
Tangent-CFT: An Embedding Model for Mathematical Formulas
Behrooz Mansouri

bm3302@rit.edu

Rochester Institute of Technology

Rochester, NY, USA

Shaurya Rohatgi

szr207@psu.edu

Penn State University

State College, Pennsylvania, USA

Douglas W.Oard

oard@umd.edu

University of Maryland

College Park, MD, USA

Jian Wu

jwu@cs.odu.edu

Old Dominion University

Norfolk, VA, USA

C. Lee Giles

clg20@psu.edu

Penn State University

State College, Pennsylvania, USA

Richard Zanibbi

rlaz@cs.rit.edu

Rochester Institute of Technology

Rochester, NY, USA

ABSTRACT
When searching for mathematical content, accurate measures of

formula similarity can help with tasks such as document rank-

ing, query recommendation, and result set clustering. While there

have been many attempts at embedding words and graphs, formula

embedding is in its early stages. We introduce a new formula em-

bedding model that we use with two hierarchical representations,

(1) Symbol Layout Trees (SLTs) for appearance, and (2) Operator

Trees (OPTs) for mathematical content. Following the approach of

graph embeddings such as DeepWalk, we generate tuples represent-

ing paths between pairs of symbols depth-first, embed tuples using

the fastText n-gram embedding model, and then represent an SLT

or OPT by its average tuple embedding vector. We then combine

SLT and OPT embeddings, leading to state-of-the-art results for the

NTCIR-12 formula retrieval task. Our fine-grained holistic vector

representations allow us to retrieve many more partially similar for-

mulas than methods using structural matching in trees. Combining

our embedding model with structural matching in the Approach0

formula search engine produces state-of-the-art results for both

fully and partially relevant results on the NTCIR-12 benchmark.

Source code for our system is publicly available.

KEYWORDS
Math Formula Retrieval, Formula Embeddings, Tree Embeddings

ACM Reference Format:
Behrooz Mansouri, Shaurya Rohatgi, Douglas W.Oard, Jian Wu, C. Lee

Giles, and Richard Zanibbi. 2019. Tangent-CFT: An Embedding Model for

Mathematical Formulas. In The 2019 ACM SIGIR International Conference
on the Theory of Information Retrieval (ICTIR ’19), October 2–5, 2019, Santa
Clara, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3341981.3344235

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICTIR ’19, October 2–5, 2019, Santa Clara, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6881-0/19/10. . . $15.00

https://doi.org/10.1145/3341981.3344235

1 INTRODUCTION
While many information retrieval and natural language processing

tasks benefit from distributed (i.e., dense vector) representations

of words, embedding models to produce vector representations for

mathematical formulas have not yet been as fully investigated. As

with words, mathematical formulas can express similar content in

different ways, thus making distributed representations that offer

a level of abstraction potentially useful. While there has been a

tremendous amount of research on continuous representations for

words and paragraphs in Information Retrieval (IR) and Natural

Language Processing (NLP), little work has been done on formula

embeddings. This is unfortunate, as mathematics has a central role

in scientific discourse.

Vector representations for formulas might be applied in a va-

riety of ways. For instance, Mitra and Craswell [15] proposed a

query auto-completion method for rare word prefixes using a con-

volutional latent semantic model. Many formulas are unique, and

such a technique might be used for query auto-completion in math

search. Formula vectors could also be used for retrieval using vector

similarity measures, which we explore in this paper.

Mathematical notation also offers the potential for representing

some types of semantic relationships in ways that words alone

would lack, and these semantic relationships offer additional scope

for the construction of embedding models. Formula representations

are inherently hierarchical, either in the form of symbol layout

trees (SLTs) that capture the placement and nesting of symbols

on writing lines (e.g., in LATEX), or as operator trees (OPTs), which

capture the mathematical semantics of the application of operators

to operands (e.g., in Content MathML: see Figure 1).

The primary goal of this work is to study whether embeddings

are suitable for information retrieval in tasks involving formulas.

For now, we consider only formula embeddings, without using

surrounding text. This is natural for tasks including formula auto-

completion and isolated formula search, but we are also aiming to

obtain powerful embeddings that can be later enhanced through

the incorporation of surrounding text [8, 18].

General embedding models such as DeepWalk [16] have been

developed for graphs, including trees. These models are typically

constructed by first traversing the graph in some way (e.g., breadth-

first, depth-first, or random walk) to linearize the graph and then

building an embedding model in the usual way. Current graph

embedding models generally treat nodes as atomic units, but math-

ematical formulas exhibit more fine-grained structure (e.g., some

https://doi.org/10.1145/3341981.3344235
https://doi.org/10.1145/3341981.3344235
https://doi.org/10.1145/3341981.3344235

Figure 1: Formula (a) x − y2 = 0 with associated (b) Symbol Layout
Tree (SLT), and (c) Operator Tree (OPT). SLTs represent formula ap-
pearance by the placement of symbols on writing lines, while OPTs
define the mathematical operations represented in expressions.

symbols are variables whereas others are constants) that could be

leveraged to produce improved embedding models. Many mathe-

matical formulas are also rare or unique in a collection [12], and

basing the vector representation on primitives smaller than nodes

can provide more robust representations for unseen and unique

formulas.

In this paper, we present an embedding model for mathematical

formulas using SLT and OPT representations. We use fastText [2]

to produce the distributed representations based on a linearization

and tokenization of mathematical formulas. Formula similarity

is then computed as the cosine of the average of the distributed

representation vectors for the components of an equation. Our

proposed method outperforms current methods in partial matching

and also has the highest harmonic mean of partial and full relevance

measures. We also analyze our embeddings using visualizations

that illustrate how formulas are clustered in two-dimensional space.

