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ABSTRACT 

This paper explores topic aspect (i.e., subtopic or facet) 

classification for collections that contain more than one 

language (in this case, English and Chinese), and 

investigates several key technical issues that may affect the 

classification effectiveness.  The evaluation model assumes 

a bilingual user who has found some documents on a topic 

and identified a few passages in each language on specific 

aspects of that topic that are of interest.  Additional 

passages are then automatically labeled using a k-Nearest-

Neighbor classifier and local (i.e., result set) Latent 

Semantic Analysis (LSA).  Experiments show that when 

few manually annotated passages are available in either 

language, a classification system trained using passages 

from both languages can often achieve higher effectiveness 

than a similar system trained using passages from just one 

language.  Using this experimental framework, this paper 

answers three technical research questions: whether the 

normalized cosine similarity measure is better than the 

more common unnormalized cosine similarity measure 

(yes), whether the number of retained LSA dimensions 

(which was heuristically chosen) is appropriate (yes), and 

whether partial corrections of the translated training 

examples in the LSA space can yield an improvement over 

no correction (no). 

Keywords 

Bilingual classification, English, Chinese, topic, aspect, 
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INTRODUCTION 

The fundamental problem that we address is the wish to 

identify contiguous passages of text that address a specific 

aspect of a topic.  By aspect, we mean a sub-topic or facet 

of the topic.
1
  We wish to do this for several distinct aspects 

of the same topic, and we are particularly interested in 

associating passages from documents written in different 

languages with the same set of aspects.  Our interest in this 

problem is motivated by sentiment analysis applications in 

which both positive and negative sentiment about different 

aspects of a topic are expressed.  Rather than annotating the 

sentiment at document-scale as “mixed,” we would prefer 

to identify which parts of the document address specific 

aspects of the topic addressed by the document, and then 

associate positive or negative sentiment with those specific 

passages. We have been able to do sentence-scale Chinese 

sentiment classification with moderate success, and English 

sentiment classification has been studied for more than a 

decade at the scale of words, sentences, passages, and entire 

documents (Wu & Oard, 2009). Our interest in cross-

language comparative sentiment analysis thus leads directly 

to a need for bilingual topic aspect classification as a 

prerequisite task.  It is that prerequisite task on which we 

focus in this paper.  Being able to perform this task would 

also allow us to analyze the aspects of a topic for many 

other purposes, such as passage retrieval, question 

answering, summarization, and discourse analysis.  

 

To frame this challenge in a manner amenable to 

evaluation, we assume that the results of a topic-based 

search are already available in two languages (e.g., from 

Cross-Language Information Retrieval (CLIR)).  We have 

chosen to focus for this work on English and Chinese since 

they are widely spoken languages with quite different 

characteristics. For our evaluation, we model the bilingual 

                                                           

1
 Our choice of “aspect” rather than facet results from 

common use in information retrieval evaluation, where 

aspect recall is used as a measure of how comprehensively 

the different aspects of a topic are covered by a result set.  

In linguistics, “aspect” is often read as “grammatical 

aspect.” That is not our intended meaning; throughout this 

paper, aspect should be read as “aspect of a topic.” 
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search result set by using documents that have been 

manually annotated for topical relevance.   

 

Of course, we need some way of specifying which aspects 

will interest the user.  For this work, we have adopted a 

fairly straightforward approach: we assume that the user is 

able to read both languages, and that they will hand-

annotate a few passages in each language for each aspect 

that is of interest.  This leads directly to an evaluation 

design that resembles the example-based classification task 

of the information filtering track of the Text Retrieval 

Conferences (TREC), or the topic tracking task of the Topic 

Detection and Tracking (TDT) evaluations (NIST, 2000), 

but at passage scale.  The TDT collections include ground 

truth topic annotations (for event-based topics), so we have 

chosen those collections as a starting point, adding 

automatic passage segmentation and (for some passages) 

ground truth topic aspect annotations.  

 

It is already well known that document-scale training 

examples in one language can be used to build a topic 

classifier for documents in another language (Bel et al., 

2003;  Gliozzo & Strapparava, 2006;  Olsson et al., 2005; 

Rigutini et al., 2005; Prettenhofer & Stein, 2010; Shi et al., 

2010; Ni et al., 2011).  Our problem is different in three 

ways, however: (1) we seek to classify passages (which are 

typically shorter than full documents), (2) we seek to 

classify those passages into aspects (which are typically 

more closely related to each other than topics are), and (3) 

we seek to use training examples in two languages (rather 

than just one).  The research question in our previous study 

(Wu & Oard, 2008) was focused on the third of those 

differences: can examples in two languages be used 

together to improve classification effectiveness over what 

could be achieved with training examples only in one 

language.  Our previous results indicate that balancing the 

investment in annotation of training examples across 

languages can be helpful when seeking to simultaneously 

optimize classification effectiveness for more than one 

language.   

 

In this paper, we investigate several key technical issues 

that may affect classification effectiveness: the optimal 

number of dimensions for local Latent Semantic Analysis, 

whether vector length normalization after dimensionality 

reduction is beneficial, and the effect of partial corrections 

of the positions of the translated training examples in the 

LSA space. 

