
Part III. Embedded Memory Systems

Today’s Story

• The memory system now dominates performance & power.
Embedded systems “solve” issues now confronting gen-purpose.
=> Take a few notes from the embedded playbook:

• DSP & embedded-processor memory systems

• Better Cache designs for power and performance

• Better DRAM designs for power and performance

• High-performance systems as embedded systems

• Treat DRAM/main-memory as cache, larger block size

• Issue: Software management of memory systems

• Issue: Parallelism & non-conflicting assignment of resources

DSP/Embedded Memory Systems

60 Memory Systems: Cache, DRAM, Disk

Figure 1.1(c) shows another partitioned
confi guration, one that is found in most DSP
architectures. As we will discuss in more
detail later, these caches are an extension of
the memory space, and, unlike the previous
two organizations, they are not transparent
to software. The main item to note is that
the two partitions both hold data. This con-
fi guration is desirable in DSPs because of
the high data bandwidth required by many
DSP algorithms (e.g., dot-product calcula-
tions such as fi nite impulse response [FIR]
fi lters), which fetch two different data oper-
ands from memory on every cycle.
Figure 1.1(d) shows a typical cache hierar-
chy for a multiprocessor organization. Each

•

•

 processor core has its own private cache,
and the last-level cache before the backing
store (DRAM) is shared by all cores.
Figure 1.1(e) shows two different types of
caches. First, the operating system stores
the blocks it has fetched from disk in main
memory as part of a buffer cache. When an
application reads and writes data from/to
fi les on disk, those requests are not serviced
by the disk directly but are instead serviced
out of the buffer cache. In addition, modern
disks implement their own caches as well;
these caches are not under the control of
the operating system, but instead operate
autonomously. We discuss disk caches in
more detail in Chapter 22.

•

CPU

Cache

DRAM

CPU

DRAM

I-Cache D-Cache

CPU

DRAM

Cache 0 Cache 1

CPU

Cache

CPU

Cache

CPU

Cache

Cache (L2)

DRAM

(d) multi-level cache hierarchy

BrowserBrowserBrowser

Cache Cache Cache

Cache

Web
Server

Web proxy

SOLID-STATE (HARDWARE) CACHES

SOFTWARE CACHES

Cache

DNS
Server

Operating System

Buffer Cache

Operating System

Cache

Hard Disk

Cache

Hard Disk

(g) web-document caches(f) IP-address translation caches(e) buffer caches (on both sides of interface)

(a) general-purpose cache (b) split cache (gen-purpose) (c) DSP-style caches

FIGURE 1.1: Examples of caches. The caches are divided into two main groups: solid-state caches (top), and those that are
implemented by software mechanisms, typically storing the cached data in main memory (e.g., DRAM) or disk.

ch01_P379751.indd Sec2:60ch01_P379751.indd Sec2:60 8/7/07 9:00:29 PM8/7/07 9:00:29 PM

Chapter 1 AN OVERVIEW OF CACHE PRINCIPLES 61

Figure 1.1(f) shows another cache maintained
by the operating system. When a translation
is needed from domain name to IP address,
the operating system may or may not actually
ask a DNS server directly. Translations may
be cached locally to avoid network requests.
Similarly, routing information for hosts and
subnets is typically cached locally.
Figure 1.1(g) shows two different types of
caches. First, each web browser typically
maintains its own local cache of down-
loaded web documents. These documents
are usually stored on the local disk and buff-
ered in main memory as part of the operat-
ing system’s buffer cache (Figure 1.1(e)). In
addition, a request that is sent to a particu-
lar web server may or may not actually reach
the web server. A web proxy, which behaves
like the transparent caches in Figures 1.1(a),
(b), and (d), may intercept the request and
reply on behalf of the server [Luotonen &
Altis 1994].