Finally, we show that our formula vectors and a retrieval model

based on paths in operator trees (Approach0 [22]) may be combined

to improve both partial and full relevance in retrieval results.

The remainder of this paper is organized as follows. We first

review related work on mathematical information retrieval and

formula embeddings in Section 2. In Section 3, we then present our

formula embedding technique. Section 4 presents both quantita-

tive and qualitative results from the evaluation of our embedding

model. Finally, in Section 5 we conclude the paper and provide a

few remarks about next steps.

2 RELATEDWORK
We first introduce how mathematical formulas are represented in

documents.We then provide a brief overview of formula recognition

models used in mathematical information retrieval (MIR) systems.

We describe the fastText embedding model used in our system, and

then end with a discussion of existing formula embedding models.

Math Formula Representation. Math encodings are naturally

hierarchical, defining formula appearance in symbol layout tree

(SLT) encodings such as LATEX, or formula semantics in operator

tree (OPT) encodings such as Content MathML. SLTs represent

the placement of symbols on baselines along with their spatial

arrangement [20]. Although SLT representations are mostly used

online, they can be ambiguous. For instance, a symbol can be a

variable in one context, and an operator in another. In contrast,

OPTs are mathematically unambiguous, although constructing a

valid OPT from an SLT requires a priori knowledge of argument

types along with operator syntax, precedence, and associativity

(e.g., as represented in an expression grammar). Figure 1 shows the

SLT(b) and OPT(c) representation of formula x − y2 = 0.

Nodes. We make use of the SLT and OPT formula representa-

tions produced by the Tangent-s formula search engine [4]. Here

nodes in SLTs and OPTs represent individual symbols and explicit

aggregates such as function arguments in the form: (Type!value).
More precisely, nodes can be numbers (N!n), identifiers such as

variable names (V!v), text fragments, such as ‘lim’ and ‘such that’

(T!t), fractions (F!), radicals (R!), explicitly specified whitespace

(W!) and finally, matrices, tabular structures, and parenthesized

expressions (M!f rxc); with f showing fence characters such as

parentheses, r the number of rows, and c the number of columns.

In our SLTs, operators do not have a type attribute but in our OPTs,

commutative and non-commutative operators have type (U!) and
(O!) respectively.

SLT Edges. Considering an object O, in an SLT there are seven

types of edge labels representing the spatial relationships between

symbols (nodes): next (‘n’) that references the adjacent object ap-
pearing to the right of O and on the same line, within (‘w’) refer-

ences the radicand if O is a root or the first element appearing in

row-major order in O if it is a structure represented by M!, element
(‘e’) references the next element appearing after O in row-major

order inside a structure represented by M!, above (‘a’) references
the leftmost object on a higher line starting at the position above O,
below (‘b’) references the leftmost object on a lower line starting

at the position below O, pre-above (‘SUP’) references the leftmost

object of a prescripted superscript of O and pre-below (‘SUB’)

references the leftmost object of a prescripted subscript of O.
OPT Edges. Edge labels in OPTs indicate argument position.

For commutative operators where order does not affect the result

(e.g., ‘+’) argument edges are unlabelled (in practice, all labeled ‘0’).

For non-commutative operators, arguments are indexed from 0 (see

Figure 1(c)).

Math Information Retrieval (MIR) Systems. Mathematical

information retrieval is motivated by the vast number of technical,

scientific, and educational documents containing mathematics that

current general-purpose search engines do not index directly [20].

In general search engines such as Google, the user may include a

formula in the query using LATEX or MathML tags, which are treated

the same as words. In MIR systems formulas are indexed explicitly,

and the search interface provides a formula editor to support the

creation of queries containing formulas and text.

For formula retrieval, most previous approaches may be cate-

gorized as text-based or tree-based models [21]. In text-based mod-

els, formulas are converted to a string such as LATEX and then the

same search method is used for both formulas and text. For in-

stance, Sojka and Liska [17] proposed the MIaS system based on

term frequency-inverse document frequency (TF-IDF) for index-

ing XHTML documents containing MathML expressions. Kumar

et al. [9], in turn, proposed another approach for retrieving for-

mula LATEX strings using the largest common sub-string between

the query formula and each indexed expression, which requires a

quadratic algorithm. Text-based approaches lose the hierarchical

nature of formulas, and may fail to characterize formula structure

well as a result.

In tree-based models, formulas are represented directly as trees,

often with sub-trees to support partial matching. Tree-based for-

mula retrieval approaches were found to be more effective than

text-based approaches in both the NTCIR-11 [1] and NTCIR-12

[19] formula retrieval benchmarks. Kristianto et al. [7] proposed

the MCAT system that encodes path and sibling information from

MathML Presentation (SLT-based) and Content (OPT-based) repre-

sentations, where paths act as the retrieval units. They also make

use of a hashing-based formula structure encoding scheme, and

textual information at three levels of granularity. Approach0 [22]

retrieves formulas using only paths from operator trees generated

by parsing LATEX with a relatively small expression grammar. Can-

didates are scored based on up to three best-matching subtrees.

