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ABSTRACT
This paper describes a probabilistic latent variable model
that is designed to detect human values such as justice or
freedom that a writer has sought to reflect or appeal to when
participating in a public debate. The proposed model treats
the words in a sentence as having been chosen based on spe-
cific values; values reflected by each sentence are then esti-
mated by aggregating values associated with each word. The
model can determine the human values for the word in light
of the influence of the previous word. This design choice
was motivated by syntactic structures such as noun+noun,
adjective+noun, and verb+adjective. The classifier based
on the model was evaluated on a test collection containing
102 manually annotated documents focusing on one con-
tentious political issue — Net neutrality, achieving the high-
est reported classification effectiveness for this task. We also
compared our proposed classifier with human second anno-
tator. As a result, the proposed classifier effectiveness is
statistically comparable with human annotators.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing - text analysis.

General Terms
Algorithms, Experimentation.

Keywords
Computational social science, computational linguistics, hu-
man values, probabilistic model.
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1. INTRODUCTION
Social scientists have long found it useful to consider hu-

man values as latent variables that have explanatory value
for the choices that people make [35]. For example, some-
one who values innovation over wealth might advocate open-
source over proprietary software, while someone who values
freedom over social order might resist efforts for gun reg-
istration. We can think of values as influencing not only
how people form their own opinions, but also as undergird-
ing how people seek to influence the opinions of others. In
this paper, we focus on automatic detection of human val-
ues reflected in texts written by advocates of specific policy
positions. We take a step in that direction by evaluating
automated classification of human values.

Several inventories of human values are used in social sci-
ence research (e.g., Friedman et al. [13]; Kahle et al. [22];
Kluckhohn [23]; Rokeach [29]; Schwartz [32]). Integrating
key components of these studies, we adopted Cheng and
Fleischmann’s [6] human value definition, that is, “values
serve as guiding principles of what people consider impor-
tant in life.” We also base our work on the Meta-Inventory
of Human Values (MIHV), which was developed by Cheng
and Fleischmann specifically for the test collection that we
use by selecting values specific to the debate at issue and by
iteratively refining annotation guidelines [7, 12, 10]. Our re-
sults, generated using a redistributable collection containing
102 documents with zero or more of six sentence-level hu-
man values annotations, indicate that high precision (near
0.8) can be reliably achieved for frequently invoked values
with a useful degree of recall (0.55–0.82).

We achieved statistically significant classification effec-
tiveness over existing baselines for this task using a new
probabilistic latent variable model in which we first infer
the association between human values and individual word-
level human values as latent variables, and then we aggregate
those results over all words in a sentence. The structure of
our model allows us to model the potential effect of the pre-
ceding word, which proves to be useful. Moreover, analysis
of 20 dual-annotated documents indicate that with about
80 training documents our automated technique is able to
achieve results that are nearly as accurate as those obtained
by an independent human annotator as a pseudo-classifier.



The remainder of this paper is organized as follows. In
Section 2, we describe related work on human value research
and on classification methods. Section 3 then introduces the
test collection that we have used. Section 4 describes our
approach to detect human values and Section 5 describes
our proposed latent value model. Section 6 presents our
results and Section 7 concludes the paper.

2. RELATED WORK
Content analysis is one of the approaches to detect human

values [11]. The key idea in content analysis is for the social
science researchers to personally examine naturally occur-
ring content and to assign codes to that content that reflect
their interpretation of that content using some pre-existing
coding scheme. Subsequent statistical analysis is then done
on the assigned codes rather than on the content. Hsieh and
Shannon [17] refer to this combination of human interpreta-
tion and an existing coding scheme as a“directed approach”.
One of the limiting factors the directed approach is that the
annotation costs scale linearly with the size of the collection.
Early in the annotation process, personal involvement of the
researcher is important because the theory on which any pre-
existing coding scheme is built may need to be adapted for
reflecting the unique characteristics of a collection on which
social scientists wish to focus. Our automated techniques
are intended only for the part of the process when coding
guidelines have stabilized and a substantial amount of an-
notated data is available.
After we obtained sufficient annotated data, we could

automate the annotation process using text classifiers [33]
trained with that data. We are not the first to explore the
automated annotation of human values for social science re-
search. For example, Bengston et al. [2] used dictionary-
based computer aided content analysis to identify how val-
ues about forestry have shifted from anthropocentric values
to biocentric values over the period 1980 through 2002.
We first compared the effectiveness of a wide range of

classifiers available within Weka [16], and we found that
Support Vector Machines (SVMs) [20, 21] performed best.
Therefore, we compare our proposed method to SVMs using
bag-of-words and bigram features in Section 6. Because we
introduce a latent variable model, supervised Latent Dirich-
let Allocation (sLDA) offers another appropriate baseline
[3]. Essentially, sLDA is an extension of LDA [4] in which
the process of constructing the probabilistic latent variable
model is influenced by the known association of words with
labels in a set of training documents. sLDA based on gen-
eralized linear models is a general framework to model the
documents and the responses. Our proposed probabilistic la-
tent variable model also captures the relationships between
the sentences and values. Thus, we compare our method
with sLDA in Section 6.
Griffiths et al. [15] found modeling sequential dependen-

cies between word classes to be helpful. Sequential depen-
dencies between the words themselves can also be useful,
but sparsity risks must be managed. With this in mind, we
model sequential word dependencies with the label(s) as-
signed to one word stem depending in part on the label(s)
assigned to only the previous word stem.
The structure of our problem resembles that of sentiment

classification, which has been extensively researched [25, 27].
An important difference is that our classification of human
values is most naturally cast as a multi-category multi-label

classification, whereas sentiment analysis is typically mod-
eled as single-category classification. Importantly, human
values can help to explain sentiment, given their explana-
tory power in relation to attitudes and behavior [34]. What
distinguishes our work is our focus on human values with a
redistributable test collection and our modeling of relation
between sentence-level and word-level values, and sequential
dependencies among words in a sentence.