One of the most important distinctions between
different types of cache is their method of address-
ing. Some caches do not hold a copy of a datum;
they hold the datum itself. These are often called
scratch-pad memory and use a separate namespace
from the backing store (i.e., the primary memory).
A scratch-pad is non-transparent in that a program
addresses it explicitly. A datum is brought into
the scratch-pad by an explicit move that does not
destroy the original copy. Therefore, two equal ver-
sions of the data remain; there is no attempt by the
hardware to keep the versions consistent (to ensure
that they always have the same value) because the
semantics of the mechanism suggest that the two
copies are not, in fact, copies of the same datum,
but are instead two independent data. If they are
to remain consistent, it is up to software. By con-
trast, the typical general-purpose cache uses the
same namespace as the primary memory system.
It is transparent in that a program addresses main

•

•

memory to access the cache—a program does not
explicitly access the cache or even need to know
that the cache exists.

How each of these two mechanisms (transparent
cache and scratch-pad memory) fi ts into the micropro-
cessor’s memory model is shown in Figure 1.2, using
solid-state memories (processor caches and tagless
SRAMs) for examples. A general-purpose memory model
has a single namespace1 that is shared by all memory
structures. Any datum from any part of the namespace
can be found in any of the caches. By contrast, a scratch-
pad uses the namespace to directly address the caches.
For instance, the DSP memory model shown on the
right explicitly places the system’s memory structures at
specifi c disjunct locations in the namespace. A particu-
lar address corresponds to a particular physical storage
device, and unlike a transparently addressed cache, a
single address in the scratch-pad’s namespace cannot
refer to both a cached datum and its copy in the back-
ing store.

1Assumes physically indexed caches.

UNIFORM
ADDRESS

SPACE

NON-UNIFORM
ADDRESS

SPACE

I-CACHE

D-CACHE

SRAM0

SRAM1

DRAM

IBUF

FIGURE 1.2: Transparent caches in a uniform space versus
scratch-pad SRAMs in a non-uniform space. Any datum in the
memory space can also reside in a cache (thus the designation
“transparent”). Only items in certain segments of the memory
space can reside in a scratch-pad memory.

ch01_P379751.indd Sec2:61ch01_P379751.indd Sec2:61 8/7/07 9:00:30 PM8/7/07 9:00:30 PM

DSP “cache”

Software-visible view

DSP/Embedded Memory Systems

• Software schedules accesses to different technologies;
this breaks abstraction, but it improves efficiency
(e.g. studies show scratch pad beats transparent cache)

• Multiple busses to memory => *much* better streaming performance

• Issue of compilation: transparent cache is a much easier compiler target

• Interesting concept, not fully explored: an item’s name indicates its properties
as well as its location:

• Read-only/read-write/executable/non-executable
Volatile/non-volatile
Cacheable/non-cacheable … etc.

Why That Last Bit Might Matter

• POTENTIAL REGIONS:

• SRAM (0, 1, 2, etc. … also L1, L2, L3, etc.)

• DRAM

• Flash/PCM/whatever solid-state non-volatile memory you choose

• Disk

• Network?

• Back to the SASOS Concept …

[SASOS Discussion]

Cache for Power & Performance

Chapter 2 LOGICAL ORGANIZATION 93

Note that these mechanisms are not specifi c to
explicit/implicit addressing or explicit/implicit man-
agement. Virtual caches, address-space identifi ers
(ASIDs), and/or protection bits can all be used in any
of the cache organizations described in this chapter.

2.4.1 Virtual Caches
As mentioned earlier, a transparent cache is an

implementation in which the stored object retains
the same identifi er as is used to access it from the
backing store. Virtual caches offer a slight twist on this
idea. The backing store for a processor cache is usu-
ally taken to be main memory, physically addressed;
therefore, one would expect all processor caches to
use the physical address to identify a cached item.
However, virtual memory offers a completely differ-
ent address for use, one which might be even more
convenient to use than the physical address. Recall
that on each cache access, the cache is indexed, and
the tags are compared. For each of these actions,

either the data block’s virtual address or the data
block’s physical address may be used. Thus, we have
four choices for cache organization.

