. Embedded Memory Systems

Today’s Story

e The memory system now dominates performance & power.
Embedded systems “solve” issues now confronting gen-purpose.
=> Take a few notes from the embedded playbook:

e DSP & embedded-processor memory systems

e Better Cache designs for power and performance

e Better DRAM designs for power and performance

e High-performance systems as embedded systems

e Treat DRAM/main-memory as cache, larger block size
¢ [ssue: Software management of memory systems

¢ |ssue: Parallelism & non-conflicting assignment of resources

DS

2/

—~mbedded Memory Systems

DSP “cache”

) s

UNIFORM NON-UNIFORM
ADDRESS ADDRESS
SPACE SPACE

DRAM

:

CPU

s—_—

SRAM1

DRAM

H_

Software-visible view

DSP/Embedded Memory Systems

e Software schedules accesses to different technologies;
this breaks abstraction, but it improves efficiency
(e.g. studies show scratch pad beats transparent cache)

e Multiple busses to memory => *much”* better streaming performance

¢ |ssue of compilation: transparent cache is a much easier compiler target

¢ Interesting concept, not fully explored: an item’s name indicates its properties
as well as its location:

e Read-only/read-write/executable/non-executable
Volatile/non-volatile
Cacheable/non-cacheable ... etc.

Why That Last Bit Might Matter

e POTENTIAL REGIONS:

e SRAM (0, 1, 2, etc. ... also L1, L2, L3, etc.)

e DRAM

e Flash/PCM/whatever solid-state non-volatile memory you choose

* Disk

e Network?

e Back to the SASOS Concept ...

ISASOS Discussion]

Cache for Power & Performance

Virtual Address

Virtual Page Number Page Offset

ASID

v

TLB
Physical Address ¢ Y
Page FrameNumber Page Offset

Cache Index

—
CACHE

Page Frame Number

Tag: Page Frame Number - | i

Cache Data

Windows assumes p

Virtual Address

Virtual Page Number Page Offset
ASID l Cache Index
.
TLB CACHE

¢

Page Frame Number

Tag: Page Frame Number DR

Cache Data

nysical cache (left)

to solve aliasing problem.

[Aliasing Discussion]

Main Issue: This Cannot Exceed 4KB

Effective Address

Page Size

}One set

All tag sense-amps
are activated

set# |byte
_) TAG DATA
VPN bits
Cache
Index >I—
TLB
]
PEN,
Permissions
L | L |
sense sense
5 Hit}_ ‘f

Byte in Block Q\—'—/
Output

Y word

A Solution: Hash-Associative Cache

Effective Address

| M set # |byte|
|

I»One set

|

bank select
Effective Address \ , *
‘ | set# [oyte] VPN bits
\ / TAG DATA TAG DATA TAG DATA TAG DATA
VPN bits
Cache Cache
Index Index _
> }One set Y »
TLB TLB
[] [
PFN, PFN,
Permissions Permissions
| sense sense sense sense are activated sense sense
Hit? =\ Hit?
> >
Byte in Block Byte in Block
| Output ‘ Output
Word Word

(a) Traditional n-way set-associative cache

Effective Address

(b) Traditional direct-mapped cache, n banks

| bank select | set # |byte‘

-

bank select

VPN bits

Index

Cache

P hash *

TAG DATA TAG DATA

» lOne set

TLB

PFN,
Permissions

Only one bank

n) ;
sense | | is activated

‘ sense | ‘ sense

Byte in Block

(c) Hash-associative cache

Only one bank
is activated

RAM Designs for Low Power: One DRAM

word line

Row
Address

" Data Array

Row Decoder

Sense Amplifiers

Column AERRNEEEE

Address N\ _Column Decoder

oroblem: lots of bits are read per bank activation

Per Rank (at the DIMM Level

e Fach DRAM device drives & senses ~8K capacitors, sense amps

e Eight devices per rank => 65,536 such discharge/sense cycles,

all to read 512 bits of data.

