in History of 
the World, Part I) who complain far out of proportion to 
the useful work they do.

Ignoring the question of which group is right, and the 
fact that each group is evaluating the other against its 
own standards instead of evaluating the other against 
the other’s standards (thus producing the type of cogni-
tive disconnect and misunderstanding that occurs when 
a person dramatically underestimates the value and dif-
fi culty of another person’s work), the important question 
is why do these groups fail to get along? What is going on 
here? Both groups are engineers; both build extremely 
complex systems; why is it that they do not appreciate 
each other’s work?

Perhaps it is the nature of the work that creates the 
divide.

Characteristics of Software as an Engineered Product
First, let us develop a quick understanding of the prob-
lem area in which software engineers work: They build 
extremely large systems of interconnected functions, in 
which only a relative handful of the functions interact at 
a given time—meaning at any given point, only a fraction 
of the system (code) is operative. 

Software engineers are held to a standard of correctness 
that is between 99 percent and 99.9 percent—the general 
rule of thumb is that any given software program has a 
bug every 100 to 1,000 lines of code, and this is considered 
an acceptable level of reliability. The truth is that the sheer 
complexity of these systems, and the richness of the func-
tions and their interactions, make it extremely diffi cult to 
get a software product even to this level of correctness. 

The software engineer’s task is inherently creative—
the software engineer is tasked to generate new concepts, 
new features, new behaviors . . . system-level capabilities 
that did not exist previously . . . and then to realize them 
in code. Often the hardest part is mapping these things, 
which rarely have words for adequate description, into 
existing software paradigms that inevitably lack appro-
priate power of expression.

Characteristics of Hardware as an Engineered Product
Let us extend this understanding to describe what hard-
ware engineers do. Hardware engineers build extremely 
large systems of interconnected components, in which 
almost all components interact at a given time—meaning 
at any given point, almost all of the system is operative. 
If software is a gigantic, complex system of interacting 
functions, then hardware (for example, computer hard-
ware) is the equivalent of one, single, incredibly enormous 
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function. All of it operates with itself, all the time—so, for 
example, if any of it is broken, the whole thing fails.

If hardware engineers were held up to the same stan-
dard of correctness as software engineers (one bug in 
every 1,000 lines of code), then nearly all hardware sys-
tems would be completely inoperative. Hardware simply 
does not work if it is only 99.9 percent correct—it doesn’t 
even work if it is 99.999 percent correct. Semiconductor 
chips today have over 1 billion parts in them, and a single 
broken part can bring the entire system down, because all 
of the hardware system is being used, all the time. Forget 
one bug in a hundred or a thousand; a hardware engineer 
doesn’t sleep well until the bugs are one in a million or 
better.

And Ne’er the Twain Shall Meet?
So that is the difference: the hardware engineer’s prob-
lem domain is design reliability, design correctness; the 
hardware engineer is paid to do it right. The software 
engineer’s problem domain is functionality; he is paid to 
do something cool and implement it acceptably well. The 
one is an engineer, a scientist; the other is an artist—com-
pare to Hackers and Painters (Graham 2004).

Both require smarts in enormous quantities, both 
contribute to a company’s bottom line, both are equal in 
value. The successful executive will manage to get each 
side of engineering to understand they will each bene-
fi t individually if they can work together. The key is to 
recognize that both classes of individuals are extremely 
competitive, mostly with themselves (that is, internally 
driven), and they thrive on solving diffi cult problems. 
Both hardware engineers and software engineers con-
sider it far more personally rewarding to solve a suppos-
edly impossible problem than to do just about anything 
else. It is mountain-climbing for the techie—a guy who 
scales a mountain everyone else said was impossible to 
climb returns with an enormous feather in his cap; ditto 
with engineers solving problems that nobody else could. 
All it takes to get a really good engineer to work on a 
problem is for him to see how diffi cult it is: Technical 
challenges to engineers are catnip to cats or bug-zappers 
to mosquitoes. 

Importantly, technical challenges also happen to be 
signifi cantly more engrossing to a hardware or soft-
ware engineer than bashing the software and hardware 
departments. 

Bottom Line
Software and hardware engineers will work together 
famously if the problem is hard and the reward is sig-
nifi cant. Why this should be the least bit interesting to 
an executive is that in most organizations hardware 
and software engineers do not work together famously. 
Thus, it stands to reason that most organizations are not 
living up to their potential for technology innovation, 
because the boundary between software and hardware is 
less well understood than are the fi elds of software and 
hardware by themselves. Entire industries have emerged 
when software and hardware are designed together to 
play off each other’s strengths, enabling applications 
that would not have succeeded if done in hardware or 
software alone, for example, graphics acceleration, MP3 
players, digital imaging (in particular the merging of 

cameras and camcorders), software-defi ned radio, and 
so forth. 