Like MCAT, Tangent-s [4] combines retrieval over both SLTs

and OPTs. Candidates are first retrieved and scored using tuples

representing relative paths between pairs of symbols. The top-k

candidates are then aligned with the query to produce formula sim-

ilarity scores (the Maximum Subtree Similarity, MSS). SLT results

and OPT results are then combined via linear regression over align-

ment metrics from each representation to produce final similarity

scores. Recently, Fraser et al. [5] adapted the BM25 text retrieval

model to work with an extended set of Tangent tuples capturing

formula structure, using these as search terms for ranking. This

approach is a hybrid of text-based and tree-based retrieval models.

FastText EmbeddingModel. Compared to tree-based approaches,

we believe an embedding model can learn more abstract formula

representations by being less dependent upon specific paths and/or
sub-trees, and therefore can provide better approximations for re-

trieval. In particular, we believe that applying an n-gram embedding

will be beneficial, as mathematical formulas are often unique [12].

For tasks such as query suggestion, users may insert unseen or even

invalid formulas as input queries, making models such as word2vec

less appropriate, as they cannot handle unseen formulas. Word2vec

considers words as the smallest unit and if any word is not seen in

the training collection, there is no embedding for it.

FastText is an n-gram embedding model [2] derived from the

word2vec model [14]. In word2vec, individual words are the small-

est unit for vector representations, and internal word structure

is ignored. FastText generalizes word2vec to accommodate word

morphology, providing usable vector representations for rare and

unseen words. As illustrated in [2], given a dictionary of n-grams

with size G, for a word w that has set of n-grams ζw , a vector

representation of word w is the sum of the vector representations

of its n-grams, and a scoring function which maps pairs of (word,

context) will be calculated as:

s(w, c) =
∑
д∈ζw

z
⊺
дvc .

where, zд is vector representation for the n-gram g and vc is the
vector representation of the word appearing in the context window

of word w. FastText represents words as bags of n-grams, with n
ranging from 1 to the length of the word. For instance, considering

n-grams, n = [3, 6], the word ‘system’ (with no boundary symbols)

is presented as sys, yst, ste, tem, syst, yste, stem, syste, ystem and

system. In this model, the minimum and maximum number of n-

grams for training is a hyper-parameter. FastText uses the mean

of the target word vector and its component n-gram vectors for

training the model at each step. The vectors that form the target are

updated uniformly based on the calculated error. After generating

vectors for n-grams, the vector representation for a word is the sum

of its embedded n-gram vectors.

Math Formula Embedding. Unlike development of word em-

beddings, there have been few attempts to embed formulas. Early

research on formula embedding was carried out by Thanda et al.

[18] where a variant of the doc2vec algorithm, the distributed bag

of words (PV-DBOW) [10] was introduced. They use binary expres-

sion trees and assigned each formula a real-valued vector such that

formulas with similar structure are close to each other in vector

space. Gao et al. [6] introduced embedding for both symbols (sym-

bol2vec) and formulas (formula2vec). Symbol2vec was based on a

Continuous Bags-of-Words (CBOW) architecture using negative

sampling [13], while formula2vec uses a distributed memory model

of paragraph vectors [10]. The proposed method by Krstovski and

Blei [8] generates embeddings for both words and equations with

a larger context window size for equations than words. They also

proposed equation unit embedding, treating equations as sentences

where the words are symbols, variables and operators, referred to

as a unit.

To the best of our knowledge, previous work has not focused

upon embedding isolated formulas, which considers only formula

structure and similarities between symbols and operations. Em-

beddings for individual formulas allow the creation of two sepa-

rate embeddings, one for formulas, and another for surrounding

text. Another shortcoming is that existing formula embeddings

are defined at the formula (‘word’) level, meaning that there is no

embedding for unseen formulas. In math search, users may submit

queries containing formulas that do not exist in a collection. Based

on this property, a ‘sub-word’ approach for formula embeddings

may produce a more robust vector representation.

3 EMBEDDING MODEL
Figure 2 provides an overview of our embedding model, Tangent-

CFT (Tangent Combined with fastText). To embed mathematical

formulas, we first linearize mathematical formulas and then apply

a text embedding model. This is a common approach in embed-

ding techniques. For instance, DeepWalk [16] which is an approach

for graph embedding, applies random walks on the graph to get

sequence of nodes and then applies word2Vec to get a vector repre-

sentation for each node. After linearizing formulas, we applied an

n-gram embedding model, fastText [2], to embed the formula. Our

code is available online.
1

3.1 Tuple Sequence Generation
Mathematical formulas are usually represented in LATEX or MathML

format. Using Tangent-s [4, 21], these are converted into SLT and

OPT encodings, and a depth-first traversal is used to generate a

tuple sequence. Tangent-s generates tuples for pairs of symbols

and their relative positions using tuples in form of (s1, s2, R, FRP)

after traversing the tree depth first. S1 is the ancestor symbol, s2

the descendant symbol, R the edge label sequence from s1 to s2,

1
https://github.com/BehroozMansouri/TangentCFT

Figure 2: Overview of Tangent-CFT. A formula query is converted to an SLT and OPT using Tangent-s. We convert trees to symbol tuple lists
using depth-first traversals, and then use fastText to learn tuple embeddings separately for each representation. Formulas are represented by
averaging tuple vectors. These formula vectors may be combined across OPT, SLT, and SLT-Type tuple inputs using a simple vector sum.