3. HUMAN VALUES TEST COLLECTION
The test collection we used in this paper was originally

developed by Cheng et al. [7]. The collection includes
102 written prepared statements (”testimonies”) from pub-
lic hearings held by the U.S. Senate, House, and Federal
Communications Commission (FCC) in which representa-
tives of stakeholder groups offered advice to legislative and
regulatory bodies on Net neutrality. The key question in
the Net neutrality debate is whether the public interest is
better served by nondiscriminatory access for all Internet
traffic or by some set of reasonable network traffic manage-
ment practices for certain types of content or services. Their
annotation task focused on the relationship between advo-
cacy positions and detectable human values reflected by (or
appealed by) written prepared statements.

Traditional paper-based annotations for values posed two
challenges: (1) annotated passages could be of any length,
and indeed both short (clause-scale) and long (paragraph-
scale) passages were annotated; and (2) annotated passages
often did overlap, indicating that evidence for multiple val-
ues was present in some places. Cheng et al. [7] there-
fore elected to constrain the scope of each annotation to
be a single sentence, but to allow more than one value per
sentence. Clause annotations were extended to sentences,
and passages that spanned sentences were accommodated
by annotating several consecutive sentences. This set up
a well-structured sentence annotation task for supervised
machine learning. Their initial experience with sentence
annotation revealed poor inter-annotator agreement. Af-
ter some iteration of annotation guidelines, they concluded
that the Schwartz Values Inventory [32], which was devel-
oped through and for surveys, was not necessarily trans-
ferable to (manual or automatic) content analysis. To ad-
dress this concern, Cheng and Fleischmann [6] developed
the Meta-Inventory of Human Values (MIHV) by looking
for commonalities among the full range of values inventories
proposed towards categories that could be reliably inferred
during annotation for content analysis. They selected a sub-
set of their MIHV appropriate to our collection, iteratively
coding a subset of our collection and iteratively refined anno-
tation guidelines using two annotators until inter-annotator
agreement stabilized. The resulting collection is annotated
for six human values, the definitions of which are in Ap-
pendix A.

Sentence splitting for the test collection had been per-
formed manually, and all 9,890 sentences in 102 documents
were manually annotated. Table 1 shows examples of anno-
tated sentences. We subsequently removed sentences whose
boundaries disagreed with those of TreeTagger [31], sen-
tences that after removing words in the SMART stopword
list [30] contained more than 40 words, and sentences that
(after stopword removal) contained no words. The remain-
ing 8,660 sentences were then stemmed by the Porter stem-
mer [28]. Table 2 shows the distribution across the six val-



Values Sentence

freedom, Consumers are entitled to access the lawful
s-order Internet content of their choice
honor I am one of the network engineers involved for

many years in designing, implementing and
standardizing the software protocols that under-
pin the Internet

innov., Part of the reason why the Internet is such a
freedom creative forumfor new ideas is that there are very

few barriers to using the Internet to deliver
products, information and services.

justice Under these circumstances, requiring those most
responsible for congestion to bear a greater
percentage of the costs would be both good
network management and fair from a consumer
standpoint.

s-order The Commission, under Title I of the Communi-
cations Act, has the ability to adopt and enforce
the net neutrality principles it announced in the
Internet Policy Statement.

wealth Private investors will fund the construction of a
broadband network only if there is a reasonable
expectation that the company making that
investment will recover the cost of its investment,
including acompetitive return on capital.

Table 1: Examples of human values annotation.

Value κ # doc # sentences

wealth 0.621 102 3,156
social order 0.688 102 2,503

justice 0.423 99 2,267
freedom 0.628 101 2,155

innovation 0.714 94 1,018
honor 0.437 80 317

Table 2: Inter-annotator agreement and prevalence.

ues. A total of 1,545 sentences were annotated as containing
no value.
A second annotator independently had annotated 20 of

the prepared statements (containing 2,430 sentences, after
the same filtering process was applied). Table 2 also shows
Cohen’s kappa, a chance-corrected measure of inter-annotator
agreement [1, 8, 24] for those 20 documents.

4. APPROACH FOR DETECTING VALUES
In order to detect human values, we have to take into

account how the values are reflected in text. Surface lan-
guage expressions for human values are different from those
for most other subject classification problems. In using sub-
ject classification to classify a theme of the document, the
themes are often directly represented by language expres-
sions, typically by words that occur in the documents [33].
In the case of the human value classification, while a value
may be indicated by a specific word in some cases, in many
cases the value may be invoked somewhat more indirectly
using situation-specific terminology. In a preliminary anal-
ysis of the corpus that we use in this paper, we found the
following cases:

(1) A word represents value(s).
The word in a sentence represents the certain values.
For example, the word “freedom” in sentence (a) ex-

presses the value freedom, the word “protect” in sen-
tence (b) expressed the value social order, and the
word “winner” in sentence (c) expressed the both of
justice and wealth. As shown in (a), value names them-
selves are usually good cue words for the values.

(a) “This preserves consumers’s freedom to go where
they want, use the lawful services they want, and
read and say what they want online.”

(b) “Protecting customers and delivering a good In-
ternet experience is not limited to curtailing spam
or thwarting identity theft, for example.”

(c) “Consumers, not network operators, must be al-
lowed to continue to choose winners and losers in
the content and applications marketplace.”

(2) A pair of words represents value(s).
The following sentence (d) has the value innovation,
but the sentence (e) does not. The word pair “good
idea” (adjective+noun) provides the value innovation
(“idea” means a suggestion for possible course of ac-
tion), but the word “idea” in the sentence (e) does not
specify any value (“idea” means just a thought).