¢ This is somewhat inefficient

word line
pu

o
[}
o
Q
o
ol
[a]
2
o
14

word line
T

Hi
I

" Data Array

EVTETe)

.
@
o
Q
o
o]
[a]
2
o
o

word line
T

H
I

" Data Array

ETETe)

o
[}
o
Q
o
ol
[a]
2
o
14

_ﬁvord line
I\tL
I
Data Array

EVTETe)

o
[}
o
Q
o
ol
[a]
2
o
o

Hi
I

" Data Array

EVTETe)

M-

M-

M-

o word line o word line o word line o word line
[} = [} = [} = [} =
° o ° o o =t o =t
Row Q T Row Q T Row Q T Q T
Address 8 = Address 8 = Address 8 = 8 =
A Data Array A Data Array fat Data Array fat Data Array
2 o 2 o 2 o z o
o = o = o = o] =
14 3 14 3 x 3 x 3
T S [T [T
Sense Amplifiers | | Sense Amplifiers | Sense Amplifiers Sense Amplifiers
INRRENEEXE) INRRENEEXE)

Sense Amplifiers

Sense Amplifiers

Sense Amplifiers

Sense Amplifiers

IERRNNEIE) Column
AddM\Column Decoder,

T Column
Addreg\cmumn Decoder,

Column
Addreg\cmumn Decoder,

Column Decoder,

Column Decoder,

Column Decoder,

Column Decoder,

Column Decoder,

A Better Approach: FCRAM

O
Row N
Address 8
——p O
e Data Array
=
O
2| I
‘ Sense Amplifiers \
Column

Address —
: N_Column Decoder

Row
Address

Row Decoder

14

Column

d

Sub-Arrays

Address —
N._Column Decoder
6

cmd & addr bus
bank utilization

data bus

cmd & addr bus

bank utilization

data bus

Posted CAS

RAS CAS implicit PRE!
data sense col access data restore bit line precharge
data burst [
(a)
RAS |posted-CAS ‘delayed CA 5! 'implicit PRE!
data sense col access data restore bit line precharge
data burst

(b)

Main point: Column address is seen by DRAM early

Combine the Two: Fine-Grained Activation

n

"a\ l
/Row Division Deoode\

Row
Address
ﬁ

Partitioned
Data Arrays

Row Decoder

Partitioned Sense
‘ H ‘ "~ Amplifiers

Column
Address »_Column Decode/

Power Savings

iy

Total Power Dissipation (W)

2.4 GHz Dual/Quad-Core CPU, 2 GB DDR2 400 MHz

01 H8E2H04088X16 D32

D%

eduake + gcc

gzip + galgel
Benchmarks

eduake + gcc + vortex + galgel

DRAM Device Datarate (Mb/s)
200 400 600 800 10001200 14001600

O

SAM

Designs for High

Commodity DRAM Devices Datarate:
~Doubling Every 3 Years (log scale)

SDRAM

T (min burst:1)

DDR2 SDRAM
(min burst:4)

DDR SDRAM
(min burst:2

|
1998

| | | |
2000 2002 2004 2006

New Generations of DRAM Devices (time)

Performance

#DIMMs/Channel

#DIMMs/Channel

1 Gb* 4 Gb*

256 Mb*

Channel Capacity \.

200 400 600 800 1000

DRAM Data Rate (Mbps)
*DRAM Chip Bit Density

The capacity problem

40

32

46

Channel Capacity (GB)

Fully Buffered DIMM

-
-

JEDEC DDRX -B-DIMM
~10W/DIMM, 20 total ~10W/DIMM, ~400W total

A Solution: BOMB

CPU (e.g. multicore)

Fast, Wid‘Fast, narrow channels

Master Memory Controllzr

k4 £E G4 B3 BF - E3

Additional Issue: Granularity

e Assertion: 4KB page has outlived its usefulness

¢ ¢.g., Google File System: 64MB pages

¢ reduces transfer overhead

® reduces mapping overhead

® increases sequential benefits

® ctC.

—nterprise & Super- Computing

e Run same app (set of apps) 24x7

e Developers spend significant time/energy optimizing apps

e Frequently run a custom (or at least fine-tune the existing) OS

e Have significant, pressing correctness/failure/dependability issues
=> not intrinsic to application area, but because of large-scale multipliers

e Care very deeply about energy consumption
=> not intrinsic to application area, but because of large-scale multipliers

e Sounds a lot like embedded systems, no?

Some Thoughts & Discussion

e Use embedded processors
(bower & heat problems reduce)

e Use software management of memory hierarchy
(performance can increase, scheduling problems are reduced, power can
decrease, checkpoint & restore becomes trivial, etc.)

e Need to pay close attention to resource-mapping issues
(10x performance degradation for poor resource utilization in parallel systems)

e As long as we’re rewriting the OS, incorporate solid-state non-volatiles
(e.q., to support distributed & memory-mapped file/object system,
to divide up read-mostly versus write-often data,
to reduce network 1/O traffic, etc.)