 

The remainder of this paper is organized as follows.  We 

first summarize our experimental framework, providing 

some additional details that for space reasons could not be 

included in (Wu & Oard, 2008).  We then pose three 

research questions and present experiment results.  Finally, 

we conclude the paper with a few remarks about future 

work. 

 

EXPERIMENTAL FRAMEWORK 

Perhaps surprisingly, prior work indicates that while cross-

language topic classification is a somewhat harder problem 

than same-language classification, it is in general a fairly 

tractable problem.  The reason for this is that reasonably 

accurate statistical term translation models can be learned 

from (translation-equivalent) parallel text, and that robust 

ways of using those term translation mappings.  

Monolingual classification remains more accurate than 

cross-language classification, however, which motivates the 

question that we asked in (Wu & Oard, 2008): can 

monolingual and cross-language training be used together 

in a way that will result in more accurate classification than 

in a single language?  We explored that question in the 

context of classification of short passages, an underexplored 

condition that is important for focused analysis (e.g., for 

associating topic aspects with sentiment expressed by an 

author in that part of the text).  In this section we briefly 

summarize those earlier experiments. 

 

Our goal is to classify English and Chinese document 

segments (or passages) in documents that are already 

known to be relevant to a topic, based on their relevance to 

the aspects of that topic. For our intended application, we 

assume that the user provides only a limited number of 

training examples for each aspect, so the classification 

methods here employ what might be called weakly 

supervised learning.  

 

Before starting, it is useful to define some terminology. We 

define bilingual aspect classification as a topic aspect 

classification task in which aspect-annotated training 

passages are available in both languages, and the evaluation 

passages are in only one of those languages.  We 

consistently refer to the language of the evaluation passages 

(which might be Chinese or English) as the evaluation 

language and the other language (English or Chinese, 

respectively) simply as the other language. This 

terminology makes it easy to compare bilingual 

classification with same-language classification (training 

examples are in the evaluation language) or cross-language 

classification (training examples are in the other language). 

 

In this section, we start by describing our method for same-

language aspect classification; then extend that method, 

first to cross-language aspect classification, and then to 

bilingual aspect classification; and finally we introduce our 

test collection and then present our experiment results. 

 
Same-Language Aspect Classification 

Our same-language aspect classification system serves both 

as a baseline and as a point of departure for adding cross-

language and bilingual aspect classification capabilities.  

Figure 1 illustrates the key stages in the process.  

 

 

 



 

 

 

 
                Figure 1. The procedure for same-language aspect classification. 

 

 

First, all documents are automatically partitioned into 

segments
2
 of sufficient length to support reasonably 

accurate term-based classification, doing so in such a way 

as to (hopefully) have each resulting segment address at 

most one aspect of the topic.  Our documents are news 

stories from the Topic Detection and Tracking (TDT) 

collection.  TextTiling, a process for automatically 

subdividing a text document into word sequences (“tiles”) 

that are topically coherent (Hearst, 1997), was used to 

perform automatic segmentation, after some tuning and 

adaptation (Wu & Oard, 2008). 

 

This preprocessing step abstracts away for our ultimate 

application scenario (in which users would most likely 

actually retrieve documents and then manually annotate 

user-designated passages as training instances) in a way that 

simplifies our experiment design. 

 

Second, we model a user who can search effectively in both 

English and Chinese who retrieves two sets of segments for 

some topic, one set in English and one set in Chinese.  We 

do this by indexing all segments in the document collection 

for a language (either English or Chinese) using Indri,
3
 

creating an Indri query in that language that is appropriate 

to the topic (based on the TDT topic description), and then 

                                                           

2
 For clarity, we consistently use “segment” to refer to an 

automatically partitioned span of text, and “passage” to 

refer to any arbitrary span of text that is designated by the 

user. 

3
 http://www.lemurproject.org/indri (accessed Apr 9, 2013). 

selecting as our set some fixed number of top-ranked 

documents from an Indri search using that query. The user 

examines both sets of retrieved segments (English and 

Chinese) and, for each aspect, selects a few of the highly 

ranked segments (in our experiments, between one and 

seven) from each set as training examples for one aspect.   

She/he then repeats this examination and marking process 

for additional aspects.  The number of different aspects that 

are of interest to the user will vary by topic; for our 

experiments we required that there be at least two aspects 

(i.e., single-aspect topics were removed). 

 

To identify appropriate sets of English and Chinese 

segments for each topic we indexed the segments, 

formulated a query, performed a search, and then selected 

some fixed number of the highest ranked segments.  In 

order to decide on a fixed size for our result sets, we 

experimented with a range of options.  We had to balance 

two concerns: (1) we wanted enough segments so that most 

of the training examples would usually be in our result set, 

and (2) taking many more segments than we needed could 

yield a less focused Local Latent Semantic Analysis (LSA) 

model in our next processing stage.  After some preliminary 

experimentation, we chose to select the top 1,500 Chinese 

segments and the top 2,500 English segments. 