(d) “Make sure there is always a fertile place for all
of our good ideas to flourish.”

(e) “That was, I believe, the first time that idea had
been presented to this Committee.”

(3) A whole sentence represents value(s).
The annotator determined that the following sentence
(f) invokes the value of honor based on its statement.

(f) “I am one of the network engineers involved for
many years in designing, implementing and stan-
dardizing the software protocols that underpin the
Internet.”

(4) Contextual information is required to infer value(s).
The following sentences (h) and (i) are annotated based
on context. Sentence (h) has honor because of the pre-
vious sentence (g) which has the values honor, innova-
tion, and wealth. Sentence (i) has freedom and wealth
with influence by the next sentence (j) (which also has
the values freedom and wealth).

(g) “This is an extraordinarily positive development
for the nation’s economy ... for our global compet-
itiveness ... and for the next wave of broadband-
driven investment and innovation.”

(h) “How do we continue this progress?”

(i) “First and foremost, by recognizing that this mar-
ket is contestable to all who wish to invest.”



(j) “This is plainly evidenced by the growing array
of companies doing just that in the marketplace
today ... cable ... phone ... satellite power ...
municipality ... WiFi ... WiMax ... Google and
more ... all investing in what is increasingly a
free-for-all for consumers’ broadband business.”

From the above actual examples in the corpus, we can see
that the human values are expressed in variety of forms and
multiple values are assigned to a sentence.
Among several approaches to estimate the presence of a

category from text, typical basic methods are naive Bayes,
k nearest neighbors (kNN), and SVMs. Ishita et al. [18]
adopted these methods to detect human values, however,
the results showed that these methods alone are not suffi-
cient. One reason is that human values cannot be repre-
sented by simple functions such that summation of factors
of words in a sentence, contributing to each human value.
These function cannot be capture that some specific words
play a determining role to detect certain values. Based on
the above considerations, we design our model to first infer
the word-level human values corresponding to each word in
a sentence as latent variables, and then aggregate them by
logical bitwise OR (see Section 5.1) to estimate the sentence-
level human values.
Another characteristic of language expressing human val-

ues is that multiple values can be expressed by a single sen-
tence. There are the cases in which one word reflects mul-
tiple values, as example (c) above illustrates, and multiple
words with values can appear in a sentence. As an example
of that, the sentence “Part of the reason why the Internet
is such a creative forum for new ideas is that there are very
few barriers to using the Internet to deliver products, infor-
mation and services.” has the value innovation based on
the word “creative” and the word pair “new ideas” (adjec-
tive+noun); and freedom based on the word “barrier.” The
above examples (d) and (e) in the case (2) suggest that word
sense disambiguation directed by syntax is required to de-
tect correct human values for word-level. Among several
syntax patterns, we focus in our work on two-word colloca-
tions, modeling the value of the word in a way that can be
influenced by the previous word because this covers many
typical and frequent syntax patterns, as the above examples
show.
In this paper, we model cases (1) and (2) above in the next

section, that provide an adequate coverage of major cases, in
anticipating that the above cases (3) and (4) are minor. We
expect our design choice is effective for these major cases,
and in our future research, we could perhaps further extend
our model to represent whole-sentence meanings and long-
distance context in more nuanced ways.

5. LATENT VALUE MODEL
In this section, we propose a new method for detecting

human values by using a statistical language model we call
our Latent Value Model (LVM, for short), that estimates the
posterior probability of sentence w having values v using
Gibbs sampling in a Markov Chain Monte Carlo framework
[14]. In order to investigate relationships between words for
detecting values as discussed in section 4, we take the effect
of the preceding word into account in our LVM.

5.1 Preparation and Notation
A sentence w is a sequence of N words denoted by w =

(w1, w2, ..., wN ), where wn is the n-th word in the sequence.
The sentencew has sentence-level values v, where v ∈ {0, 1}6
= {000000, 000001, ..., 111111}. Each bit in the sequence
pattern represents one of the six values. The pattern 000000
means the corresponding sentence does not have any values.

We introduce latent variables x into the model to repre-
sent the value(s) associated with each word in the sentence.
If the word wn has a value x, the sentence w also has the
value x. On the other hand, if no word wn in a sentence
w has value x, then the sentence w does not have value x.
In addition, we assume that each word in a sentence has at
most two values. The sequence of the values corresponding
to the sentence w is denoted by x = (x1, x2, ..., xN ), where
xn is the word-level value(s) of the word wn.

We restrict xn to be an element in χ, where χ = {000000,
000001, 000010, 000011, 000100, ..., 110000}. The cardinal-
ity of χ is 22. We denote 000000 as µ0, 000001 as µ1, ...,
and 110000 as µ21, for convenience of notation. Restricting
the number of values with which a word can be associated
limits sparsity. Whether an at-most-two model is a good
choice is an empirical question. In preliminary experiments,
single-value models perform poorly and three values models
show no further improvement.

The sentence-level values v are the result of logical bitwise
OR operation ⊕ for all xn(1 ≤ n ≤ N). The sequence of
word-level value(s), therefore, is restricted to the following
χN (v), when the sentence-level values v are given.

χN (v) = {(x1, x2, . . . , xN ) ∈ χN |(x1⊕x2⊕ . . .⊕xN ) = v}.

For example, sentence-level values for the sentence“Congress
enact safeguards to preserve American consumers’ longstand-
ing freedom of Internet content choice.” calculated as social
order (from the word “safeguards”) and freedom (from the
word “freedom” and “choice”).