As before, the bottom line is that any large company 
that does solve this problem—that learns how to get its 
software and hardware groups to interact creatively—
would position itself successfully as an innovator and 
would most surely dominate its industry.

A Tale of Three Design Flows
Both hardware and software are extremely powerful tech-
nologies, but both still leave much to be desired, creating a 
signifi cant opportunity for innovation. In particular, soft-
ware and hardware engineers can learn from each other—
there is plenty of room for software to be more reliable and 
for hardware to be more exotic. The engineering challenge is 
to do this without sacrifi cing the benefi cial characteristics. 

VLSI Design 
To begin with, consider VLSI design, the creation of 
semiconductor parts. Jan du Preez, former president of 
Infi neon Technologies North America, stated quite fl atly 
that “semiconductor design is possibly the most complex 
thing that humans do” (du Preez 2002). VLSI manufac-
turing is relatively expensive: A mask set for a cutting-
edge process technology typically runs in the millions of 
dollars. Any design revision requires new masks, poten-
tially a full set, so this is not a technology conducive to an 
iterative design-build-test-redesign development cycle. 
Designers do not build a chip to test their designs; they 
build the chip only when they are certain it will work. A 
design must work the fi rst time around or, worst case, the 
second time around—more than that, and the project is 
scrapped or the company goes out of business.

The methodology for VLSI design enables such tight 
tolerances on correctness. The design fl ow is character-
ized by strict design rules; the development tools enable 
a verifi able physical design, meaning that one can verify 
at the design stage, using CAD tools, whether or not the 
physical implementation will work. One need not build a 
chip to verify the chip’s design.

A typical design fl ow is illustrated in Figure 69.1. The 
engineer begins with a very high-level representation of the 
fi nal chip: A behavioral design that looks very much like 
a piece of software. This specifi cation indicates what the 
chip is supposed to do and how it is supposed to behave, as 
opposed to what circuits to use. As Brooks asserts (1987), 
the hardest part of designing a product is “arriving at a 
complete and consistent specifi cation, and much of the 
essence of building (the product) is in fact the debugging 
of the specifi cation.” Hardware design thus begins with a 
behavioral design, a form of specifi cation that is far easier 
to develop and debug than is hardware itself. 

The behavioral design is transformed by CAD tools into 
a structural design. The transformation process is called 
synthesis; its main benefi t is the saving of valuable engi-
neering time: The tools provide a reasonable fi rst cut at a 
low level design, one that the engineer will further optimize 
by hand. The optimized structural design is run through 
another CAD tool that replaces the logic-level structures 
with equivalent physical layouts taken from a library, 
places those structures on the chip, and routes the signals 
that connect them. What is produced is a physical design 
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that looks on the computer screen exactly like the chip that 
will be fabricated. This design is also optimized by hand.

Before the physical design can be fabricated, it must 
pass a number of tests (for example, electrical checks, 
design rule checks, and so forth) that ensure that the part 
as built will faithfully reproduce the design. These tests 
ensure that each level of design (behavioral, structural, 
physical) corresponds exactly to the other, that whatever 
physical connections are implied at one level of design 
are implemented in another, and that all electrical con-
nections existing at the physical level are anticipated by 
the higher-level designs. The end result of all the testing 
is a reasonable guarantee that, when the part is fabri-
cated, any mistakes found in the implementation will 
be the result of a faulty specifi cation (that is, behavioral 
design) and not the fault of fabrication. Each level of the 
design (behavioral, structural, physical) can be tested 
thoroughly with CAD tools, and as each successive design 
approaches more closely the fi nal physical form, so, too, 
the tests applied to the design mimic more closely the 
tests one would perform on an actual chip, the more real-
istic and convincing the results, and the more confi dent 
the engineer that the design will work when fabricated.

