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Traditional Caches

Require TAGS

Soon into program execution,
contents of cache are indeterminate
(thus the term “hit rate” for performa

Set associativity delays problems,
but only to a point

Associativity > 2 does not implemen
TRUE Least-Recently-Used
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Scratch-pad RAMs (aga

Traditional Caches Scratch-Pa

I-CACHE

D-CACHE

Require EXPLICIT MANAGEMENT

UNIFORM
ADDRESS

SPACE

NON-UNIFORM
ADDRESS

SPACE
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Scratch-Pad RAMs

No TAGS (save die area)

As long as everything fits, GREAT!

Otherwise, addressing is impedim

CONTIGUITY must be prese

DISTANCE BETWEEN OBJE
must be preserved

DSPs go one step further:

Multiply-accumulate require
TWO DISJOINT DATA SPAC
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Scratch-Pad RAMs

Access to memory is NON-ORTHO
Separate spaces are DISJOINT

Bottom Line: COMPILATION IS H

Trend: UNIFORM ADDRESS SPAC

(i.e. more like traditional cach
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WHAT WE WANT

Guaranteed slow access-time

CODE

Statistically fast access-time

Guaranteed fast access-time

DATA

Address
Space

DATA

Address
Space

COD

DATA

Addre
Spac

CACHE

No Cache Traditional Cache Ideal Ca

CODE
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WHY IT’S DIFFICULT

DATA NAME => DATA PLACEMEN
Must Group Data & Instructions
So as to Minimize Cache Conflicts

CODE

DATA

BAD LAYOUT GOO
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Data Placement

DATA SPACE

• Relatively easy to rearrange item

• ... Unless part of a LARGER ITE
(cannot rearrange array elemen

CODE SPACE

• Can move FUNCTIONS around

• PORTIONS of code is another m

THERE IS A FAMILIAR SOLUTION
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Solution #1

A BIG, HIGHLY ASSOCIATIVE CAC
+ ability to PIN DOWN CACHE LIN

CODE

DATA

NO 
Nee

TW

set 

OVE
Nee
set 

THR
OVE
Nee
set 
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Solution #1

• Choose items to cache,
Bring each into the cache,
Pin each down

• Can CACHE/NOT-CACHE adjac

• Must know CACHE ORGANIZA
at COMPILE TIME
(not huge issue for embedded s

• SIMPLEST, but perhaps
MOST EXPENSIVE solution
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Solution #2 (var. on #1)

Software-Managed Caches

Top bits determine
memory-access behavior
(CACHED/NON-CACHED)

Other possibilities:

• Physical/virtual

• Faulting/non-faulting

• Which cache or
memory structure

Enables on-the-fly decision-making
Re: memory behavior
PAGE 81



CACHES FOR

ES

/ YES
; // NO

MAYBE

ENCE

0000

 cache_it

;

REAL-TIME
EMBEDDED

SYSTEMS

Bruce Jacob

University of
Maryland

C Summer ’99

Application Behavior

int *array = malloc (N * sizeof int); /
int *stream = malloc (N * sizeof int)
int *mix = malloc (N * sizeof int); //

for (i=0; i<N; i++)
x = array[i]; // CACHED REFER

stream |= MIN_NEG_INT; // 0x8000
for (i=0; i<N; i++)

x = stream[i]; // NON-CACHED

for (i=0; i<N; i++) // DEPENDS ON
x = (cache_it  (i)) ? mix[i]

: (mix | MIN_NEG_INT)[i]
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Solution #2

Advantages over Solution #1:

Allows  DYNAMIC CACHE DEC

LESS TIED to CACHE ORGAN

Many of the same weaknesses:

Requires BIG CACHE

Requires SET ASSOCIATIVE 

Have to deal with DATA PLACE
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Issue: Data Placement

DATA NAME => DATA PLACEMEN

CODE

DATA

NO 
Nee

TW

set 

OVE
Nee
set 

THR
OVE
Nee
set 

TO MINIMIZE OVERLAP, RELOCA
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Issue: Data Placement