Table 1: SLT and OPT Tuples for Formula in Figure 1:
x − y2 = 0

SLT tuples OPT tuples (FRP omitted)

(V! x, -, n, -) (U! eq,O! minus,0)

(-, V! y, n, n) (O! minus, V! x, 0)
(V! y, N! 2, a, nn) (V! x, eob, 0)
(N! 2, eob, n, nna) (O! minus, O! SUP, 1)
(V! y, =, n, nn) (O! SUP, V! y, 0)
(=, N! 0, n, nnn) (V! y, eob, 0)
(N! 0, eob, n, nnnn) (O! SUP, N! 2, 0)

(N! 2, eob, 0)
(U! eq, N! 0, 1)
(N! 0, eob, 0)

and FRP the full relative path giving the location of s1 on its path

from the root of the tree. A parameterw (window size), controls the

maximum path length between symbols. In our model, the window

size is set to 2. If the End-of-Baseline (EOB) flag is set, the system

creates dummy pairs between the last symbol on each baseline and

null, to help with matching small expressions. In OPTs, this EOB

tuple really represents the end of root-leaf paths, and is generated

for all arguments (i.e., at leaves of the OPT). The SLT and OPT

tuples for Figure 1 are shown in Table 1.

3.2 Tokenizing Formula Tuples
After converting the formula tree representation to a tuple sequence,

each tuple can be considered as a word. To use an n-gram embed-

ding model we need to define our ‘words’ and ‘characters.’ In our

representation, each character (token) is encoded using a unique

identifier.

Tokenizing the tuple elements can provide good insight into the

formula structure. For instance, separating node type and value

provides more details for formula structure, allowing two formulas

sharing the same structure but different variables or constants to

obtain a higher similarity score than they would with untokenized

tuples (i.e., if tuples are treated as characters).

For example, we checked whether tokenizing numbers using

their individual digits vs. complete values would help retrieval,

we did a small experiment using four constants as queries using

their first 10 decimal places: Pi (π , 3.1415926535), Euler’s number (e ,

2.7182818284), the golden ratio (1.6180339887), and

√
2 (1.4142135623).

For each constant, we observed the number of digits in retrieved

formulas matching those to the right of the decimal point in the

query. As expected, tokenizing numbers greatly improved retrieval

for variations of each constant with differing levels of precision.

Without tokenizing digits, only exact matches to the given constant

query and seemingly random numbers are retrieved. We extend

this approach to matrices - for example, consider three matrices of

sizes 2 × 3, 2 × 4, and 5 × 6. If we do not tokenize the dimension

numbers separately, the tokenized SLT elements are three unique

tokens: (‘M!’, ‘[] 2 × 3’) , (‘M!’, ‘[] 2 × 4’) and (‘M!’, ‘[] 5 × 6’). In

this ‘character’ representation, no two of these tokens will match.

However, the first two matrices in our example seem to be more

similar as they have the same number of rows.

Another point to consider is whether to use the Full Relative Path

(FRP). This may provide unnecessary information which can be

misleading when doing embedding, especially when using the OPT

representation, as it is simply a sequence of argument positions for

each operation. Therefore, as the input of the embedding model,

we used tokenized formula tuples without the FRP.

To provide better insight on how tokenization and enumeration

of tokens is performed, we again use our example formula from

Figure 1, x − y2 = 0. As shown in Table 1, the first OPT tuple to be

encoded is (U!eq,O!minus,0). This tuple can be tokenized into ‘U!’,

‘eq’, ‘O!’, ‘minus’ and ‘0’. Each of these tokens gets a unique Id. The

second tuple is (O!minus,V!x,0) which is tokenized to ‘O!’, ‘minus’,

‘V!’, ‘x’ and ‘0’. Previously seen tokens such as ‘U!’ will use their

previous Id, but new tokens such as ‘x’ will get a new Id. Note that,

token identifiers used for edges and nodes are distinct, to ensure

that these two path types produce distinct n-grams.

3.3 Applying fastText to Formulas
After linearizing formulas, we apply the fastText [2] n-gram embed-

ding model to embed the formula. Each encoded tuple is considered

as a word and the context window for a tuple ‘T’ is defined by

nearby tuples in the linearized tuple sequence. The context window

size is also a hyper-parameter in the model, which is set to the

default value, 5. After the model is trained, each tuple is assigned a

d dimensional vector (which is defined before training). The vector

representation for formula F with set of n tuples, TF , is given by:

f ormulaVec (F) = 1

n

∑
t ∈TF

tupleVec(t)

To compute the the similarity of two formulas, we use the cosine

similarity of their vector representations. First the vector represen-

tation for each formula in the collection is created and then for a

given formula query, based on the trained model, the vector rep-

resentation is obtained. Then, the similarity between the formula

query q with vectorVq and a formula f in the collection with vector

Vf is measured as follows:

sim (q, f) =
Vf ·Vq���Vf ��� ��Vq �� .

A higher cosine similarity results in a better retrieval rank.

3.4 Combining SLT and OPT Embeddings
Our embedding models for mathematical formulas are based on

their OPT and SLT representations, where the OPT captures the

formula semantics, while the SLT focuses on the visual structure

of the formula. Therefore, combining the OPT and SLT vector rep-

resentations may allow us to capture both the semantics and the

appearance of formula in a single vector.

In addition to SLT and OPT vector representations, we trained

another model that we call SLT-Type from the SLT representation

that only leverages the node types and ignores the values. For

instance, the tuple (V!x,N!2,a) will be considered as (V,N,a). This

might be useful in caseswhere the name of variables in two formulas

are different, but they still have same structure. To achieve the final

vector representation of a formula, we sum up the three vector

representations: SLT, SLT-Type and OPT.