 

Third, each segment in a set is represented as a dense fixed-

length vector using Local LSA.  Local LSA, introduced by 

Hull (1994), is a variant of the LSA feature transformation 

and selection technique in which Singular Value 

Decomposition (SVD) is performed on the term-document 

matrix constructed from a result set rather than from the 

entire collection.  The effect of this is to emphasize the 



 

 

effect of differences within the result set (which we would 

expect to preserve differences resulting from different 

aspects of a topic) while suppressing the effect of patterns 

of term usage which are shared by most or all elements in 

the result set (which tends to reduce the influence of terms 

used in the query).  This technique has previously been 

used to emphasize differences among top-ranked 

documents that might better distinguish documents which 

are topically relevant from those which are not (Schütze, et 

al, 1995), but we are not aware of any prior use of the 

technique for topic aspect classification.  In our 

experiments, we compute Local LSA on the term-segment 

matrix, since our result set contains segments rather than 

documents.  We build two reduced-dimensional spaces, one 

for English as the evaluation language and one for Chinese 

as the evaluation language. 

 

Dumais (1991) has shown that improved effectiveness can 

result when the elements of the term-document matrix are 

term weights rather than the raw term counts used by 

Deerwester et al. (1990).   We have therefore chosen the 

widely used Okapi BM25 term weighting function (Spärck 

Jones, et al., 1998; Olsson, 2006), which has been shown to 

be robust and to achieve retrieval effectiveness that is on 

par with other known techniques. 

 

A previous study of the relationship between the number of 

retained dimensions and retrieval effectiveness (as 

measured by mean average precision) for the Cranfield 

collection of 1,398 aerospace abstracts indicated that 

retaining 100 dimensions yielded good results (Oard, 1996). 

Both the number of abstracts and the length of the abstracts 

in that experiment were close to our number of segments 

and our typical segment length, so we had decided to set 

q=100 for our earlier experiments.  A sensitivity analysis, 

reported below, indicates that this was a reasonable choice. 

 

Finally, the vector representations of the training segments 

in a language are used to train an aspect classifier for that 

language.  Since a topic can (and, in our experiments, will) 

have multiple aspects, our classification problem is 

naturally modeled as an m-way multiple-class problem.  

Early experiments with a linear kernel SVM yielded 

disappointing results, perhaps because the small number of 

training instances is not sufficient to learn an appropriate 

separating hyperplane in the reduced dimensional space.    

Instance-based classification techniques such as the k-

Nearest-Neighbor (kNN) classifier are well suited to multi-

class problems, and a kNN classifer yielded better results in 

those early experiments, so we focused exclusively on three 

kNN classifer variants that we explored. 

 

The classic kNN algorithm is quite simple: to classify a 

segment, consult the k most similar training examples, 

where k is some integer, k1.  Each of the k labeled 

neighbors “votes” for its aspect, and the aspect with the 

largest number of votes wins (Manning & Schütze, 2000).  

We compute the similarity of two segments using the 

cosine (i.e., the normalized inner product) of the two Local 

LSA vectors: 
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where Ti is the right singular vector for segment di, Tij is 

therefore the value of the j
th

 Local LSA feature for segment 

di, and q is the number of retained dimensions (and thus the 

rank of the Local LSA feature space).  In earlier work it has 

been more common to use the unnormalized inner product 

rather than first normalizing the length of each vector to the 

unit hypersphere (as is effectively done in the cosine 

computation). However, our new experiment yields better 

results when using the normalized similarity in most cases.   

 

Generally, larger values of q reduce the effect of noise on 

classification, but make boundaries between classes less 

distinct.  The optimal q will vary depending on the 

difficulty of the classification problem and the amount of 

available training data.  For a topic with m aspects, we set 

q=2m+1 (always an odd integer, to minimize cases of ties).  

The only exception to this rule was when we conducted 

experiments with only 1 or 2 training instances for each 

aspect; in those cases, we set q to the number of training 

instances.  For example, for a topic with 3 aspects, but only 

2 training instances for each aspect, we would 

automatically set q=2 rather than q=7.  This heuristic 

approach might be improved upon (e.g., by learning 

optimal values for q using held-out data), but because we 

applied it consistently it serves as a useful basis for system 

comparisons. 

 

In the classic kNN algorithm, every training instance in the 

top k gets an equal vote.  This tends to make the results 

quite sensitive to the choice of k because too large a value 

for k will bring in many confounding examples.  This effect 

can be minimized by using some form of weighted kNN.  

The idea of “distance weighted” kNN was originally 

introduced by Dudani (1976).  Dudani’s simplest proposed 

implementation, simply summing the similarity values for 

each training instance of a class among the k nearest 

neighbors, seems to work well in text classification 

applications (see, for example, Olsson & Oard (2007)).  The 

category with the largest sum of similarity scores is 

assigned to the test instance.  We refer to this as the 

similarity-weighted kNN algorithm. 