Physically indexed, physically tagged: The
cache is indexed and tagged by its physical
address. Therefore, the virtual address must be
translated before the cache can be accessed. The
advantage of the design is that since the cache
uses the same namespace as physical memory,
it can be entirely controlled by hardware, and
the operating system need not concern itself
with managing the cache. The disadvantage
is that address translation is in the critical
path. This becomes a problem as clock speeds
increase, as application data sets increase with
increasing memory sizes, and as larger TLBs are
needed to map the larger data sets (it is diffi cult
and expensive to make a large TLB fast). Two
 different physically indexed, physically tagged
 organizations are illustrated in Figure 2.10. The
difference between the two is that the second

TLB

Virtual Page Number

ASID

Page Offset

Page Frame Number

Tag: Page Frame Number

Cache Data

Virtual Address

CACHE

Cache Index

Page FrameNumber Page Offset

Physical Address

TLB

Virtual Page Number

ASID

Page Offset

Page Frame Number

Tag: Page Frame Number

Cache Data

Virtual Address

CACHE

Cache Index

FIGURE 2.10: Two physically indexed, physically tagged cache organizations. The cache organization on the right uses only bits from
the page offset to index the cache, and so it is technically still a virtually indexed cache. The benefit of doing so is that its TLB lookup is
not in the critical path for cache indexing (as is the case in the organization on the left). The disadvantage is that the cache index cannot
grow, and so cache capacity can only grow by increasing the size of each cache block and/or increasing set associativity.

ch02_P379751.indd Sec2:93ch02_P379751.indd Sec2:93 8/7/07 11:24:28 AM8/7/07 11:24:28 AM

Windows assumes physical cache (left)
to solve aliasing problem.

[Aliasing Discussion]

Main Issue: This Cannot Exceed 4KB Page Size
3.1. PROBLEMS AND TRENDS 49

Figure 3.2: The fundamental cache size.This is the number of sets (usually 2n, where n is the index size)
times the cache block size. The figure shows an n-way set associative cache with the fundamental unit
of storage circled. This size is important because this is the space into which an address maps, and if this
size is larger than a page, a particular physical datum could map to multiple sets in a virtually indexed
cache.

Thus, if an operating system expects a physically indexed cache (implying that it does no extra effort
to address the aliasing problem), and the cache uses a virtual index (as shown in the figure), then
this fundamental cache unit must be no larger than a virtual page. Given such a requirement, the
only way to create a large cache is by increasing associativity, and so it should not be surprising at all
that so many CPUs designed for the PC market have had configurations such as 4KB, 8KB 2-way
associative, 16KB 4-way set associative, 32KB 8-way associative, etc.

The PA-RISC was not intended to run commodity operating systems but rather Hewlett-
Packard’s flavor of Unix, and HP designers were well aware of the aliasing problem (Huck and Hays,
1993). Thus, the PA-RISC was not designed to solve the aliasing problem in the same way as PC-
oriented CPUs. In the mid-1990s, it was intended to run large commercial applications such as

A Solution: Hash-Associative Cache

!

"#$%&$'$()*+'((%,-'*-.)$,',/)0$

!"#$%&'()*(+,-.'/0'(1"*-2/ 12%3)($*4%$3'56($4-*/-5$*/)$()*$'57$4-88$5%*$2)98',)$*/)$:%(*+2),)5*8;+<()7$

38%,60$12%.-7)($9%4)2$7-((-9'*-%5$*/'*$-($=#$%&$'$/->/8;+3'56)7$7-2),*+:'99)7$,',/)?$',,)(($*-:)$*/'*$-($@#$

%&$'$/->/8;+3'56)7$7-2),*+:'99)7$,',/)?$'57$9)2&%2:'5,)$*/'*$-($"#$%&$'$()*+'((%,-'*-.)$,',/)0$

A8)'28;?$).)5$*/)$/->/+9)2&%2:'5,)$.)2(-%5$-($

!""#$%&#'()'(*%+,'