Note that the reason digital VLSI design is verifi able is 
because of its limited palette: A digital designer can use 
wires and transistors, and that is all. This was considered 
extremely limiting when the concept was introduced in the 
late 1970s by Carver Mead and Lynn Conway (Mead and 
Conway 1979), as designers had been comfortable design-
ing digital functions using all manner of devices, process-
ing steps, and process technologies that were incompatible 
with each other and all essentially analog, not digital, in 
regard to their analysis. The limited palette, coupled with 
strict design rules, meant one could relegate design analy-
sis and verifi cation to CAD tools, thereby enabling signifi -
cantly more sophisticated designs. Notably, it was only after 
the introduction of VLSI design rules that the semiconduc-
tor industry began to develop truly complex designs, usher-
ing in the heyday of exponential growth.

Software Design 
The second design fl ow, that of software development, 
is shown in Figure 69.2. The application is specifi ed at a 
high level: a functional level—that is, what the application 
should do, as opposed to how it should be built. The speci-
fi cation is usually descriptive prose or pseudocode, and 
the components that make up the application are iden-
tifi ed and assigned to the various designers and design 
teams (compare to Cusumano and Selby 1997).

The components are designed and developed by hand, 
and they are tested in isolation before being integrated 

into the main code base. This presents problems for com-
ponents developed by different people or different organi-
zations, because it heightens the importance of correctly 
and unambiguously specifying the interfaces between 
components. Witness the loss of the 1999 Mars probe 
(Oberg 1999), in which the technical failure was due to a 
mismatch of measurement units used by different devel-
opment teams in different countries. Microsoft’s solution 
to the problem is to attempt to catch these problems early 
by enforcing the frequent integration of components 
into the main code base while in development, thereby 
increasing the likelihood of discovering any incompat-
ibilities (Cusumano and Selby 1997).

Despite signifi cant attention paid to the open prob-
lem of software validation, discovering software errors is 
still largely done by hand. What makes improving soft-
ware development challenging is that, unlike hardware 
development, software is not particularly amenable to 
CAD-tool support (Brooks 1987), largely due to software’s 
nature, as described before: Truly innovative software 
signifi cantly pushes the boundaries of what code is con-
sidered capable of doing. An innovative application will 
defy English prose to adequately describe what it does; it 
will similarly defy existing code to match its functional 
abilities. By defi nition, this implies that a truly innova-
tive software application will exceed the abilities of any 
existing automated testing mechanism. Consequently, 
software testing is necessarily a human-directed activity 
today. Improving the reliability of software is still a long-
term goal and a heavily researched area.

Embedded Systems Design 
To compare with VLSI and software, the design fl ow 
for embedded systems is shown in Figure 69.3. This is 
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described in a bit more detail, because, unlike software 
design, embedded systems design is amenable to CAD 
support, largely because embedded systems tend to 
have far simpler functional specifi cations. Despite being 
partly software, embedded systems are more amenable 
to CAD analysis than general-purpose software because 
the expected behavior of an embedded system is usually 
simpler (smaller set of possible inputs, less internal state) 
and better suited to formal specifi cation than, say, a desk-
top operating system or word processor.

An embedded application is specifi ed at a functional 
level using methods that range from the informal to the 
formal: for example, prose descriptions, block diagrams, 
pseudocode, state machines, mathematical expressions, 
MatLab code, UML diagrams, and so forth. The fi rst 
step partitions the high-level application into constitu-
ent pieces such as hardware and software. An entire fi eld 
of study is devoted to this partitioning problem, called 
hardware-software co-design, in which the partitioning 
is automated. An additional component often overlooked 
is the physical packaging of the components and mecha-
nisms that allow the components to interact (for example, 
circuit boards, multi-chip modules, 3-D stacking, compu-
ter enclosures, switches, wired and wireless networks and 
their protocols, and so forth). The choice of packaging 
and communication mechanisms often dictates whether 
the desired functions can be implemented.

After choosing the components to constitute the appli-
cation, engineers build and test each non-COTS compo-
nent—note that the behavior of any given component (and 
thus its design) may be infl uenced by any or all of the appli-
cation’s algorithm, architecture, communication networks, 
and packaging. Example components: software modules 
must be written, ASICs developed and fabricated (using the 
VLSI design fl ow described earlier), actuators and sensors 
developed, metal/wood/plastic parts machined and assem-
bled, circuit boards manufactured and assembled. Synthesis 
models for some of these components exist—meaning that, 
given a high-level specifi cation, a CAD tool can produce a 
low-level design for the desired part (as in the VLSI steps 
before)—but these synthesis models are not nearly as well 
developed as those for semiconductor design, so much of 
this level of development is done by hand.

An important fact is that, like software, these individ-
ual components are designed, built, and tested in isolation 
from each other. For example, in the design of automobile 
control networks, it is not unusual for each component 
(power train, spark-plug ignition, antilock brake system, 
stability augmentation system) to be designed and built 
by a separate group, division, or even company whose 
sole focus is that one component. 