 

An alternative approach to m-way classification proposed 

by Yang et al. (2000) is to build a suite of binary classifiers, 

one for each aspect of a topic, and then to select the 

classifier with the maximum margin.  In what we refer to as 

the maximum-margin approach, one kNN classifier is built 

for each aspect to perform a binary classification problem 

in which each training instance is labeled either as a 

positive or negative instance for that aspect.  The score (i.e., 

the margin) ra(d1) assigned to segment d1 for aspect a is 



 

 

defined as the difference in the arithmetic means of the 

similarity values of the positive and negative examples: 
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Where the kp positive instances among the nearest 

neighbors are dpj, the kn negative instances are dnj.  This 

process is repeated for each aspect, and the aspect a with 

the highest score ra is then assigned to segment d1. 

 
Cross-Language Aspect Classification 

The key to cross-language aspect classification is to define 

a similarity measure that can match segments in one 

language with segments in another language.  Because the 

similarity computation will need to be performed for every 

segment in the evaluation language, but only for the 

training instances in the other language, it is convenient to 

use the evaluation language as the language from which the 

LSA representation is built.
4
  This leads naturally to a 

process in which each training segment is first represented 

using a term vector in the evaluation language, and then 

that term vector is re-represented in the LSA space.  For 

clarity, we focus here on the case in which English as the 

evaluation language and Chinese as the other language, but 

the opposite direction is handled identically (with Chinese 

and English substituted for English and Chinese, 

respectively). 

 

Although it is tempting to think of the process of 

developing an English term vector for a Chinese segment as 

“translation,” simply replacing each term with its most 

likely translation is well known to often yield a suboptimal 

result (see, for example, Darwish & Oard (2003)).  A better 

approach is to account for the uncertainty in the selection of 

appropriate translations by representing the translation 

function as a probability distribution.  One way to do this 

would be to first compute term weights and then map those 

weights through the translation probability distribution; we 

call this approach C-TrW (for “cross-language with 

translated term weights,” although “translated” is used 

loosely in this sense), an alternative approach that has been 

reported to be better is to map the term statistics 

(specifically, tfij and dfj) from Chinese into English (Wang 

& Oard, 2006).  Essentially, this approach of mapping term 

statistics yields a maximum likelihood estimate of the term 

statistics that would have observed had the Chinese 

segment been instead originally written in English.  Okapi 

BM25 weights are then computed from the resulting 

mapped term statistics in the usual way.  The segment 

                                                           

4
 There has been a considerable amount of prior work on 

constructing LSA representations using topically paired 

training instances (e.g., (Landauer and Littman, 1990)), but 

that approach is not practical for Local LSI because we 

have no a priori way of pairing a substantial fraction of the 

segments in a result set with topically related segments in 

the other language. 

length (dl) statistic does not require any mapping because 

relative segment lengths are (to a sufficiently close 

approximation) preserved by translation, and the effect of dl 

in the BM25 formula relies only on relative segment 

lengths.  We call this approach C-TrTD (for “cross-

language with translated term frequency and document 

frequency”). 

 

For our experiments, we used the same translation 

probability matrices as (Wang, 2005) and (Wang & Oard, 

2006).   These were automatically built from the Foreign 

Broadcast Information Service (FBIS) parallel corpus
5
 

using a word alignment procedure implemented in the 

freely available GIZA++ toolkit
6
 (Och & Ney, 2003).   

 

Once an English vector has been generated for the Chinese 

segment (by multiplying the tfij and dfj term statistic vectors 

by the translation probability matrix and then using the 

resulting values to compute Okapi BM25 weights for each 

term), we can then further map the resulting English vector 

of Okapi BM25 term weights into the LSA space using well 

known techniques (Deerwester, 1990).  This is done by 

multiplying the English term vector by the t x q matrix of 

left singular vectors T0.   

 

The foregoing description is somewhat idealized because 

we actually built our term statistics vectors using our Indri 

index, and for English our Indri index actually contains 

stems as terms, whereas the translation probability tables 

built by Wang (2005) had used English words.  Although 

we could have trained a translation model for English 

stems, we instead simply mapped the word statistics to stem 

statistics.  An English stem could have resulted from 

multiple word forms, so we conflated the probabilities 

associated with translation of English words into 

probabilities for the corresponding stems.   

 
Bilingual Aspect Classification 

For bilingual aspect classification, we assume the existence 

of training examples in both the evaluation language and 

the other language.  The simplest way to perform bilingual 

aspect classification would be to first create evaluation-

language term vectors and then Local LSA vectors for the 

other-language training segments, and then to use all of the 

examples together without adjustments.  This can be done 

following C-TrW or C-TrTD, in which case we call the 

resulting bilingual classification process B-TrW or B-TrTD. 

 

Systematic translation errors might, however, result in 

systematic mispositioning of the other-language training 

segments in the Local LSA space, and thus suboptimal 

                                                           

5
 LDC catalog: LDC2003E14. http://projects.ldc.upenn.edu/ 

TIDES/mt2003.html (accessed  April 10, 2013). 

6
 http://www-i6.informatik.rwth-aachen.de/Colleagues/ 

och/software/GIZA++.html (accessed  April 10, 2013). 