!"#$%&'()'*+&'+,-+.,--/0",1"2&'0,0+&3' -.(#/0&%)12%$1/)#%)3#/,(0%$1/)#/4#%#.%'.*%''/51%$16(#5%5.(#1'#5/+,%0(3#$/#$.%$#/4#%#$0%31$1/)%"#)*7%8
'($*%''/51%$16(#5%5.(#9:;#%)3#%#$0%31$1/)%"#)*7%8#:%)<(3#310(5$*+%,,(3#5%5.(#9:;=#>)#,%0$15?"%0@#)/$(#$.%$#$.(#$0%31$1/)%"#)*7%8#'($*%''/51%$16(
5%5.(#3016('#$.(#'()'(#%+,'#4/0#)#$%&#%00%8'#%)3#+%<('#)#$%/+,%01'/)'=#-.(#310(5$*+%,,(3#%)3#.%'.*%''/51%$16(#5%5.('#(%5.#3016(#/)(#'($
/4#'()'(#%+,'#%)3#+%<(#/)(#$%/+,%01'/)=#

A?$,?$#

B44(5$16(#!330(''

CDE@

F/03

-GH

'($#I :8$(

'()'('()'(

-!J K!-!

'()'('()'(

-!J K!-!

H8$(#1)#H"/5<

C(0+1''1/)'

L%5.(
>)3(M

A)(#'($

4

N1$ON1$O

%0(#%5$16%$(3
A)"8#/)(#:%)<

A?$,?$#

B44(5$16(#!330(''

CDE@

F/03

-GH

'($#I :8$(

'()'('()'(

-!J K!-!

'()'('()'(

-!J K!-!

H8$(#1)#H"/5<

C(0+1''1/)'

L%5.(
>)3(M

A)(#'($

4

N1$O

1'#%5$16%$(3

:%)<#'("(5$

PCE#:1$'

PCE#:1$'

5,6'*%,7"1"/8,9'8.:,;'-&1.,--/0",1"2&'0,0+& 5<6'*%,7"1"/8,9'7"%&01.=,>>&7'0,0+&?'8'<,8@-

A)"8#/)(#:%)<

A?$,?$#

B44(5$16(#!330(''

CDE@

F/03

-GH

:%)<#'("(5$ '($#I :8$(

'()'('()'(

-!J K!-!

'()'('()'(

-!J K!-!

H8$(#1)#H"/5<

C(0+1''1/)'

L%5.(
>)3(M

A)(#'($

4

N1$O

1'#%5$16%$(3

.%'.
:%)<#'("(5$

PCE#:1$'

506'A,-+.,--/0",1"2&'0,0+&

:

DRAM Designs for Low Power: One DRAM

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

problem: lots of bits are read per bank activation

Per Rank (at the DIMM Level)

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

4

Figure 1. The modern DRAM device architecture

Aside from the commands mentioned previously, the DRAM protocol also includes a refresh

(REF) command. Due to the nature of the capacitors used to store individual bits of data, the

representative charge leaks, and the intended value dissipates beyond recognition. The REF command

resolves this issue by reading a row and placing it back into the data array, thus refreshing it. This

occurs once every 64 ms. Thus, in a device with 8192 rows, a REF command is typically issued every

7.8 microseconds [1].

In a standard JEDEC style double data-rate (DDRx) DRAM memory system, multiple DRAM

devices are ganged together into a rank and operate in lockstep; when a command is sent to a particular

rank, all devices in that rank receive the same command. For example, a 1 GB rank of storage with a

64-bit wide data bus can be composed of eight x8 1 Gb DRAM devices, all working in unison to

handle requests from the memory controller. In such a system, a 64-byte cache fill will discharge,

sense, and recharge 65,536 capacitors and precharge 65,536 bit lines to read 512 bits of data.

Later generations of DDR have additional specialized commands, one of which is posted-CAS.

The posted-CAS command is sent immediately following the RAS command as opposed to waiting

• Each DRAM device drives & senses ~8K capacitors, sense amps

• Eight devices per rank => 65,536 such discharge/sense cycles,
all to read 512 bits of data.

• This is somewhat inefficient

A Better Approach: FCRAM

9

sizes of the column and row addresses for similar specified parts of DDR and FCRAM [6,7] (Figure

5).