We also introduce another type of latent variables y =
(y1, y2, ..., yN ) into the model. The context indicator yn ex-
presses whether the previous word wn−1 influences the value
of wn or not. When the values associated with word wn

are subject to the influence of the previous word wn−1, yn
takes the numerical value 1. This design choice is moti-
vated by syntactic structures such as noun+noun and ad-
jective+noun, or semantic disambiguation associated with
verb+noun and verb+adjective. Otherwise, yn takes 0 (The
values associated with wn are determined by only wn itself).

5.2 Model and Estimation of Values

5.2.1 Model
For the word sequence (wn−1, wn), the context indicator

yn follows a Bernoulli distribution Bern(θ
(wn−1,wn)
1 ) and its

parameter θ
(wn−1,wn)
1 follows a Beta distribution with the

parameters (α0, α1):

1

Beta(α0, α1)
(1− θ1)

α0−1θα1−1
1 .

Beta(α0, α1) is a Beta-function. When yn takes the value
0, the values associated with the word wn follow a multi-
nomial distribution Multi(ϕwn

0 , ϕwn
1 , ..., ϕwn

21 ) and its pa-
rameters ϕwn

0:21 follow a Dirichlet distribution with the pa-



foreach n = 1, 2, ..., N do
(i) draw context indicator yn:

yn|θ
(wn−1,wn)
1 ∼ Bern(θ

(wn−1,wn)
1 )

(ii) draw the word-level value(s) xn:
if yn = 1 then

xn|wn−1, wn, ϕ ∼ Multi(ϕ
(wn−1,wn)
0:21 ),

else xn|wn, ϕ ∼ Multi(ϕ
(wn)
0:21 ).

sentence-level values become:
v = (x1 ⊕ x2 ⊕ . . .⊕ xN ).

Figure 1: Generative process of LVM.

Figure 2: Graphical representation of LVM.

rameters (β0, β1, ..., β21). Hereafter, we use ϕwn
0:21 and β0:21

for notational convention. When the context indicator yn
takes 1, the values associated with the word wn follow a

multinomial distribution Multi(ϕ
(wn−1,wn)
0 , ϕ

(wn−1,wn)
1 , ...,

ϕ
(wn−1,wn)
21 ) and its parameters ϕ

(wn−1,wn)
0:21 follow a Dirich-

let distribution with the parameters β0:21. The generative
process for the sequence of sentence-level value patterns x =
(x1, x2, ..., xN ), the sequence of context indicators y = (y1,
y2, ... , yN ) and the sentence-level human value(s) v for a
sentence w = (w1, w2, ..., wN ) in our proposed LVM is as

follows in Figure 1. In Figure 1, priors θ
(wn−1,wn)
u are called

contextual affinities, ϕwn
0:21 and ϕ

(wn−1,wn)
0:21 are word-level as-

sociations.
Our LVM is represented as a graphical model using con-

ditioning with gates [26] in Figure 2. The outer plate repre-
sents sentences, while the inner plate represents generation
of word-level values from a pair of the words or a single word
by its context. The dotted box inside the inner plate shows
the determination of previous word’s influence depending
on the context indicator y. The sentence-level value v is an
aggregation of word-level values x for the corresponding sen-
tencew. In Figure 2, L is the number of distinct (wn−1, wn),
W is the number of vocabulary and K is fixed at 22.
That is, our proposed model can be represented by the

following equation (1).

P (x,y|w, θ, ϕ)

=
N∏

n=1

P (yn|wn−1, wn, θ)× P (xn|yn, wn−1, wn, ϕ), (1)

where w0 is the special symbol ($) expressing the sentence
head, and y1 is always 0. The probabilities P (yn|wn−1, wn, θ)

and P (xn|yn, wn−1, wn, ϕ) are defined as follows:

P (y|a, b, θ) =

{
θ
(a,b)
0 ; y = 0

θ
(a,b)
1 ; y = 1

,

P (x = µj |y, a, b, ϕ) =

{
ϕ
(b)
j ; y = 0

ϕ
(a,b)
j ; y = 1

. (2)

For simplifying notation, the symbol a represents the word
wn−1, and the symbol b represents wn, the previous word
of wn in the equation (2), and the same style notation shall
apply hereafter. The constant µj in equation (2) is the j-th
possible word-level value(s) pattern as described in section
5.1.

We assume the following properties about the relation be-
tween words and their values:

(1) Most words do not have any values,

(2) For most two-word sequences, the values associated
with the second word are probabilistically determined
by that second word alone, without influence from the
previous word.

We adopt a Bayesian approach to embed these proper-

ties in our model. The prior distribution of (θ
(a,b)
0 , θ

(a,b)
1 )

is 2-dimensional Dirichlet distribution (beta distribution)
Dir(α0, α1). To reflect the property (2) above, we set the
meta-parameters α0 and α1 as follows: 0 < α0, α1 < 1

and α0 > α1. The prior distributions of (ϕ
(b)
0 , ϕ

(b)
1 , ..., ϕ

(b)
21 )

and (ϕ
(a,b)
0 , ϕ

(a,b)
1 , ..., ϕ

(a,b)
21 ) are 22-dimensional Dirichlet dis-

tributions Dir(β0, β1, ..., β21). To reflect the property (1)
above, we set the meta-parameters as follows:
0 < β0, β1, ..., β21 < 1 and β0 > β1 + β2 + ...+ β21

Furthermore, to keep the number of meta-parameters small,
we set the following restrictions:

α0 = α, α1 = γα, β0 = α, βi = γα/21 (3)

(i = 1, 2, ..., 21, 0 < α < 1 and 0 < γ < 1).

Thus, the free meta-parameters are only α and γ.
When the word-level values x is determined, the sentence-

level values v is uniquely determined as v = x1⊕x2⊕...⊕xN .
Therefore, the probability of (x,y, v) given w is then:

P (x,y, v|w, θ, ϕ) ={
P (x,y | w, θ, ϕ) ; x ∈ χN (v)

0 ; otherwise
.

