. Embedded Memory Systems




Today’s Story

e The memory system now dominates performance & power.
Embedded systems “solve” issues now confronting gen-purpose.
=> Take a few notes from the embedded playbook:

e DSP & embedded-processor memory systems

e Better Cache designs for power and performance

e Better DRAM designs for power and performance

e High-performance systems as embedded systems

e Treat DRAM/main-memory as cache, larger block size
¢ [ssue: Software management of memory systems

¢ |ssue: Parallelism & non-conflicting assignment of resources
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DSP/Embedded Memory Systems

e Software schedules accesses to different technologies;
this breaks abstraction, but it improves efficiency
(e.g. studies show scratch pad beats transparent cache)

e Multiple busses to memory => *much”* better streaming performance

¢ |ssue of compilation: transparent cache is a much easier compiler target

¢ Interesting concept, not fully explored: an item’s name indicates its properties
as well as its location:

e Read-only/read-write/executable/non-executable
Volatile/non-volatile
Cacheable/non-cacheable ... etc.



Why That Last Bit Might Matter

e POTENTIAL REGIONS:

e SRAM (0, 1, 2, etc. ... also L1, L2, L3, etc.)

e DRAM

e Flash/PCM/whatever solid-state non-volatile memory you choose

* Disk

e Network?

e Back to the SASOS Concept ...



ISASOS Discussion]




Cache for Power & Performance
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[Aliasing Discussion]



Main Issue: This Cannot Exceed 4KB
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A Solution: Hash-Associative Cache
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RAM Designs for Low Power: One DRAM
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Per Rank (at the DIMM Level

e Fach DRAM device drives & senses ~8K capacitors, sense amps

e Eight devices per rank => 65,536 such discharge/sense cycles,

all to read 512 bits of data.

¢ This is somewhat inefficient

word line
pu

o
[}
o
Q
o
ol
[a]
2
o
14

word line
T

Hi
I

" Data Array

EVTETe)

.
@
o
Q
o
o]
[a]
2
o
o

word line
T

H
I

" Data Array

ETETe)

o
[}
o
Q
o
ol
[a]
2
o
14

_ﬁvord line
I\tL
I
Data Array

EVTETe)

o
[}
o
Q
o
ol
[a]
2
o
o

Hi
I

" Data Array

EVTETe)

M-

M-

M-

o word line o word line o word line o word line
[} = [} = [} = [} =
° o ° o o =t o =t
Row Q T Row Q T Row Q T Q T
Address 8 = Address 8 = Address 8 = 8 =
A Data Array A Data Array fat Data Array fat Data Array
2 o 2 o 2 o z o
o = o = o = o] =
14 3 14 3 x 3 x 3
T S [T [T
Sense Amplifiers | | Sense Amplifiers | Sense Amplifiers Sense Amplifiers
INRRENEEXE) INRRENEEXE)

Sense Amplifiers

Sense Amplifiers

Sense Amplifiers

Sense Amplifiers

IERRNNEIE) Column
AddM\Column Decoder,

T Column
Addreg\cmumn Decoder,

Column
Addreg\cmumn Decoder,

Column Decoder,

Column Decoder,

Column Decoder,

Column Decoder,

Column Decoder,




A Better Approach: FCRAM
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cmd & addr bus
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Combine the Two: Fine-Grained Activation
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Power Savings
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DRAM Device Datarate (Mb/s)
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Fully Buffered DIMM
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A Solution: BOMB
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Additional Issue: Granularity

e Assertion: 4KB page has outlived its usefulness

¢ ¢.g., Google File System: 64MB pages

¢ reduces transfer overhead

® reduces mapping overhead

® increases sequential benefits

® ctC.



—nterprise & Super- Computing

e Run same app (set of apps) 24x7

e Developers spend significant time/energy optimizing apps

e Frequently run a custom (or at least fine-tune the existing) OS

e Have significant, pressing correctness/failure/dependability issues
=> not intrinsic to application area, but because of large-scale multipliers

e Care very deeply about energy consumption
=> not intrinsic to application area, but because of large-scale multipliers

e Sounds a lot like embedded systems, no?



Some Thoughts & Discussion

e Use embedded processors
(bower & heat problems reduce)

e Use software management of memory hierarchy
(performance can increase, scheduling problems are reduced, power can
decrease, checkpoint & restore becomes trivial, etc.)

e Need to pay close attention to resource-mapping issues
(10x performance degradation for poor resource utilization in parallel systems)

e As long as we’re rewriting the OS, incorporate solid-state non-volatiles
(e.q., to support distributed & memory-mapped file/object system,
to divide up read-mostly versus write-often data,
to reduce network 1/O traffic, etc.)