 

 

classification results.  For cross-language classification, we 

have little choice but to accept these errors because we have 

no independent evidence for what the correct positioning 

would be.  For bilingual classification, by contrast, we can 

compare the Local LSA vectors for the evaluation-language 

segments and the other-language segments.  One simple 

way of doing this would be to compute the differences in 

the centroids (i.e., the arithmetic means) of the two sets; we 

could then correct the position of each other-language Local 

LSA vector by that difference.  This technique can be 

applied following either C-TrW or C-TrTD, in which case 

we call the resulting process B-TrWΔC or B-TrTDΔC, 

respectively.   

 

Because we are working with only a small number of 

training samples, the observed difference in the centroid 

positions will result from some combination of systematic 

errors (e.g., from translation) and random errors (e.g., from 

sampling), so applying the full difference could be harmful 

if it were to bring in more noise (effects of random 

variation) than signal (measurable effects from systematic 

errors).  If the direction of the correction vector is 

informative but the magnitude is infelicitously scaled, we 

might benefit more from partial than from full correction.  

We therefore experiment with no correction (B-TrW and B-

TrTD), partial correction (sweeping a fixed scaling 

parameter, which we refer to as B-TrWδC and B-TrTDδC), 

and full correction (B-TrWΔC and B-TrTDΔC) in our new 

experiments.  

 
Test Collection 

We used the TDT3 collection (Graff et al., 1999) and the 

TDT4 collection (LDC, 2004) to develop our reusable test 

collections. We selected the three English news sources and 

the three Chinese news sources that contain the largest 

number of documents that had been marked as relevant (to 

some topic).  This selection results in 33,388 Chinese 

documents and 37,083 English documents for the union of 

the TDT3 and TDT4 collections. 

 

Two bilingual annotators were recruited to annotate a group 

of consecutive sentences as an aspect (or subtopic, facet).  

They annotated all 50 of the TDT3 and TDT4 topics for 

which at least 15 relevant documents were known to exist 

(in the TDT relevance judgments).  They were asked to 

identify between two and five aspects for each topic (in 

addition to the optional “all others” category which was 

defined for each topic for use by annotators wishing to 

provide negative training instances), and to try to finish 

annotating each topic within 4 hours (to limit annotation 

costs).  They were asked to focus exclusively on aspects 

that could be found in both English and Chinese documents.  

If an aspect appeared in only one language, they were asked 

not to annotate that aspect.  We asked that they try to find at 

least 8 passages per aspect and to choose passages to be 

annotated for an aspect in as many different documents as 

possible.  They were allowed to designate overlapping 

passages and to assign overlapped passages to different 

aspects.  The annotation was performed in two phases.  In 

the first phase, each person annotated 25 topics.  In the 

second phase, each (“re-”)annotator re-annotated every 

aspect for five topics that had been annotated by the other 

(“first”) annotator.  

 

The first annotators annotated a total of 176 bilingual 

aspects for the 50 topics, and we used the annotations from 

both annotators to build our test collections.  The annotated 

passage-level annotations were mapped onto the 

automatically-generated segments that were used in our 

experiments. We created two test collections from the 

resulting segment-level annotations.  In our first test 

collection (Test Collection 1), we retained aspects that had 

at least 5 annotated segments in one language and at least 4 

annotated segments in the other language, and then deleted 

any topics for which this reduced the number of aspects 

below two.  There were a total of 106 bilingual aspects for 

36 topics that met this requirement.  To simplify our 

experiments, we also deleted any segment that was not in 

the set of retrieved segments from which the Local LSA 

space was constructed.
7
  Finally, Test Collection 1 includes 

a total of 92 bilingual aspects for 33 topics, 3 of which 

could only be used with English as the evaluation language 

(because those 3 aspects had each been assigned to only 4 

Chinese segments). 

Our second test collection was designed to support ablation 

studies with as many as 6 training segments per aspect.  For 

this test collection (Test Collection 2), we therefore retained 

only aspects for which at least 7 aspects in one language 

and at least 6 aspects in the other language were available 

and then deleted any topics for which this reduced the 

number of aspects below two.  Test Collection 2 includes a 

total of 40 aspects for 17 topics, all 40 of which can be used 

with either evaluation language.  The full set of 50 topics, a 

list of which topics are in each of the two test collections, 

and more details are provided in (Wu, 2008) and (Wu & 

Oard, 2008).  

We performed an inter-annotator agreement study on a third 

test collection built in the same way as the others, but in 

which no minimum number of segments per aspect was 

enforced and in which overlapping passages were allowed.
8
  

This test collection (Test Collection 3, used only for 

computing inter-annotator agreement) included 36 aspects 

for 10 topics.  The unit on which agreement was assessed 

                                                           

7
 These segments were deleted simply for convenience; we 

could have kept them by folding them into the LSA space 

in the same manner as the evaluation-language term vectors 

that had been automatically constructed from other-

language segments. 

8
 Removing overlapping passages was not necessary in this 

case because in reality a sentence is not an atomic unit and 

it might contain clauses that are properly assigned to two or 

more aspects. 



 

 

was an automatically generated segment that was mapped 

onto the annotated passages.  The average value (across all 

aspects) of Cohen's kappa was 0.57 for Chinese and 0.29 

for English.  We expect that the agreement for Chinese was 

higher because Chinese was the native language of our 

annotators.  Because the annotators had chosen which 

topics would be re-annotated, there may be some risk that 

these results are somewhat higher than would have been the 

case had random selection been used. 