Figure 5. The architectural difference between (a) standard DRAM and (b) Fujitsu’s Fast-Cycle RAM

This simple and effective optimization to the DRAM architecture results in both faster access

times and reduced power consumption. Despite its benefits, the device never achieved widespread use;

its adoption was hindered by the fact that it is proprietary to Fujitsu Microelectronics and does not

adhere to the JEDEC standard for memory systems. This requires non-trivial physical changes to other

parts of the system, such as PCB board traces, sockets, and packaging.

Fine Grained Activation with Posted-CAS

Successive generations of the DDR standard have introduced increasingly complex commands

to account for higher clock frequency and complex scheduling algorithms. The second generation

DDR protocol introduced the posted-CAS command. To implement this command, additional logic on

the DRAM device buffers the column address and delays the command until the row has been

completely activated. The timing delay is controlled by tAL, for additive latency [8]. When using this

command, the memory controller sends the row access and column access commands on successive

clock cycles as opposed to waiting until the row has finished activating to send the column address.

Posted CAS

5

until the row has been completely activated. The command and column address are buffered by the

DRAM device and delayed until the data is available in the sense amplifiers. This command was

introduced to simplify scheduling by the memory controller and to relieve strain on the command bus

[4]. Figure 2 displays the difference between a standard read cycle and one using the posted-CAS

command. In case (b), the CAS command is sent immediately after the RAS command, yet the column

access does not occur until the sense operation has been completed. The timing constraint used to

specify this delay is tAL, for additive latency. Note the implicit PRE in both cases. The point at

which the PRE command is issued is determined by the memory system’s row-buffer management

policy: a closed-page management system will precharge the row immediately after a CAS or CAS-W

(seen below) while an open-page management system will leave a row activated until an explicit PRE

command is received (not shown).

Figure 2. (a) A typical read cycle (b) A read cycle using posted-CAS

Power Consumption in DRAM Systems

Within an individual DRAM device, the power consumed during operation can be broken up

into 3 distinct components: background power, activation power, and read/write burst power [5]. The

background power encompasses the power consumed by the control logic as well as the power

dissipated from refreshing the data array. This value is determined by the state of the device, i.e.,

whether or not a row is activated or if the device is in a power-down state. Activation power refers to

Main point: Column address is seen by DRAM early

Combine the Two: Fine-Grained Activation

11

move to the sense amplifiers. The column decoder uses the column address to determine which bits to

read or write into the currently active row. The sense amplifiers use the output of the row-division

decoder to enable or disable sensing. When a particular row division is being selected, the respective

sense amplifiers are active while the rest are turned off to avoid wasting power through sensing the

precharged, yet unchanged, values on the bit lines.

Figure 6. The proposed DRAM device architecture

Power Savings

17

Figure 10. Dual- and quad-core 2.4 CPU’s running SPEC benchmarks on each core while varying

activation granularity

Different total cache and block sizes will place varying loads on the memory system [4,10].

Detailed below (Figure 10) are examples of how different cache configurations can have an impact on

the benefit when using a fine-grained activation architecture. As stated previously, the determining

factor in the reduction of power observed is the memory system's usage pattern. A smaller cache will

place a greater load on the memory system, given its higher miss rate relative to a larger cache.

Conversely, larger block sizes will amortize the costs of accessing the DRAM array over more data

transferred. While Figure 10 suggests that a larger total cache size has a greater benefit on DRAM

power dissipation, Figure 11 (below) suggests otherwise – the results are application dependent.

DRAM Designs for High Performance
16 CHAPTER 1. PRIMERS

#
D

IM
M

s
/C

h
a
n

n
e
l

C
h

a
n

n
e
l
C

a
p

a
c
it

y
 (

G
B

)

8 40

32

46

8

4

2

1

200 400 600 800 1000

 Channel Capacity

 Commodity DRAM Devices Datarate:

~Doubling Every 3 Years (log scale)

New Generations of DRAM Devices (time)

1998

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

2000 2002 2004 2006

D
R

A
M

 D
e

v
ic

e
 D

a
ta

ra
te

 (
M

b
/s

)

DDR2 SDRAM

(min burst:4)

DDR SDRAM

(min burst:2)
SDRAM

(min burst:1)

256 Mb*

1 Gb* 4 Gb*

#DIMMs/Channel

Figure 1.1: Trends showing datarate scaling over time (left), and channel capacity as a function of channel
datarate (right).

primary issue addressed at the DRAM-system level has been bandwidth: while per-device capacity
has grown, per-system capacity has remained relatively flat; while bandwidth-related overheads have
reduced, latency-related overheads have remained constant; while processor power has hovered in
the 100W range, DRAM-system power has increased, and in some cases can exceed the power
dissipation of the processor.