When ready, the components are integrated into a 
complete system, the fi rst testable prototype. In many 
cases, this is the fi rst time a full system test can be per-
formed, so it is no surprise that it is an open question 
whether or not the system will indeed work when turned 
on. Whereas the VLSI design fl ow is characterized by 
strict design rules that guarantee a degree of system-level 
verifi cation, the embedded-systems design fl ow is charac-
terized by a complete lack of design rules and the use of 
ad hoc methods (at best) for system-level verifi cation. 

To Do It Better
The embedded systems design fl ow is an obvious candidate 
for technology innovation. The integration of complex het-
erogeneous components is a stumbling block for system 
design: One cannot guarantee the correctness of a system by 
verifying components in isolation—the entire system must 
be verifi ed as a whole. Yet component-level design and 
verifi cation is typical practice in building modern-day 
embedded systems; system-level testing is frequently done 
only when the already-built components are assembled 
into a working system. The practice leaves latent design 
bugs that are too subtle to be uncovered in a lab setting 
and that manifest themselves after product deployment. 
For example, the software loops in an automobile control 
system are usually designed and tested in isolation, but a 
recent trend in the industry is to time-share these loops 
on a single microprocessor. In this scenario, the implicit 
assumption of independence is no longer valid, and, now 
that there can be direct interaction between the loops, 
unintended (and untested) behaviors can arise. Another 
example: A recently proposed redesign of the Blackhawk 
helicopter replaced the existing electrical wiring of the 
controller-area network with a fi ber-optic channel. Though 
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the new optical network increased bandwidth tremen-
dously, the increase in packet latency that was required by 
the optical network-interface hardware made it impossi-
ble to design a stability and control augmentation system 
that would meet the desired specifi cations.

Because they tend to be far simpler than general-pur-
pose software systems, embedded systems are relatively 
low-hanging fruit in the sense of applying CAD tools to 
their design-time verifi cation. The good news is that some 
industry leaders sense this and have proven the tech-
nology by designing their complex embedded systems 
entirely in software—for example Fiat’s rapid develop-
ment of its 500 model (Economist 26 April, 2008). Such a 
CAD-oriented method is far from standard in most indus-
tries, and so any company that can adopt this technique 
stands to improve its time to market and reduce design 
bugs discovered late in the development cycle. 

EMERGENT PARADIGMS: 
MANUFACTURING AS A SERVICE, 
DESIGN AS AN END PRODUCT
Recent trends would seem a boon for companies that 
want to focus more attention on technology innovation; 
they enable a company to spend less capital on infrastruc-
ture and less attention on manufacturing. Rather than 
exploiting these trends merely to cut costs, an organiza-
tion should instead spend the freed capital and attention 
on R&D, innovation, and quality assurance.

In every era, manufacturing has been pushed to the 
fringes of society, away from living and communal spaces. 
Factories have been moved away from dense urban areas; 
manufacturing has been exported to the Third World. 
At the same time, design has never been pushed away; 
design has never been exported, except to the detriment 
of the exporter. Design is the core intellectual exercise that 
can defi ne a company, an industry, a culture, a nation. 
Assuming you consider yourself an innovator, if you give 
design over to a third party, you have given away your 
reason for being—anything else you bring to the table 
can be bought; all else but design is a commodity. 

The interesting result is manufacturing as a service, 
a phenomenon increasing in both visibility and popular-
ity. Traditionally, capital expenses are required to enter a 
manufacturing industry: Before you can build widgets, 
you must fi rst build a factory that can build widgets. One 
consequence of the Internet and the international com-
petition it has enabled (Friedman 2005) is the number 
of plants offering custom manufacturing at wholesale 
prices. For example, circuit-board manufacturers accept 
customer designs uploaded to the Web; they manufacture 
the boards and perform assembly as well—that is, given 
bills of materials they will return a fabbed and completely 
populated board and can obtain all COTS parts directly 
from distributors. Some of the world’s largest semiconduc-
tor companies, such as Taiwan Semiconductor (TSMC), 
focus on building other people’s designs, not their own. 
Similar services are available for CNC routing, plastics, 
metalworking, fi nal assembly, and so forth. 