GOALS:

• Disassociate NAME and PLAC

• Fine-grained code/data relocatio
at granularity of TLB page
or (better) cache line
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Enter Virtual Memory

Disassociates NAME from PLACE

Allows you to go from THIS:

CODE

DATA

BAD LAYOUT GOO
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Enter Virtual Memory

Disassociates NAME from PLACE

... to THIS:

CODE

DATA

GOOD LAYOUT GO

TRANSLATION
ADDRESS
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Real-Time TLB Organiz

Works with either CACHE or SCRA

Physical Address

Page Number

Physical Page #SRAM Page #

Translation Lookaside Buffer:

PAGE withing SRAM

SEARCH
ON
PHYS. PAGE
NUMBER

SRAM (Cache or Scratch-Pad RAM)
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Solution #3

Fully-Associative Real-Time TLB
+ Direct-Mapped SRAM

• TLB must fully map SRAM
(8KB SRAM, 256-byte page => 

• Can place ANY 256-byte page
ANYWHERE in the SRAM

• Benefit: simple SRAM design

• Drawback: fully assoc. TLB
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Variations on Solution #

WANT A LARGER CACHE ?

• Larger TLB

• Larger Page Size

WANT A SMALLER TLB ?

• Smaller Cache

• Larger Page Size

WANT LESS ASSOCIATIVITY ?

• That’s a little more involved ...
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Set-Associative RT-TLB
Associativity vs. the Memory Space

2-Wa
Assoc

4-Way
Assoc.

Fully
Assoc.

...

n = entries in TLB

n

2

2

4

4

2

2
...

...

n/2n/4

n/2-Way

n/2

n/2

Assoc.
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Set-Associative RT-TLB

LIMITING CASE:

Direct-Mapped TLB

Direct-Mapped SRAM

Same set of data placement pro
we had with NO TLB ...

EXCEPT: contiguity restriction 

Bottom Line: PROBABLY NOT W

INTERMEDIATE SOLUTIONS:

Obvious Trade-Offs Exist

NEED MORE INVESTIGAT
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Solution #4

What if SRAM Still Too Small?

(i.e. — previous solution reduces CO
problems, not CAPACITY problems

Real-Time SRAM-Management

BROUGHT IN AT START

BROUGHT IN
ON DEMAND

SRAM
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Real-Time SRAM
Management

CLASSIFY ALL CODE & DATA:

• MUST ALWAYS REMAIN CACH

• MUST NEVER BE CACHED

• EXHIBITS PERIODIC LOCALIT
(i.e. loop code & data)

FOR PERIODIC ITEMS:

• Add code at beginning to set up

• Add code at end to unmap TLB
and write out any dirty values
PAGE 94



CACHES FOR

ES

ace
aging

nce

xecution
REAL-TIME
EMBEDDED

SYSTEMS

Bruce Jacob

University of
Maryland

C Summer ’99

Real-Time SRAM
Management

RESULTS:

• VM-style extending of SRAM sp
into DRAM space via demand-p

• PROACTIVE demand-paging,
not REACTIVE demand-paging

• Deterministic memory performa
for all references

• Slight overhead in code size & e
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Summary

UNIFORM MEMORY SPACES:

• Provide Orthogonal Look at Mem

• Cache Architectures Exhibit
Non-Deterministic Performance

NON-UNIFORM MEMORY SPACE

• Non-Orthogonal Memory Map

• Caches Offer Deterministic Perf
(at the Price of Explicit Managem

TREND IS TOWARD UNIFORM SP

• Easier to Program & Compile fo
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Summary, cont’d

REAL-TIME CACHE ARCHITECTU

• Really Big, Highly Associative C

• Software-Managed Caches

• Virtual Addressing w/ RT-TLB

• Real-Time SRAM Management

VIRTUAL MEMORY:

• Nice Programming Paradigm

• Separates NAMING from LOCA

• Like Tang ®, Not Just for Breakf

slides at http://www.ece.umd.edu/~
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