4 EVALUATION
We now evaluate our formula embeddings using the NTCIR-12

formula browsing task. We then compare our system against state-

of-the-art methods, provide an analysis of retrieval errors, and

examine the effect of the main embedding parameters. Finally, we

present new state-of-the-art results for the NTCIR-12 task using a

model that combines the Tangent-CFT formula embeddings with a

tree-based formula search engine (Approach0 [22]).

4.1 Dataset and Evaluation Measures
For evaluation, we relied on the NTCIR-12 MathIR Wikipedia For-

mula Browsing Task [19], which contains over 590,000 mathemat-

ical formulas from English Wikipedia. In this task, there are 20

concrete queries (i.e., formulas without wildcards). During the task,

two human assessors evaluated the pooled hits from participating

systems. Each assessor scores a hit with score 0, 1 or 2 based on rele-

vance (with 2 indicating highly relevant). The final relevance rating

is the sum of the two assessor scores, producing a score between 0

and 4. Scores of 3 or 4 are considered fully relevant, scores of 1 or

2 are considered partially relevant, and a score of 0 is considered

irrelevant.

To compare our method with previous approaches we used bpref

[3] on top-1000 results. For a query with f relevant formulas, bpref

locates the first d judged non-relevant formulas, then compares

their ranks against the ranks of the f judged relevant formulas

pairwise. The harmonic mean of full and partial bpref quantify how

well a system can retrieve both fully (F) and partially (P) relevant
formulas (2PF/(P + F)).

4.2 Retrieval Results
Training. We used grid search to tune the hyper-parameters for

our embedding models. To train our models, we used a skip-gram

Table 2: NTCIR-12 Results (Avg. bpref@1000)

System

bpref

Partial

bpref

Full

Harmonic

Mean

Tangent-CFT 0.71 0.60 0.65
Tangent-OPT-FT 0.66 0.60 0.63

Tangent-sLT-FT 0.66 0.58 0.61

Approach0 [22] 0.59 0.67 0.63

Tangent-s [4] 0.59 0.64 0.61

MCAT [7] 0.57 0.57 0.57

Table 3: Tangent-CFT Results for Query:
x − 1 − 1

2
− 1

4
− 1

5
− 1

6
− 1

9
− · · · = 1

Rank Formula

1 x − 1 − 1

2
− 1

4
− 1

5
− 1

6
− 1

9
− · · · = 1

2 1 − 1

2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− 1

12
+ · · ·

3 1 − 1

2
− 1

4
+ 1

8
− 1

16
+ · · · = 1

3
.

4
1

18
= 1

2
− 1

3
− 1

3
2
.

5
π
4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

model with 20 negative samples, vector dimension of 300, and

context window size of 5. For both SLT and OPT models, we used

n-grams of lengths between 3 and 6, and for the SLT model with

only node types (SLT-Type), we simply applied word2vec. We found

that it is important to include longer n-grams, specifically with size

6, which can improve both partial and full bpref scores. More details

on training the embedding models are provided in Section 4.4.

NTCIR-12 Results. Table 2 compares the results of formula

retrieval by different systems using partial and full bpref scores

along with their harmonic mean. Note that all models in Table 2

support unification of symbols based on predefined types (e.g., for

variables and numbers). An example of top-5 Tangent-CFT formula

retrieval results is shown in Table 3; this query had the highest

harmonic mean bpref over all queries (0.931).

As Table 2 indicates, Tangent-CFT obtains the highest harmonic

mean bpref score; achieving the highest partial bpref score, and a

full bpref higher than MCAT, but 4-7% lower than Approach0 and

Tangent-s. These may be explained by Tangent-CFT using cosine

similarity over formula vectors rather than direct comparison of

formula trees (SLTs and/or OPTs). In contrast, Approach0 finds

matching OPT sub-trees from leaf-root paths, and Tangent-s finds

matching SLT and OPT sub-trees from the tuples used to train

Tangent-CFT. This allows Approach0 and Tangent-s to identify

highly similar formulas more consistently than the more abstract

vector representation in Tangent-CFT. However, our vector rep-

resentation still useful structural information, but in a less strict

form, leading to the stronger partially relevant bpref result (12-14%

higher than Approach0, Tangent-s, and MCAT).

Comparison of Embeddings vs. Structural Matching. We

compared our results with the state-of-the-art tree-based model,

Approach0. Consider the formula O(mn logm) (query number 8

in NTCIR-12). For this query, the top-5 results from Tangent-CFT

and Approach0 systems are shown in Table 4. For this particular

query, only the partial bpref score of Tangent-CFT is higher than

Table 4: Tangent-CFT vs. Approach0 Results for Query:
O(mn logm)

Rank Tangent-CFT Approach0

1 O(mn logm) O(mn logm)
2 O(m logn) O(nk logk)
3 O(n logm) O(KN logN)
4 O(n logm) O(VE logV)
5 O(nm) O (nlogn log logn)

Approach0, and Approach0 does better on full bpref score. Both

systems retrieve the exact match as the first formula. Tangent-CFT

retrieves formulas that contain parts of the query formula (with

m and n as the variables in all cases), while Approach0 retrieves

formulas that are identical to the query after variable/subexpression

substitution. Analysis of the top-1000 results for each system shows

that formulas judged to be fully relevant such as O(VE logV) and
O(KN logN) retrieved by Approach0 are not retrieved by Tangent-

CFT. On the other hand, Tangent-CFT was able to retrieve formulas

such as O(logn) and O(mr) that were judged to be partially rel-

evant as well as some variants judged to be fully relevant such

as O(λδ (n) logn) that Approach0 was not able to retrieve due to

differences in the OPT leaf-root path structures.