The probability of (x,y) given (w, v) is therefore:

P (x,y|w, v, θ, ϕ) ∝{
P (x,y | w, θ, ϕ) ; x ∈ χN (v)

0 ; otherwise
. (4)

5.2.2 Estimation of Values
Let (W, V ) be a collection of sentences and their values.

W = (w(1),w(2), ...,w(M)), where w(m) is the m-th sen-
tence, and V = (v1, v2, ... vM ), where vm is the value(s)

of the m-th sentence. The n-th word of w(m) is denoted
w

(m)
n , and the length of m-th sentence is denoted Nm. The

collection (x(1)x(2), ...,x(M)) is denoted X, and the collec-

tion (y(1),y(2)...,y(M)) is denoted Y in a like manner. We



can get the probability of (X,Y) given (W, V ) from (4) as
follows:

P (X,Y | W, V, θ, ϕ)

=
M∏

m=1

P (x(m),y(m) | w(m), vm, θ, ϕ)

∝



∏
a,b

∏
u∈{0,1}

{θ(a,b)u }CY ((a,b),u)

×
∏
b

∏
t

{ϕ(b)
t }CX (b,t,0)

×
∏
a,b

∏
t

{ϕ(a,b)
t }CX ((a,b),t,1)

; x(m) ∈ χNm(vm) for all m

0 ; otherwise

,

where CY ((a, b), u) is the number of times u has been as-
signed to a two-word sequence (a, b) as the value of context
indicator y, CX(b, t, 0) is the number of times value µt has
been assigned to word b without the influence of the previ-
ous word, and CX((a, b), t, 1) is the number of times value
µt has been assigned to the word b with the influence of the
previous word a.
When x(m) ∈ χNm(vm) for all m = 1, 2, ..., and M , we get

the following formula by calculating the marginal probabil-
ity:

P (X,Y | W, V, α, γ)

=
∫
P (X,Y | W, V, θ, ϕ)π(θ | α, γ)π(ϕ | α, γ)dθdϕ

∝
∏
a,b

Γ(
∑

u∈{0,1}
αu)∏

u∈{0,1}
Γ(αu)

∏
u∈{0,1}

Γ(CY ((a, b), u) + αu)

Γ(
∑

u∈{0,1}
{CY ((a, b), u)) + αu})

×
∏
b

Γ(
∑
t

βt)∏
t

Γ(βt)

∏
t

Γ(CX(b, t, 0) + βt)

Γ(
∑
t

{CX(b, t, 0) + βt})

×
∏
a,b

Γ(
∑
t

βt)∏
t

Γ(βt)

∏
t

Γ(CX((a, b), t, 1) + βt)

Γ(
∑
t

{CX((a, b), t, 1)) + βt}) , (5)

where π(θ | α, γ) and π(ϕ | β, γ) are the prior distribution
of θ and the prior distribution of ϕ, respectively, and Γ(·) is
the gamma function.
We can estimate the value(s) for a sentence w that has N

words:

values(w) = argmax
v

P (v | w, α, γ)

= argmax
v

∑
y∈{0,1}N

∑
x∈χN (v)

P (x,y | w, α, γ).

Also we can estimate that w has the j-th value (denoted by
(v)j) of the six, when∑

v:(v)j=1

∑
y∈{0,1}N

∑
x∈χN (v)

P (x,y | w, α, γ) ≥ 1
2
. (6)

That is, whether a sentence has the j-th value is deter-
mined for each j separately. This means that the comparison
among SVM, sLDA and LVM is fair enough because both
judgements do not take into account combination of values.

5.2.3 Posterior Probabilities by Gibbs Sampling
We need the probabilities P (x,y | w, α, γ) for every x

and y to estimate the values of a sentence w. These are the
predictive posterior probabilities after giving the training

data (W, V ), P̂ (x,y | w,W, V, α, γ), to be exact. We ob-
tain the following predictive posterior probabilities. We give
the derivation of equation (7), the explanation of P̂ (x,y |
w,W, V,X,Y, α, γ) and its calculation in Appendix B.

P̂ (x,y | w,W, V, α, γ) (7)

=
∑
X

∑
Y

P (X,Y | W, V, α, γ) · P̂ (x,y | w,W, V,X,Y, α, γ).

By the law of large numbers, equation (7) can be approx-
imated as follows:

1

T

T∑
t=1

P̂ (x,y | w,W, V,X(to + t),Y(to + t), α, γ). (8)

In equation (8), (X(s), Y(s)) is the s-th sample of (X,Y)
that is drawn according to the posterior probability P (X,Y |
W, V, α, γ), given by a Gibbs sampler. We get the condi-
tional probability used in Gibbs sampling from equation (5)
as follows:

When (x
(m)
1 ⊕ ...⊕ x

(m)
n−1 ⊕ µj ⊕ x

(m)
n+1 ⊕ ...⊕ x

(m)
Nm

) ̸= vm :

P (x
(m)
n = µj , y

(m)
n = u | X−(m,n),Y−(m,n),W, V, α, γ) = 0.