Because of this phenomenon, the traditional capital-
expense barrier to entry no longer exists: One can now 

manufacture a new product line that is manufactured 
entirely by third parties. Certainly the per-unit cost in this 
scenario is higher, but the capital start-up cost is gone; that 
means the cost exposure of testing the waters with a new 
product, even in a new industry, is effectively nil. It is only 
an issue for experiments that fail so miserably and so pub-
licly that negative PR hurts the company’s other products. 

This now enables a focus on design as an end product 
in and of itself: Anything your organization can design, 
someone out there can and will manufacture for you, and 
the Net has not only enabled this but also simplifi ed tre-
mendously the search for willing manufacturers.

The obvious conclusion is that this empowers start-up 
companies to compete in industries that were previously 
out of reach. Numerous examples can be found in the semi-
conductor industry now that design fi rms need not spend 
the several billion dollars required to build a fab: Silicon 
Valley is bursting with companies offering intellectual 
property, rather than hard goods, as their value added. 

The less obvious conclusion is that it also enables 
larger companies to try the same trick: to explore new 
products or even new industries outside the company’s 
core area that would have been deemed too risky had 
the start-up costs included capital expenses. With deeper 
pockets, a large company should be able to cast a wider 
net than a start-up—in effect, to spread the risk and 
increase the likelihood of success by emulating the effect 
of several start-ups in several different areas or by trying 
several different approaches in the same area (compare 
to MacMillan et al. 1986). 

Again, if this sounds like the approach that venture cap-
italists take, it is exactly that, and the strategy behind the 
tactics is exactly the same. Many innovators, after starting 
up one or more successful high-tech companies, move out 
of the start-up industry and into the VC industry; this is 
perfectly logical, because a nest egg (for example, capital 
earned from the sale of the innovator’s start-up) is more 
likely to grow if it is put into more than one basket.

Capital Freed to Take Multiple Shots
The lesson to take away is simple but powerful. Innovation 
is like throwing darts, in that each shot may or may not 
hit the mark, even for an accomplished thrower. The 
most reliable way to make a bull’s-eye is to take multiple 
attempts. 

Similarly, the most reliable way to make money in the 
start-up industry, given a fi xed amount of attention, time, 
and energy, is not to start up a company but to fund start-
up companies. 

Given that, an executive seeking technological innova-
tion will maximize his chances of success by becoming a 
de facto VC—by treating the company’s engineering staff 
as a collection of would-be startup companies, effectively 
enabling the executive to take multiple shots at the bull’s-
eye. The paradigms emerging in modern business sup-
port such an approach on two distinct levels: 

• Exploiting the manufacturing services of third par-
ties reduces the start-up costs associated with a new 
endeavor and thus allows a large company to afford 
multiple attempts at innovating in new areas. 
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• Offl oading part of one’s manufacturing onto third 
parties allows the focus of a company to shift toward 
design, a much higher-margin (higher risk, higher 
reward) activity. Note well the words etched on the back 
of Apple products: Designed by Apple in California.

The trick, as always, will be to manage well the innova-
tive processes.

CONCLUSION: INNOVATION AND THE 
LION’S SHARE OF REWARD
Engineers do not innovate simply because they are told 
to; often, they will innovate despite being told not to. For 
a good engineer, innovation is the reason for being; good 
ideas come about in the same way and for the same rea-
son that paintings or sculptures come from a good artist 
and words come from a good writer—because they must.

It should be no wonder, then, that start-up companies, 
when taken as an industry, are more consistently inno-
vative than larger companies: Start-ups provide creative 
environments relatively unencumbered by bureaucracy, 
and they tend to reward the innovative engineer at a level 
equal to or above that of a nontechnical manager. Indeed, 
in most start-ups, there is little management within 
engineering, and what little exists is typically technical 
(engineers). This represents the ideal environment for 
nurturing creativity, and it tends to attract some of the 
most innovative designers in the high-tech industry, often 
away from larger corporations.

Large fi rms are desperately trying to close the innova-
tion gap, usually by bringing in talent from outside—by 
hiring designers or design teams, purchasing or partner-
ing with start-up companies, and so forth—but this is 
clearly unsustainable without relatively high turnover. 
Numerous academic studies and business articles on 
innovation and intrapreneurship try to close the gap by 
enabling management-level creativity or fostering a posi-
tive, creative development environment within the organi-
zation. Despite this attention, the problem remains.