The NTCIR-12 collection also contains queries such as

“0 → G∧ π∧
→ X∧ ı∧→ H∧ → 0” for which Tangent-CFT did better in

both partial and full bpref than Approach0. For that query, among

the top-1000 retrieved formulas, Tangent-CFT was able to retrieve

formulas such as “1 → K
i→ G

π→ H → 1” and “W
f
→ X

д
→

Y
h→ Z ” that Approach0 could not, possibly due to constraints in

the Approach0 expression grammar. As another example, for the

query:

∇ × B = µ0J + µ0ϵ0

∂

∂t
E︸ ︷︷ ︸

Maxwell
′
s term

Tangent-CFT was able to retrieve two formulas, “∇ × B = µ0(J +
ϵ0

∂E
∂t)” and “∇×B− 1

c2

∂E
∂t = µ0J” that were judged as fully relevant

but that were not retrieved by Approach0. Comparing these two

formulas with the query formula, the benefit of the n-gram em-

beddings can be seen, as the two formulas are quite similar to the

query, with some of the characters being replaced or eliminated.

In contrast to this, Approach0 was able to achieve better partial

and full bpref scores for some queries. Consider the query:

Pxi =
N !

nx !(N − nx)!
pnxx (1 − px)N−nx

Approach0was able to retrieve formulas such as

(
N
NR

)
= N !

NR !(N−NR)!
and f (k) =

(n
k
)
pk (1 − p)n−k that were judged partially relevant,

while Tangent-CFT was not able to do so, perhaps because of dif-

ferences in the symbols, structure, and operations involved.

Studying the extreme cases, the largest difference when scoring

by partial relevance was for the following query formula (where

partial bpref scores for Approach0 and Tangent-CFT were 0.21 and

0.73, respectively):

N =

⌊
0.5 − log

2

(
Frequency of this item

Frequency of most common item

)⌋

For this query, Approach0 was not able to retrieve 24 of the judged

(partially or fully) relevant formulas that were retrieved by Tangent-

CFT in the top-1000 results, including formulas such as “LN =

40 + 10 log
2
(N)” and “d = 69 + 12 log

2

(
f

440 Hz

)
. ”

Considering full relevance, the largest difference between the two

systems were for the following query (where the full bpref scores

for Approach0 and Tangent-CFT were 0.83 and 0.17, respectively):

cosα = − cos β cosγ + sin β sinγ cosh

a

k
,

For this query, Tangent-CFT had all relevant formulas in its result

set, however the ranking of hits is weaker than in Approach0. In the

top-10 results Tangent-CFT misses 4 fully relevant formulas found

in that range by Approach0, including “cosA = − cosB cosC +
sinB sinC cosha. ” and “cosC = − cosA cosB + sinA sinB cosh c,”.
Therefore, a re-ranking stepmight further improve the initial results

of Tangent-CFT.

SLT vs. OPT Embeddings. Next, we study how SLT and OPT

embedding models differ. To compare these embeddings, we pro-

vide two examples from our experiments for which one method

outperforms the other. For this query:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n − 1)sx sy
=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2
,

the SLT model was able to retrieve formulas such as the one below

(which was judged to be fully relevant), whereas the OPT model

was not able to retrieve this formula, which shares some aspects

of the appearance, but in our view not the semantics, of the query

formula.

similarity = cos(θ) = A · B
∥A∥∥B∥ =

n∑
i=1

Ai × Bi√
n∑
i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2

On the other hand, OPT was able to do better than SLT on some

formulas. For instance, for the query O(mn logm) (see Table 4)

the OPT model was able to retrieve formulas such as O(nk logk)
whereas the SLT model cannot. For that query, the SLT model gave

higher rank to formulas such as O(m + logn) that are more similar

in appearance to the formula query.

It should be mentioned that our ‘SLT-Type’ embedding only

improved partial and full bpref scores by 0.01 on average over all

queries. The effect of using this embedding should be explored

with a larger number of queries, especially queries for which exact

matches do not exist in the collection (as they do for all of the

NTCIR-12 queries). However, our initial intuition that our SLT-

Type embedding might help has some support. For the formula

query

τrms =

√√√∫ ∞
0

(τ − τ)2Ac (τ)dτ∫ ∞
0

Ac (τ)dτ
,

Tangent-CFT was able to retrieve the following formula (which

was judged to be fully relevant), that was not retrieved when using

Figure 3: Formula embedding visualization. Each point is a formula
in 2-D space obtained using the t-SNE package.

only the SLT and OPT combined model:

αsun =

∫ ∞
0

αλ Iλsun
(λ)dλ∫ ∞

0
Iλsun

(λ)dλ

4.3 Visual Exploration of Embedding
Similarities

To better understand how well our model maps related formu-

las to points that are close in the embedding space, we applied

t-Distributed Stochastic Neighbor Embedding (t-SNE) [11] for di-

mensionality reduction, mapping each of our 300-dimensional em-

beddings to a two-dimensional space. We selected 180 formulas

belonging to 9 categories ofmathematical formulas:Matrix, Integral,

Summation, Limit, Logarithm, Trigonometric, Set theory, Probabil-

ity and Derivative. Each category contains 20 different formulas

of that type. Providing examples, “limx→c [f (x)д(x)] = L1 × L2”

is labeled as Limit, while “

∫ +∞
−∞ e−x

2

dx =
√
π” is label as Integral.

