NTCIR-2 ECIR Experimentsat Maryland:
Comparing Structured Queries and Balanced Tranglation

Douglas W. OARD and Jiangiang WANG
College of Information Studies and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742 USA
(oard,wangjq)@glue.umd.edu

Abstract

Pirkola’s structured queries have been shown to
perform well for word-based cross-language informa-
tion retrieval in European languages, but in mono-
lingual Chinese retrieval experiments it is often
found that character bigrams perform as well as,
and sometimes better than, automatically segmented
words. During the Mandarin-English Information
(MEI) project at the Johns Hopkins Summer 2000
Workshop, Pirkola’s structured queries were com-
pared with an alternative technique known as bal-
anced translation. The results suggested that balanced
translation coupled with post-translation character
bigram resegmentation could outperform Pirkola’s
word-based technique. The NTCIR-2 English/Chinese
Information Retrieval (ECIR) evaluation provided the
opportunity to replicate this experiment on a far larger
collection. The results show that on the ECIR collec-
tion, Pirkola’s structured queries outperform balanced
translation, even when post-translation character bi-
gram resegmentation was used. This paper contrasts
the MEI results with Maryland’s ECIR experiments
and identifies some possible causes for the observed
differences.

1 Introduction

The University of Maryland participated in the
English/Chinese Information Retrieval (ECIR) track
at the second NII Test Collection Information Re-
trieval (NTCIR-2) evaluation. Our experiments fo-
cused on two key issues: (1) comparison of two query
formulation techniques that are designed to mitigate
the effect of translation ambiguity, and (2) investi-
gation of the effect of post-translation resegmenta-
tion of Chinese queries. These questions were mo-
tivated by intriguing results from a six-week sum-
mer workshop at the Johns Hopkins University, where
the Mandarin-English Information (MEI) team found
that so-called balanced translation compared favorably

with Pirkola’s structured query formulation method
and identified post-translation resegmentation as a po-
tentially important issue in Cross-Language Informa-
tion Retrieval (CLIR).!

Both MEI and ECIR used English queries to re-
trieve Chinese documents, so ECIR provided an ex-
cellent opportunity to apply what we learned at MEI
to a different (and far larger) test collection. Interest-
ingly, we obtained results that contradict what we saw
at the MEI workshop. In this paper we provide some
background about the two key issues that we explored,
review what was learned about these questions at the
MEI workshop, present both our official ECIR results
and some post hoc experiments that we have scored lo-
cally, and then summarize the differences between the
MEI workshop and the ECIR evaluation that might ex-
plain the differences in the results we obtained.

2 Background

Oard and Diekema have identified three basic ap-
proaches to CLIR: query translation, document trans-
lation, and interlingual techniques [6]. English ex-
hibits less segmentation ambiguity than Chinese, and
our initial experiments with English/Chinese CLIR
indicated that pre-translation segmentation ambiguity
can adversely affect retrieval effectiveness [7]. Since
the ECIR queries are in English, we chose a query
translation approach. Dictionary-based CLIR has been
the focus of much of our resent work, so we chose to
focus on Dictionary-based Query Translation (DQT).
DQT raises four key issues:

Pre-trandlation term selection. Selecting the units
of meaning (which we call “terms”) that are to
be translated.

IThe MEI team included Helen Meng and Wai-Kit Lo (Chinese
University of Hong Kong), Berlin Chen (National Taiwan Univer-
sity), Erika Grams (Advanced Analytic Tools), Sanjeev Khudanpur
(Johns Hopkins University), Gina Levow (University of Maryland),
Patrick Schone (U.S. Department of Defense), Karen Tang (Prince-
ton University), Hsin-Min Wang (Academia Sinica, Taiwan), and
the authors of this paper.



Dictionary coverage. Obtaining a dictionary with
sufficient coverage to assure that that correct
translations of the selected terms are known.

Tranglation selection. Choosing appropriate transla-
tion(s) for each selected term.

Query formulation. Construction of a query that ac-
commodates any unresolvable translation or
segmentation ambiguity.

We chose to focus on the last question, so we adopted a
simple approach to English term selection (translating
each word in the query separately), reused an existing
English/Chinese bilingual dictionary, and (except for
some contrastive experiments) used all known trans-
lations. In this section, we describe three word-based
query formulation techniques and then introduce the
question of post-translation resegmentation.