When (x
(m)
1 ⊕ ...⊕ x

(m)
n−1 ⊕ µj ⊕ x

(m)
n+1 ⊕ ...⊕ x

(m)
Nm

) = vm :

P (x
(m)
n = µj , y

(m)
n = 0 | X−(m,n),Y−(m,n),W, V, α, γ)

=
C

−(m,n)
Y

((w
(m)
n−1,w

(m)
n ),0)+α0∑

u∈{0,1}{C
−(m,n)
Y

((w
(m)
n−1,w

(m)
n ),u)+αu}

× C
−(m,n)
X

(w
(m)
n ,j,0)+βj∑

t{C
−(m,n)
X

(w
(m)
n ,t,0)+βt}

,

P (x
(m)
n = µj , y

(m)
n = 1 | X−(m,n),Y−(m,n),W, V, α, γ)

=
C

−(m,n)
Y

((w
(m)
n−1,w

(m)
n ),1)+α1∑

u∈{0,1}{C
−(m,n)
Y

((w
(m)
n−1,w

(m)
n ),u)+αu}

× C
−(m,n)
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((w
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(m)
n ),j,1)+βj∑
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−(m,n)
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((w
(m)
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(m)
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,

whereX−(m,n) isX from which x
(m)
n is removed, and C

−(m,n)
X (·)

is a count that does not include the current assignment of

x
(m)
n . The same holds for Y−(m,n) and C

−(m,n)
Y (·) with y

(m)
n .

6. EXPERIMENTS
In this section, we describe our experiment design, report

classifier effectiveness, and compare our automated results
to those of a human annotator.

6.1 Experiment Design
We use 102-fold document-scale cross-validation (except

in Table 3, where in preliminary experiments we had not
grouped sentences by document). 102-fold cross-validation
seeks to model the case in which some set of 101 documents
have been annotated as training data and we are interested
in the degree to which the machine can automatically code
all future documents. To select the meta-parameters for
each fold, we use 100 documents for development training
and one held-out document for development testing. We
perform a parameter sweep by training on all sentences in
the development training set and then testing on all sen-
tences in the one development testing document to select
the meta-parameters α and γ that yield the best F1, sweep-
ing both parameters across 0.05, 0.1, 0.2, 0.5 and 0.9. The



101-document training set is trained using the best α and
γ, and the resulting model is used to classify the sentences
in the test set.
For Gibbs sampling we used 50,000 trials. Thirty percent

of those trials were treated as the burn-in period. We used
1-for-3 samples of them as (X(t0+1), Y(t0+1)), (X(t0+2),
Y(t0 + 2)), and so on to calculate equation (8). These pa-
rameters were empirically determined in preliminary exper-
iments on development data. We apply the same process
to determine the frequency threshold η for bigram features
(use if frequency ≥ η, a meta-parameter for SVM1) and to
determine meta-parameters for sLDA.2

In order to examine influence of the previous word, we
compare our LVM with LVM(yn = 0) which is our model
without any influence from the previous word (i.e., with
the context indicator yn in the equation (1) always zero.
The meta-parameters were same as for LVM.) We also com-
pare our models with two types of SVM as fair baselines,
SVM(w) and SVM(w, b). SVM(w) uses only word features,
and SVM(w, b) uses word and bigram features. We use
2nd-degree polynomial kernel for SVM(w) and linear kernel
for SVM(w, b), that kernels are determined respectively in
experiments.
sLDA [3] is a general supervised method but it inherited

the property of LDA [4, 14] which is a generative model for
“documents” so that multiple topics are responsible for the
words occurring in a single document. When we apply sLDA
our test corpus, we assume that one sentence is regarded as a
document. This setting might lose reliability of sLDA’s be-
havior, because the expected number of words which have
values in a sentence is a few. However, sLDA is a represen-
tative supervised probabilistic model, so we investigate how
it works in the actual experiment.

6.2 Results
Table 3 shows results for SVM(w), SVM(w, b), sLDA,

LVM (yn=0) and LVM. For the comparison between SVM(w,
b) and LVM, the difference of the error rate in the average
F1 between them, z = 5.98 > Z0.975 (= 1.96) suggests that
the equality can be rejected at significance level 0.05 by a
z-test [9] [19]. LVM is much better than sLDA. We can see
that even LVM (yn=0) outperforms SVM(b) and SVM(w, b)
(significantly for SVM(b), but not significantly for SVM(w,
b)).
Table 4 shows classifier effectiveness by 102-fold document

cross-validation. As can be seen, LVM apparently outper-
forms SVM(w, b). This is also true for sLDA, even when the
number of topics is set to 22, which is the closest approxi-
mation to our model. Note that we omit honor from these
micro-averaged results in Table 3 and 4 because no classifier
did well for that category due to a scarcity of annotations
for that value in our corpus, as illustrated in Table 2.
In sLDA, the response is regressed on the topic propor-

tions, while the SVM calculates the weights for the response
directly from words. We believe the reason why sLDA works
so badly is as follows: (1) it is a model for “document” but
not for “sentence” as we mention in the section 6.1; (2) lin-
ear regression of the latent variables for words to explain the
response is not as well suited to our very sparse data as our
estimation of the sentence-level values by a bitwise OR of
the word-level values is.

1http://chasen.org/ taku/software/TinySVM/
2http://www.cs.cmu.edu/ chongw/slda/

Precision Recall F1

Value Human LVM Human LVM Human LVM

wealth 0.735 0.816 0.871 0.681 0.797 0.743
s-order 0.775 0.748 0.759 0.820 0.767 0.782
justice 0.664 0.739 0.464 0.544 0.546 0.627
freedom 0.681 0.780 0.768 0.704 0.722 0.740
innov 0.764 0.736 0.720 0.640 0.741 0.685
honor 0.395 0.571 0.553 0.094 0.461 0.162

average 0.712 0.772 0.732 0.668 0.722 0.716

Table 6: Human “classifier” and LVM effectiveness
(same 20 test docs., micro-averaged).