This dataset is publicly available.
2

Figure 3 shows a visualization of these 180 formulas, with axis

labels normalized to be between -1 and 1. As can be seen, most

formulas from the same category are mapped to similar positions.

The formulas in the Set and Probability categories are spread more

widely over the space, compared to other categories. This might be

due to the fact that these categories could have been divided into

more fine grained categories. For instance, in the Set category, the

formulas located on the right side mostly include Logic operations

such as ∃ or ∀, while the formulas on the left side mostly include set

operations such as union or intersection. Another point to notice

is that the formula “limz→a+
∫ b
z f (x)dx ,” which might have been

categorized either as Integral or Limit, is the purple triangle near

the blue stars.

4.4 Effect of Embedding Parameters
In this section, we examine the effect of model parameters on our

bpref evaluation measure. To study the effect of n-gram length we

2
https://github.com/BehroozMansouri/TangentCFT

Table 5: Effect of n-gram size on (Partial, Full) bpref for SLTs. Min
length is shown across rows; max length is shown across columns.

2 3 4 5 6

1 (0.63,0.56) (0.64,0.56) (0.65,0.56) (0.65,0.56) (0.65,0.56)

2 (0.65,0.56) (0.65,0.56) (0.65,0.56) (0.65,0.57)

3 (0.66,0.57) (0.65,0.57) (0.66,0.58)
4 (0.63,0.58) (0.64,0.58)

Table 6: Effect of n-gram size on (Partial, Full) bpref for OPTs. Min
length is shown across rows; max length is shown across columns.

2 3 4 5 6

1 (0.62,0.58) (0.63,0.58) (0.63,0.58) (0.63,0.59) (0.63,0.59)

2 (0.63,0.58) (0.63,0.57) (0.63,0.58) (0.64,0.59)

3 (0.63,0.57) (0.63,0.59) (0.66,0.60)
4 (0.59,0.61) (0.60,0.61)

Table 7: Effect of embedding vector length on (Partial, Full) bpref.

200 250 300 350

SLT (0.61,0.55) (0.65,0.56) (0.66,0.58) (0.63,0.56)

OPT (0.63,0.59) (0.64,0.60) (0.66,0.60) (0.63,0.55)

Table 8: Effect of architecture (Skip-Gram (SG) and Continuous
Bag ofWords (CBOW)) vs. training algorithm (Hierarchical Softmax
(HS) and Negative Sampling (NS)) on harmonic mean bpref.

HS NS(15) NS(20) NS(25)

SLT (SG) 0.58 0.60 0.61 0.61

SLT (CBOW) 0.49 0.50 0.51 0.50

OPT (SG) 0.60 0.60 0.63 0.62

OPT (CBOW) 0.55 0.56 0.56 0.55

kept other parameters constant (using a skip-gram model with 20

negative samples and a context window size of 5). Table 5 and 6

show the effect of n-gram length on SLT and OPT models, respec-

tively. As these results indicate, our models are relatively insensitive

to n-gram length, but increasing n-gram lengths do seem to help a

bit for both partial and full bpref scores. This suggests that some

aspects of mathematical formula similarity are evidenced in longer

sequences.

Next, we investigated the effect of vector size. We considered di-

mensions of length 200, 250, 300 and 350, keeping other parameters

fixed. As Table 7 shows, 300 dimensions, a number often used for

text, seems like a good choice.

Finally, we studied how different embedding architectures af-

fect our model. We consider skip-gram (SG) and continuous bag of

words (CBOW) architectures with different training algorithms, hi-

erarchical softmax (HS) and negative sampling (NS). Table 8 shows

the results of these experiments. As can be seen, the skip-gram

model achieved better results. The skip-gram model learns to pre-

dict their context of a target word, while the CBOWmodel predicts

the target word according to its context. The context is represented

as a bag of the words contained in a fixed size window around the

target word. In CBOW the vectors from the context words are av-

eraged before predicting the target word, and therefore rare words

will be smoothed over a lot of examples with more frequent words.

In the skip-gram model there is no averaging of embedding vectors,

and the model can learn better representations for rare words when

their vectors are not averaged with the other context words in the

process of making predictions.

Table 9: NTCIR-12 Results after Combining Approach0 and
Tangent-CFT (TanApp) vs. Individual Retrieval Models.

Retrieval result

Partial

bpref

Full

bpref

Harm. Mean

bpref

TanApp 0.73 0.70 0.71
Tangent-CFT 0.71 0.60 0.65

Approach0 0.59 0.67 0.63

Tangent-s 0.59 0.64 0.61

4.5 Combining Tangent-CFT with Approach0
Relying only on embeddings for formula retrieval may lead to

higher partial relevance scores, but perhaps at the cost of lower

full relevance scores when compared to operating directly on a

formula tree. For example, Approach0 retrieves formulas using leaf-

root paths in OPTs, and obtains higher full relevance scores than

Tangent-CFT (see Table 2).

To try and leverage the strengths of both the embedding-based

and tree-based approaches, we created another model (TanApp)
that linearly combines retrieval scores from Tangent-CFT and Ap-

proach0. Given weight parameter α ∈ [0, 1], TanApp calculates the

score for a given query ‘q’ as follows:

Scoreq (f) = α ·Tanдent-CFTq (f) + (1 − α) · Approach0q (f)

We used a grid search over alpha to find the weight that maximizes

one of three possible target measures: (1) the average partial bpref,

(2) the average full bpref, or (3) the average harmonic mean of full

and partial bpref using leave-one-out cross-validation. The first row

of Table 9 shows the TanApp results optimized to each measure

(i.e., three separate grid-searches optimized for partial, full, and

harmonic mean of bpref), along with the corresponding results for

each individual system. For comparison, Tangent-s results are also

shown. As can be seen, TanApp is the best choice, regardless of the

chosen evaluation measure.