Power will be left to the end of the chapter; one of the most visible problems in the DRAM
system is its performance. As mentioned, bandwidth has been addressed to some extent, but main-
memory latency, as expressed in processor clock cycles, has been increasing over time, i.e., getting
worse.This was outlined famously by Wulf and McKee (1995) and termed “the memory wall.” Each
generation of DRAM succeeds in improving bandwidth-related overhead, but the latency-related
overhead remains relatively constant (Cuppu et al., 1999): Figures 1.2(b) and 1.2(c) show execution
time broken down into portions that are eliminated through higher bandwidth and those that are
eliminated only through lower latency. When following succeeding generations of DRAM (e.g.,
when moving from Fast Page Mode [FPM] to EDO to SDRAM to DDR), one can see that each
generation successfully reduces that component of execution time dependent on memory bandwidth
compared to the previous generation—i.e., each DRAM generation gets better at providing band-
width. However, the latency component (the light bars) remains roughly constant over time, for
nearly all DRAM architectures.

Several decades ago, DRAM latencies were in the single-digit processor-cycle range; now
they are in the hundreds of nanoseconds while coupled to processors that cycle several times per
nanosecond and can process several instructions per cycle. A typical DRAM access is equivalent to
roughly 1000 instructions processed by the CPU. Figure 1.3 shows access-latency distributions for
two example benchmark programs (ART and AMMP, both in the SPEC suite): latencies are giving

The capacity problem

Fully Buffered DIMM

MC MC

JEDEC DDRx
~10W/DIMM, 20 total

FB-DIMM
~10W/DIMM, ~400W total

• A new take on superpages that might overcome previous barriers
• A new cache design that enables very large L1 caches
• A virtual memory system for modern capacities

!ese are ideas that have been in development in our research group over the past 5–6 years.
Fully Bu!ered DIMM, take 2 (aka “BOB”)

In the near term, the desired solution for the DRAM system is one that allows existing
commodity DDRx DIMMs to be used, one that supports 100 DIMMs per CPU socket at a bare
minimum, and one that does not require active heartbeats to keep its channels alive—i.e., it

What Every CS/CE Needs to Know about the Memory System — Bruce Jacob, U. Maryland

31

CPU (e.g. multicore)

MC MC MC

Master Memory Controller

MC MC MC

Figure X. A DRAM-system organization to solve the capacity & power problems

Fast, wide channel Fast, narrow channels

Slow, wide channel

A Solution: BOMB

Additional Issue: Granularity

• Assertion: 4KB page has outlived its usefulness

• e.g., Google File System: 64MB pages

• reduces transfer overhead

• reduces mapping overhead

• increases sequential benefits

• etc.

Enterprise & Super- Computing

• Run same app (set of apps) 24x7

• Developers spend significant time/energy optimizing apps

• Frequently run a custom (or at least fine-tune the existing) OS

• Have significant, pressing correctness/failure/dependability issues
=> not intrinsic to application area, but because of large-scale multipliers

• Care very deeply about energy consumption
=> not intrinsic to application area, but because of large-scale multipliers

• Sounds a lot like embedded systems, no?

Some Thoughts & Discussion

• Use embedded processors
(power & heat problems reduce)

• Use software management of memory hierarchy
(performance can increase, scheduling problems are reduced, power can
decrease, checkpoint & restore becomes trivial, etc.)

• Need to pay close attention to resource-mapping issues
(10x performance degradation for poor resource utilization in parallel systems)

• As long as we’re rewriting the OS, incorporate solid-state non-volatiles
(e.g., to support distributed & memory-mapped file/object system,
to divide up read-mostly versus write-often data,
to reduce network I/O traffic, etc.)