In Table 5 shows per-category effectiveness measures for
the SVM and for our LVM, respectively. For each com-
parison across the two classifiers, the bolded value is the
higher of the two results. This is always true for F1, even
in the case of the category with the fewest training exam-
ples, honor. As Table 4 shows, SVM(w) and SVM(w, b)
achieve nearly identical F1 with 102-fold document cross-
validation (the same condition reported in Table 5, which
models the actual annotation process), with SVM(w) yield-
ing F1 = 0.7166 and SVM(w,b) yielding 0.7154. We there-
fore chose SVM(w) with the numerically higher score as the
illustrative baseline for Table 5.

The value honor is omitted from the averages in Tables
3 and 4 because we focus our analysis of those tables on
relative comparisons between usable classifiers. As Table 5
shows, the recall for honor is too low (0.28 in SVM and 0.16
in LVM) for practical application. Table 5 also shows that
our LVM achieves markedly better precision and recall (and
thus better F1) on honor than does SVM(w), so including
honor in the micro-averages would not have changed the
direction of the improvement that Tables 3 and 4 currently
show.

To better understand the behavior of LVM on this col-
lection, we have looked into the estimated word-level values
as the first step of qualitative analysis. The social scien-
tists collaborating on this research identified cue words used
to invoke particular values during the annotation process.
For example, “American consumers will lose basic Internet
freedoms, the engine of innovation will be hobbled, and our
global competitiveness will be compromised” which is anno-
tated with freedom, innovation, and wealth as sentence-level
values. The values names serve as good cue words, and LVM
assigned the appropriate values for the words “freedom” and
“innovation”. As for wealth, LVM estimated that “competi-
tiveness”has the word-level value wealth with influence from
the previous word “global”. We assumed that each word in
a sentence has at-most-two values, and LVM aggregates the
word-level values above then correctly estimated all three
sentence-level values for the sentence. We plan to conduct
more detailed qualitative analysis in our future work.

6.3 Comparison with Human Annotation
Because human values are unobservable private states rather

than observable facts [36], we see the annotator’s task as ren-
dering an opinion about which values a statement reflects,
and the system’s task as replicating that result. As our inter-
annotator agreement in Table 2 indicates, well trained and
qualified people will sometimes make different judgments
about the same sentence. To see how our LVM compares



Method Precision Recall F1

SVM(w) 0.7924 0.6802 0.7320
SVM(w, b) 0.7784 0.6988 0.7365

sLDA 0.7016 0.4821 0.5715
LVM(yn = 0) 0.7916 0.6931 0.7391

LVM 0.8001 0.7133 0.7542

Table 3: Classifier effectiveness (micro-averaged,
w/o honor, 3 ×10-fold sentence cross-validation).

Method Precision Recall F1

SVM(w) 0.7784 0.6638 0.7166
SVM(w, b) 0.7535 0.6809 0.7154

sLDA 0.6875 0.4591 0.5506
LVM(yn = 0) 0.7910 0.6785 0.7305

LVM 0.7866 0.6902 0.7353

Table 4: Classifier effectiveness (micro-averaged,
w/o honor, 102-fold document cross-validation).

The meta-parameters for sLDA: α= 0.05, 0.1, 0.2, 0.5 or 0.9 (fixed at initial α), the number of topics K=16, 22, 32, 64, 96 or
128. The meta-parameters for SVM(w, b): Bigram frequency threshold η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ∞ (= w/o bigrams).

Precision Recall F1

Value SVM(w) LVM SVM(w) LVM SVM(w) LVM

wealth 0.7859 0.7908 0.6977 0.7402 0.7392 0.7646
social order 0.8235 0.7803 0.7587 0.8174 0.7898 0.7984

justice 0.7275 0.7823 0.5558 0.5843 0.6302 0.6447
freedom 0.7461 0.7911 0.6654 0.6729 0.7035 0.7272

innovation 0.8139 0.7898 0.5629 0.5756 0.6655 0.6659
honor 0.4324 0.5085 0.2019 0.0946 0.2753 0.1596

average 0.7730 0.7849 0.6510 0.6737 0.7068 0.7251

Table 5: Per-category effectiveness (102-document cross-validation, micro-averaged).

with human annotator on a per-category basis, we ran exper-
iments with the 20 documents (2,430 sentences) annotated
by a second annotator as described in Section 3.
For this experiment, we trained LVM on the remaining 82

documents with meta-parameters: α = 0.2, γ = 0.9 (most
frequently selected meta-parameters during document cross-
validation). For comparability, we treat the first annotator’s
annotations of those 20 documents as correct, and we com-
pute effectiveness as if the second annotator were a classifier.
The results are shown in Tables 6.
Although human performance is not necessarily an upper

bound on performance (because the classifier has more ac-
cess to evidence about how one annotator makes decisions
than another human would), we see it as a useful reference
because the utility of our classifier depends on its relative
costs and benefits when compared to the alternative for cod-
ing at large scales, which would be to hire many annotators.
Our results show that automation can achieve results sim-
ilar to human annotation, but at a lower cost (in terms of
human effort).
The difference of the error rate in the average F1 between

human and LVM, z = 0.465 ≤ Z0.975 suggests that the
equality cannot be rejected in significance level 0.05. This
means that LVM effectiveness is statistically indistinguish-
able from the human classifier. As can be seen, LVM does
about as well as our human second annotator on average,
and it does substantially better in both precision and re-
call (and thus in F1) than the second annotator on justice.
Notably, honor is markedly less problematic for the human
second annotator than for LVM.

7. CONCLUSION
We have proposed a word-level probabilistic latent vari-

able model for detecting the sentence-level human values
reflected in prepared statements on a contentious political

issue. The model treats the words in a sentence as hav-
ing been chosen based on specific human values, and the
values reflected by each sentence thus can be estimated by
aggregating the values associated with each word. We have
achieved the highest reported sentence classification effec-
tiveness F1 = 0.735 in 102-document cross-validation, which
is a 3% relative improvement over SVM(w) that does not
take account of sequential dependencies between words, as
our model does. LVM also improved over SVM(w, b), which
uses bigram features.