5 CONCLUSION
In this paper, we presented Tangent-CFT, an embedding model for

mathematical formulas. We use fastText to produce formula em-

beddings for both symbol layout trees (SLTs) that capture formula

structure, and operator trees (OPTs) that capture formula semantics.

The embedding procedure converts a tree-based formula represen-

tation into a sequence of tuples. Each tuple is treated as a word,

with its tokenized elements treated as characters. Tuple ‘words’ are

then embedded using n-grams of varying lengths computed over

the tuple and its neighboring tuples in the sequence.

Our Tangent-CFT model combines OPT, SLT, and SLT-Type em-

beddings to obtain higher partial relevance than state-of-the-art

models for the NTCIR-12 formula browsing task. We have also

shown that combining results from an embedding model such as

Tangent-CFT with results from a structure matching approach (e.g.,

Approach0) can produce higher partial and full relevance scores

than previous approaches.

For future work, we plan to extend the existing test collection to

include more diverse query formulas, and particularly formulas that

are not present as exact matches in the collection. Also, we plan to

incorporate text near formulas into our embedding model. So far

we have only studied isolated formula retrieval, and we expect that

leveraging nearby text would further improve the representation,

as was observed in the NTCIR MathIR task [19].

Acknowledgements. This material is based upon work supported

by the Alfred P. Sloan Foundation under Grant No. G-2017-9827

and the National Science Foundation (USA) under Grant No. IIS-

1717997.

REFERENCES
[1] Akiko Aizawa, Michael Kohlhase, Iadh Ounis, and Moritz Schubotz. 2014. NTCIR-

11 Math-2 Task Overview. In In Proceedings of the 11th NTCIR Conference.
[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.

Enriching word vectors with subword information. Transactions of the Association
for Computational Linguistics.

[3] Chris Buckley and Ellen M Voorhees. 2004. Retrieval evaluation with incomplete

information. In Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval.

[4] Kenny Davila and Richard Zanibbi. 2017. Layout and semantics: Combining

representations for mathematical formula search. In Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval.

[5] Dallas Fraser, AndrewKane, and FrankWmTompa. 2018. ChoosingMath Features

for BM25 Ranking with Tangent-L. In Proceedings of the ACM Symposium on
Document Engineering 2018.

[6] Liangcai Gao, Zhuoren Jiang, Yue Yin, Ke Yuan, Zuoyu Yan, and Zhi Tang. 2017.

Preliminary Exploration of Formula Embedding for Mathematical Information

Retrieval: can mathematical formulae be embedded like a natural language?

[7] Giovanni Yoko Kristianto, Goran Topic, and Akiko Aizawa. 2016. MCAT Math

Retrieval System for NTCIR-12 MathIR Task. In NTCIR.
[8] Kriste Krstovski and David M Blei. 2018. Equation Embeddings.

[9] P Pavan Kumar, Arun Agarwal, and Chakravarthy Bhagvati. 2012. A structure

based approach for mathematical expression retrieval. In International Workshop
on Multi-disciplinary Trends in Artificial Intelligence.

[10] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and

documents. In International Conference on Machine Learning.
[11] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of Machine Learning Research.
[12] Behrooz Mansouri, Douglas W. Oard, and Richard Zanibbi. 2019. Characterizing

Searches for Mathematical Concepts. In Joint Conference on Digital Libraries.
[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in Neural Information Processing Systems.
[15] Bhaskar Mitra and Nick Craswell. 2015. Query auto-completion for rare prefixes.

In Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management.

[16] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM.

[17] Petr Sojka andMartin Líška. 2011. The art of mathematics retrieval. In Proceedings
of the 11th ACM Symposium on Document Engineering.

[18] Abhinav Thanda, Ankit Agarwal, Kushal Singla, Aditya Prakash, and Abhishek

Gupta. 2016. A Document Retrieval System for Math Queries. In NTCIR.
[19] Richard Zanibbi, Akiko Aizawa, Michael Kohlhase, Iadh Ounis, Goran Topic, and

Kenny Davila. 2016. NTCIR-12 MathIR Task Overview. In NTCIR.
[20] Richard Zanibbi and Dorothea Blostein. 2012. Recognition and retrieval of mathe-

matical expressions. International Journal on Document Analysis and Recognition
(IJDAR).

[21] Richard Zanibbi, Kenny Davila, Andrew Kane, and FrankWmTompa. 2016. Multi-

stage math formula search: Using appearance-based similarity metrics at scale.

In Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval.

[22] Wei Zhong and Richard Zanibbi. 2019. Structural Similarity Search for For-

mulas Using Leaf-Root Paths in Operator Subtrees. In European Conference on
Information Retrieval.

	Abstract
	1 Introduction
	2 Related Work
	3 Embedding Model
	3.1 Tuple Sequence Generation
	3.2 Tokenizing Formula Tuples
	3.3 Applying fastText to Formulas
	3.4 Combining SLT and OPT Embeddings

	4 Evaluation
	4.1 Dataset and Evaluation Measures
	4.2 Retrieval Results
	4.3 Visual Exploration of Embedding Similarities
	4.4 Effect of Embedding Parameters
	4.5 Combining Tangent-CFT with Approach0

	5 Conclusion
	References