 
Evaluation Metric 

We chose precision, recall, and the F measure to compare 

the effectiveness of our aspect classifiers.  Precision 

measures the fraction of the segments that are assigned to 

an aspect that are correctly assigned.  Recall measures the 

fraction of the segments that should be assigned to an 

aspect that actually were assigned to that aspect by the 

classifier.  Both precision and recall are clearly important in 

our intended application (low precision would adversely 

affect correctness; low recall would adversely affect 

comprehensiveness), so we want a measure that rewards 

both.  The harmonic mean of recall and precision (the F 

measure) is a natural way to produce a single-valued 

effectiveness measure (van Rijsbergen, 1973).  As a mean, 

the value of F for any single aspect will always be between 

its precision and recall values.  The F measure is typically 

parameterized as Fβ, where β specifies the ratio between 

precision and recall at which F is maximized.  In this paper, 

we report Fβ=1.  Because we are interested not in the 

particular aspects in our test collection, but rather in the 

effectiveness of our classifiers on future (as yet unseen) 

aspects, we use the arithmetic mean of Fβ=1 over the aspects 

as our primary measure of effectiveness for a classifier 

design; this way of aggregating results is referred to as 

macro-averaging.  For brevity, we consistently refer to 

macro-averaged Fβ=1 simply as F1 .  Because we have a 

particular interest in comparing systems, we must pay 

attention to whether differences in the arithmetic mean are 

likely the result of real differences between the systems or 

are likely to have resulted from the chance effects in our 

sampling.  For F1, we report the results from a two-tailed 

paired-sample t-test as statistically significant when 

p<0.05. 

 
Previous Findings 

We performed two sets of segment classification 

experiments. Our first set of experiments was designed to 

compare our three kNN classifier designs in combination 

with different ways of exploiting other-language training 

examples and different values for some key parameters.  

For the second set of experiments, we used one of the best 

configurations from those first experiments as a basis for an 

ablation study to investigate the effects of varying the 

number of evaluation-language and other-language training 

examples.   

 

Our first set of experiments was designed to identify 

effective ways of using other-language training segments.  

Test collection 1 was used for these experiments.  The 

segments for each aspect were partitioned into training and 

test sets using cross-validation. 

 

We performed our experiments by trying all three kNN 

classifiers (voting, similarity-weighted, and maximum 

margin) with four classification techniques defined above 

(B-TrW, B-TrWΔC, B-TrTD and B-TrTDΔC) and a 

monolingual classification baseline (M) in which only 

evaluation-language training segments were used. Note that 

the M condition used half as many training examples as the 

other four (bilingual) conditions.  Our previous experiments 

found that both B-TrWΔC and B-TrTDΔC consistently 

yielded lower mean precision, recall, and F1.  B-TrW and B-

TrTD consistently improved classification effectiveness 

over the baseline (M), indicating that other-language 

training examples were useful.  B-TrTD was better than B-

TrW, confirming that translating TF and DF vectors then 

computing Okapi term weights was better than translating a 

vector of pre-computed term weights. Similarity-Weighted 

B-TrTD outperformed an unweighted contrastive condition, 

and was therefore selected for use in our second 

experiment.   

 

In the second experiment, we used 1-6 segments for 

training and the reminder for test.  Test Collection 2 was 

used, in which each aspect has at least 7 segments in both 

languages.  Our previous experiments found that other-

language training examples were useful, and in particular 

that when equal numbers of other-language and evaluation-

language training examples were used classification 

effectiveness usually increased.  When adding other-

language training examples to a fixed number of same-

language training examples, however, a point of 

diminishing returns was reached.  More details of the 

previous findings can be found in (Wu & Oard, 2008). 

 
RESEARCH QUESTIONS 

Our previous findings were constrained by specific 

parameter settings, some of which were set heuristically.  

We hope those findings are not sensitive to those particular 

parameters, therefore some important research questions 

remain to be answered.  The first issue to be examined is 

the cosine similarity measure, which is the normalized inner 

product of the two local LSA vectors.  In earlier work it has 

been more common to use the unnormalized inner product 

after dimensionality reduction rather than renormalizing 

using the cosine measure.  The similarity measures are 

critical to the classification algorithm, so our research 

question here is: is cosine normalization better than using 

an unnormalized inner product? 

  

The second issue to be examined is the number of LSA 

dimensions retained in the reduced-dimensional space.  In 

our earlier experiments we took 100 dimensions  



 

 

                      Voting           Similarity-Weighted            Maximum-Margin 

       P      R    F1       P      R    F1      P     R     F1 

Monolingual 0.506 0.551 0.495 0.536 0.576 0.523 0.552 0.592 0.536 

B-TrW 0.562 0.593 0.536 0.596 0.637 0.582 0.576 0.624 0.563 

B-TrΔW 0.511 0.511 0.464 0.501 0.506 0.451 0.491 0.492 0.442 

B-TrTD 0.572 0.595 0.539 0.614 0.647 0.590 0.589 0.638 0.576 

B-TrTDΔC 0.501 0.521 0.469 0.507 0.525 0.473 0.516 0.530 0.477 

Table 1: English as evaluation language: 4 English and 4 Chinese training examples; arithmetic mean over 92 aspects from 

33 topics; bold indicates best F1.  Normalized cosine similarity. 