Our model can determine the human value(s) xn for the
word wn in light of the influence of the previous word wn−1.
It is natural to next consider that word wn’s value(s) xn

might also be influenced by the both previous word wn−1

and following word wn+1. This more complex model may
suffer from sparsity, however. We might also explore using
longer-distance syntactic dependencies found by a depen-
dency parser, but since dependency parsing is imperfect,
proximity features will likely continue to offer some benefit.
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APPENDIX
A. ANNOTATION SCHEME FOR VALUES
Table 7 shows the way we defined each annotated human

value [5].

Value Definition

freedom The condition of being free of restraints and
encouraging competition; allowing individuals to
have their own beliefs and to make their own
choices; freedom from interference or influence
of another or others; the quality of being
autonomous and independent.

honor Understanding of who you are and how you are
perceived by others; a feeling of pride in oneself or
one’s organization, group, or nation and belief in
one’s own worth; accomplishment that is honored,
esteemed, respected or well regarded by yourself
or others.

innovation The capacity to create or discover new things and
new ideas that contribute to the advancement of
knowledge and/or technology.

justice The state of being treated equally and fairly,
especially having the same rights, status, and
opportunities; the process of settling a matter
properly and fairly for all parties according to
their capabilities and needs, especially protecting
the weak and correcting any injustice; need for
equal or fair distribution of resources, information,
benefits, burdens, and power among the members
of a society.

social order Using the power of the government, military
and/or legal system to protect the stability of
society and/or to protect people from possible
harms mentally or physically; acting in accordance
with laws, regulations, and social norms.

wealth An explicitly stated concern with or interest in
pursuing economic goals such as money, material
possessions, resources, and profit; focusing on the
market value of a change, decision, or action;
allocating resources appropriately and/or
efficiently.

Table 7: Definition and Annotation Scheme of Val-
ues.

B. PREDICTIVE POSTERIORS
The predictive posterior probabilities are calculated by

integrating out θ and ϕ as follows:

P̂ (x,y | w,W, V, α, γ)

=

∫
P (x,y | w, θ, ϕ) · π(θ, ϕ|W, V, α, γ)dθdϕ

=
∑
X

∑
Y

P (X,Y,V |W,α,γ)
P (V |W,α,γ)∫

P (x,y | w, θ, ϕ)P (X,Y,V,θ,ϕ|W,α,γ)
P (X,Y,V |W,α,γ)

dθdϕ,

where π(θ, ϕ | W, V, α, γ) is the posterior probability after
giving the training data (W, V ).

In the last formula above,∫
P (x,y | w, θ, ϕ)

P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ

is the predictive posterior probability after observation (W,

V , X, Y), P̂ (x,y | w,W, V,X,Y, α, γ).
For instance, when w = (a, b), x = (µj , µk) (a ̸= b), and

y = (0, 1), P̂ (x,y | w,W, V,X,Y, α, γ) can be calculated
by integrating out θ and ϕ as follows:∫

θ
($,a)
0 θ

(a,b)
1 ϕ

(a)
j ϕ

(a,b)
k

P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ

= 1× CY ((a, b), 1) + α1∑
u∈{0,1}{CY ((a, b), u) + αu}

× CX(a, j, 0) + βj∑
t{CX(a, t, 0) + βt}

× CX((a, b), k, 1) + βk∑
t{CX((a, b), t, 1) + βt}

.

Also, when w = (a, a), x = (µj , µk) (µj ̸= µk), and y =

(0, 0), P̂ (x,y | w,W, V,X,Y, α, γ) can be calculated:∫
θ
($,a)
0 θ

(a,a)
0 ϕ

(a)
j ϕ

(a)
k

P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ

= 1× CY ((a, a), 0) + α0∑
u∈{0,1}{CY ((a, a, u) + αu}

× CX(a, j, 0) + βj∑
t{CX(a, t, 0) + βt}

× CX((a, k, 0) + βk∑
t{CX(a, t, 0) + βt}

.

However, in the case of w = (a, a), x = (µj , µj), and y

= (0, 0), P̂ (x,y | w,W, V,X,Y, α, γ) becomes:∫
θ
($,a)
0 θ

(a,a)
0 ϕ

(a)
j ϕ

(a)
j

P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ

= 1× CY ((a, a), 0) + α0∑
u∈{0,1}{CY ((a, a), u) + αu}

× CX(a, j, 0) + βj + 1∑
t{CX(a, t, 0) + βt}+ 1

× CX((a, j, 0) + βj∑
t{CX(a, t, 0) + βt}

,

because of the property of the Γ function: Γ(z + 2) = (z +
1)zΓ(z). When there are more than two occurrences for one
unique word, we have to take into account a large number of
combinations for the theoretically-derived calculation. Then
we approximate above calculation as:∫

{ϕ(a)
j }2P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ ∼={∫

ϕ
(a)
j

P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ

}2

By this approxmation, the predictive probability in the
last case above becomes as follows:∫

θ
($,a)
0 θ

(a,a)
0 ϕ

(a)
j ϕ

(a)
j

P (X,Y, V, θ, ϕ | W, α, γ)

P (X,Y, V | W, α, γ)
dθdϕ

= 1× CY ((a, a), 0) + α0∑
u∈{0,1}{CY ((a, a), u) + αu}

× CX(a, j, 0) + βj∑
t{CX(a, t, 0) + βt}

× CX(a, j, 0) + βj∑
t{CX(a, t, 0) + βt}

.

We found the difference between the theoretically-derived
and the approximate calculation was not statistically signif-
icant in preliminary experiments. We therefore used the ap-
proximate calculation in our actual implement for efficiency
reasons.