The heart of the matter would seem to be relatively 
simple: reward. Many fi rms talk loud and proud about 
the importance of innovation but fail to reward those who 
innovate. The lion’s share of corporate reward typically 
goes to the executive managers who enable innovation 
and not the engineers who turn ideas into reality. When 
actions fail to support a company’s words, talented engi-
neers will turn to the one industry that puts its money 
where its mouth is: the high-tech start-up industry—the 
one industry that rewards individual engineers signifi -
cantly for their innovations, and, not coincidentally, the 
one industry that consistently innovates.

GLOSSARY
Brain Drain: The phenomenon of design talent leaving 

a company en masse, usually precipitated by a specifi c 
incident such as a (forthcoming) change in manage-
ment. The connotation is that, afterward, the com-
pany’s primary innovators are gone, diminishing the 
company’s capacity for technology innovation.

CAD Tool: Software used to perform design tasks that 
can be automated. Because the computer can perform 
tasks much more quickly and accurately than a human 
(in particular, performing the same mundane task 
repeatedly on billions of different inputs), anything 
that can be relegated to a computer in the design pro-
cess should be. This is not trivial, given that the bulk 
of design is inherently creative; thus, the majority of 
CAD-supported activities center around verifi cation.

Design (process): The act of deciding what to build 
and how to build it. Most products represent one 
choice out of an infi nite space of possibilities: the act 
of deciding on that one choice out of the entire space, 
and more importantly, justifying the decision is the 
design process. 

Design (produced item): A high-level description, 
or specifi cation, of the end product. Each product 
domain defi nes its own specifi cation format: for exam-
ple, a design for a house is a blueprint; a design for a 
circuit is a schematic diagram; a design for a software 
application could be a rough sketch of a screen shot 
and a list of behaviors attached to each button.

Development: The act of producing what is specifi ed in 
a given design. Analogy: building a house on the basis 
of its blueprints.

Hired Gun: Somewhat derogatory term for contractor 
(temporary employee) hired for design or develop-
ment. The connotation is that the contractor is being 
hired to do interesting work that existing staff cannot 
do (either because of existing commitments or techni-
cal expertise). If the work to be done is not interesting 
(that is, grunt work), the contractor would be called 
something other than “hired gun,” such as “warm 
body” (connotation: all that is required is a pulse).

Skunkworks: A subgroup within a design or engineer-
ing organization empowered to design the next-gener-
ation product, usually in secret or separately from the 
rest of the organization. Sometimes, multiple teams 
can be working on the same goal, each using a differ-
ent approach and unaware of the de facto competition. 
The term comes from the alias for Lockheed Martin’s 
advanced development programs.

Specifi cation: Sometimes used as synonym for design 
(produced item). When a distinction is drawn between 
the two, the design is a concept, and the specifi cation 
is the formal description of that concept. 

Synthesis: The automation of (a portion of) the devel-
opment process. See CAD tool: If anything can be 
relegated to a computer, it should be. Since the devel-
opment process is often the act of producing ever-
more-specifi c design specifi cations, each one based 
upon the previous spec and replacing descriptions 
with low-level implementations, it is sometimes pos-
sible to automate the translation from description to 
implementation.

Verifi cation: The act of testing an implementation 
to ensure that it corresponds to its high-level design 
specifi cation. This is an extremely diffi cult task, as any 
complex system can have many trillions of possible 
inputs and many trillions of states, and the testing of 
each input with each state could take anywhere from 
nanoseconds to milliseconds, or longer if human input 
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is required. Even at nanosecond speeds, full verifi ca-
tion of such a product would take years, and so, sig-
nifi cant effort has gone into reducing the number of 
inputs and states that must be checked to ensure that 
a product works as advertised.

Wealth: A discussion from Graham (2004): 

If you want to create wealth, it will help to un-
derstand what it is. Wealth is not the same thing 
as money. Wealth is as old as human history. Far 
older, in fact; ants have wealth. Money is a com-
paratively recent invention. 

Wealth is the fundamental thing. Wealth is stuff 
we want: food, clothes, houses, cars, gadgets, 
travel to interesting places, and so on. You can 
have wealth without having money. If you had 
a magic machine that could on command make 
you a car or cook you dinner or do your laundry, 
or do anything else you wanted, you wouldn’t 
need money. Whereas if you were in the middle 
of Antarctica, where there is nothing to buy, it 
wouldn’t matter how much money you had.

Wealth is what you want, not money. But if 
wealth is the important thing, why does every-
one talk about making money? It is a kind of 
shorthand: money is a way of moving wealth, 
and in practice they are usually interchangeable. 
But they are not the same thing, and unless you 
plan to get rich by counterfeiting, talking about 
making money can make it harder to understand 
how to make money. 
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