 

                    Voting            Similarity-Weighted              Maximum-Margin 

       P      R     F1       P       R      F1      P       R    F1 

Monolingual 0.511 0.552 0.494 0.581 0.601 0.556 0.559 0.603 0.544 

B-TrW 0.517 0.548 0.490 0.554 0.562 0.511 0.584 0.593 0.534 

B-TrΔW 0.500 0.517 0.467 0.511 0.531 0.471 0.464 0.496 0.438 

B-TrTD 0.521 0.525 0.478 0.558 0.562 0.513 0.544 0.559 0.501 

B-TrTDΔC 0.499 0.521 0.463 0.516 0.535 0.475 0.491 0.507 0.444 

Table 2: English as evaluation language: 4 English and 4 Chinese training examples; arithmetic mean over 92 aspects from 

33 topics; bold indicates best F1.  Unnormalized cosine similarity. 

heuristically.  The number of dimensions retained affects 

the number of concepts that are used to represent the 

segments, and directly affects the vector space where the 

segments are represented and their positions in the vector 

space.  Since the correct choice of dimensionality is 

important to success (Landauer and Dumais, 1997), a 

sensitivity analysis should be done to validate that choice.  

 

In an effort to partially mitigate systematic translation 

errors, in earlier experiments we moved the other-language 

training examples toward the evaluation-language training 

examples in the LSA vector space until their centroids met.  

However, the full correction (B-TrWΔC and B-TrTDΔC) 

had not proven to be effective, so our third research 

question is: what about partial correction? 

 
EXPERIMENTS 

We use the same experimental framework described above, 

but with one important difference.  In our earlier work, 

when translating an English stem to Chinese, we had 

incorrectly normalized translation probabilities after 

conflating the probabilities of English words; that 

normalization is appropriate only when translating from 

Chinese to English (Wang, 2006). 

 
Test Collection 1 Experiment: Examining Unnormalized 
Cosine Similarity 

We ran the same first set of experiments as described 

above, but for both normalized and unnormalized cosine 

similarity. Tables 1 and 2 show the classification 

effectiveness of three kNN classifiers with five 

classification techniques, using English as the evaluation 

language.  The general pattern is that for most cases 

normalized cosine similarity is better than unnormalized 

cosine similarity (with two exceptions: Similarity-Weighted 

M with normalized similarity is statistically significantly 

worse than that with unnormalized similarity, and 

Maximum-Margin M with normalized cosine similarity is 

numerically worse than that with unnormalized similarity, 

but that difference is not statistically significant.  When 

using Chinese as evaluation language, in all cases 

normalized cosine similarity is either numerically or 

statistically significantly better than unnormalized cosine 

similarity. We are also able to replicate our earlier results in 

the current experiment settings, so we can take Similarity-

Weighted B-TrTD as the best technique for the remaining 

experiments. 

 
Exploring the Number of Retained LSA Dimensions  

The results in Tables 1 and 2 are informative only to the 

extent that we used a reasonable value of q (the number of 

retained dimensions) when building the Local LSA space.  

Working with the Cranfield collection of 1,398 aerospace 

abstracts, Oard (1996) illustrated that the optimal number of 

LSA dimensions was associated with the departure from 

linear decay of the singular values on a log-log plot.  To get 

a sense for whether this effect is evident in our setting, we 

ran Local LSA on the top 300 English segments for each 

query in Test Collection 1 and generated a log-log plot for 

each topic.  Figure 2 shows one example, in which the 

divergence from linearity begins around q=168. 

 

Figure 2. Singular values for the top 300 English document 

segments for Topic 30001 



 

 

 

Figure 3. Effect of partial centroid moving of other-language training examples on classification effectiveness. 

 

Of course, with 33 such plots, it is not clear how best to 

select a single value for q.  Moreover, the SVD 

implementation that we used (SVDPACKC) limited us to 

about 335 dimensions (because of memory limitations), 

which was not sufficient to see the divergence from 

linearity for some topics.  Since this analysis suggested that 

a larger number of dimensions might be useful, we reran 

our Similarity-Weighted B-TrTD condition with 150 and 

250 dimensions; Tables 3 and 4 show the results.  Although 

a modest numerical improvement in F1 is evident when 

moving from 100 to 150 dimensions for each evaluation 

language, that difference is not statistically significant in 

either case.  We therefore conclude that 100 dimensions 

was a reasonable choice for a topic-independent value of q 

in our experiments (and that choosing 150 dimensions 

would also have been reasonable).  We leave the question 

of whether further improvements might be obtained from 

some way of setting topic-specific values of q for future 

work.  

 

q P R F1 

100 0.614 0.647 0.590 

150 0.630 0.646 0.597 

250 0.585 0.632 0.574 

Table 3. Effect of varying the number of Local LSA 

dimensions (q) on classification effectiveness: English 

evaluation language, similarity-weighted B-TrTD, Test 

Collection 1. 

 

 

 

q P R F1 

100 0.647 0.645 0.618 

150 0.681 0.670 0.647 

250 0.647 0.653 0.617 

Table 4. Effect of varying the number of Local LSA 

dimensions (q) on classification effectiveness: Chinese 

evaluation language, similarity-weighted B-TrTD, Test 

Collection 1. 

 
Partial Position Correction for Other-Language Training 

Because full correction (B-TrWΔC and B-TrTDΔC) had not 

proven to be effective (see Tables 1 and 2), we tried 

sweeping through values for partial correction (B-TrWδC 

and B-TrTDδC) with step size 0.1, that is, moving the 

other-language training examples toward the evaluation-

language training examples in the LSA space built with the 

evaluation-language training examples by 10% at a step.  

Figure 3 shows the effect on classification effectiveness 

using Similarity-Weighted kNN.  As Figure 3 shows, partial 

correction generally results in lower F1 values than no 

correction (i.e., B-TrW and B-TrTD, plotted at the far left), 

and increasing the amount of partial correction generally 

results in greater degradation.  This indicates correcting the 

positions of the other-language training segments in the 

Local LSA space brings in more noise (effects from random 



 

 

variation) than signal (measurable effects from systematic 

translation errors). 

This first set of experiments led us to conclude that 

Similarity-Weighted B-TrTD with q=100 dimensions was a 

reasonable basis for ablation studies, so we consistently 

used that configuration for our experiments with Test 

Collection 2.     

 

Figure 4. Effect of adding other language training segments to some fixed number of evaluation-language 

training instances.  Top graph: evaluation language Chinese, bottom graph: Evaluation language English.  

C=Chinese, E-English, similarity-weighted B-TrTD, Test Collection 2. 

 

 
Test Collection 2 Experiments: Ablation Studies 

A set of ablation studies was designed to explore the effect 

of varying the number evaluation-language and other-

language training examples.  Test Collection 2, with at least 

7 annotated segments in each language for each of 40 

aspects, was used.   As in our experiments with Test 

Collection 1, we performed at most 70 rounds of cross-

validation.   

 

Figure 4 helps to answer the question of whether 

evaluation-language training examples are more useful than 

other-language training examples.  Each line in the upper 

plot connects cases in which  some fixed number (e.g., two, 

five) of Chinese training examples are used, with the total 

number of training examples shown on the horizontal axis.  

For example, the line labeled with squares starts at 

F1=0.566 for the 2C condition, then increases to F1=0.601 

for the 2C+1E condition, and F1=0.579 for the 2C+2E 

condition, and then stays in that range as more English 

training examples are added (i.e., 2C+2E, 2C+3E, …).  

They generally show that a point of diminishing returns is 

reached beyond which fluctuations appear random.  

 
CONCLUSION AND FUTURE WORK 

From prior work, we know that same-language 

classification generally yields better results than cross-

language classification.  In our experiments we have 

viewed this as a continuum that we call bilingual 



 

 

classification, with results for various combinations of 

evaluation-language and other-language training examples.  

When evaluation instances in both languages must be 

classified, we have shown that it can be useful to have some 

annotated training examples in each language, and to use 

the training examples from both languages to train the 

classifiers for each of the evaluation languages.  Although 

we have only shown this in one setting (English and 

Chinese news stories, event-oriented document-scale 

topical relevance, segment-scale topic aspect classification, 

kNN classifiers, cosine similarity, probability translation of 

term vectors, Local LSA, F1 measure), our techniques are 

broadly applicable to other settings, and they have been 

shown (in work by others) to be relatively robust.  We 

therefore believe that this result should be of interest to 

anyone building example-based classifiers for more than 

one language.  We have also augmented the existing TDT3 

and TDT4 test collections with aspect annotations for 

English and Chinese in ways that other researchers may 

find useful. 

 

We used our experimental framework to answer three 

research questions: whether the normalized cosine 

similarity measure is better than the more common 

unnormalized cosine similarity measure (yes), whether the 

number of retained LSA dimensions (which was 

heuristically chosen) is appropriate (yes), and whether 

partial corrections of the mapping of the translated other-

language training examples into the evaluation-language 

LSA space can yield an improvement over no correction 

(no). 

 

Our results also suggest several potentially productive 

directions for future research.  Our inter-annotator 

agreement results for English are somewhat disappointing, 

so further work on test collection development is certainly 

called for.  The exploratory analysis of a heuristic for 

selecting a suitable value for the number of dimensions to 

retain seems particularly well matched to the topic-specific 

nature of Local LSA, and definitely merits further 

investigation using a computing environment that can 

support larger SVD computations.   Topic-specific rank 

cutoffs for defining the document space from which the 

Local LSA is computed might also be explored.  And, of 

course, we will ultimately want to apply the classifiers that 

we have built to the aspect-specific sentiment analysis task 

that originally motivated this work.  Although there is now 

a substantial body of work on cross-language text 

classification and related topics (most notably, cross-

language information retrieval), we are only beginning to 

explore issues like this one addressed in this paper that arise 

when integrating those technologies into more 

comprehensive applications. 
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