2.1 Query Formulation

In early work on DQT for CLIR, queries were typ-
ically formed by including all translations for all of
the query terms. When used with retrieval systems in
which all translations contribute equally (e.g., vector
space methods), this approach gives more weight to
query terms that have many translations than to those
that have few. This is generally an undesirable trait for
a retrieval system, since terms with fewer translations
are usually more specific (and hence more useful for
retrieval) than terms for which many different transla-
tions are possible. This unbalanced query formulation
technique is still often used as a baseline in CLIR ex-
periments, but better techniques are now known.

An obvious improvement is to rebalance the con-
tribution of each term in some way. This insight was
simultaneously introduced at the third Topic Detection
and Tracking evaluation by two teams [3, 4]. The key
idea, which Levow and Oard called balanced transla-
tion, is that the weight associated with each translation
of a query term can be averaged in some way to com-
pute a weight for that query term. Balanced queries
formulated in this way can be thought of as estimating
the weights for query-language terms (as if the doc-
uments had been written in the query language) and
then performing retrieval using those weights.

reported, in this case at SIGIR 98 [1, 8]. Lacking a
better title for the technique, we refer to it simply as
“Pirkola’s method,” since Pirkola wrote more exten-
sively on the issue.2 In so-called bag-of-terms infor-
mation retrieval systems, term weights are computed
from three sources of evidence:

Term frequency (TF; ;) The number of times term ¢
appears in document 5 (a property of atermina
document).

Document frequency (DF;) The number of docu-
ments term 4 appears in (a property of a term).

Document length (L;) The number of terms docu-
ment j contains (a property of a document).

Retrieval systems typically compute term weights as
a nonlinear function of these three parameters. In
Pirkola’s technique, TF', DF', and L' for the query
language are estimated as:

! _ k
TF;; = Y TF},
k
DF;, = | JDF}
k
Ly = L;

where TF?} ; is the number of times translation & for
term ¢ appears in document j and | J,, DFf is used to
indicate the document frequency that would be com-
puted for the union of the sets of documents in which
the translations for term ¢ are found. The weight for
each query language term is then computed directly
from these estimates.
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Figure 2. Pirkola’s method for estimating
query term weights.

Balanced translation and Pirkola’s method both es-
timate query term weights from the same evidence, but
nonlinearities in the term weight computation result

in different estimates. Figures 1 and 2 illustrate the
two approaches. As Sperer and Oard have observed,
Pirkola’s technique tends to be conservative, estimat-
ing a high document frequency (which results in a low
term weight) if any translation of a term has a high
document frequency [9]. Balanced translation, by con-
trast, allows rare translations to contribute their rela-
tively high term weights to the query term on a more
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Figure 1. Estimating query term weights
using balanced translation.

Remarkably, the best known alternative to balanced
translation query formulation was also simultaneously

2Pirkola called the technique a “structured” query, but balanced
translation also produces queries with structure.



equal basis. We are not aware of any careful com-
parisons between balanced translation and Pirkola’s
method, so one goal of our ECIR experiments was to
perform such a comparison.

2.2 Post-Trandation Resegmentation

Retrieval of Chinese documents brings into sharp
focus an issue that is present to some degree in any
language: the terms that result from translation might
not be the best terms to use for retrieval [5]. Speci-
ficity is a desirable characteristic of terms to be trans-
lated, since specific terms naturally exhibit little trans-
lation ambiguity. For this reason, translation of mul-
tiword expressions typically improves CLIR effective-
ness when compared to word-by-word translation [2].
Two competing effects must be considered when se-
lecting terms for retrieval, however. The use of very
specific terms tends to increase precision, while the
use of less specific terms tends to benefit recall. Many
experiments with English retrieval have shown that it
is generally better to use the constituent words of a
multiword expression as if they were separate terms.>
Documents that contain the entire expression will still
accumulate more weight than documents that contain
only a portion of it, but documents with only a por-
tion of the words also become retrievable. This sug-
gests that it might be beneficial to resegment multi-
word translations into individual words prior to re-
trieval.

Chinese adds a new twist to this issue: word bound-
aries are generally not marked, so the proper degree
of granularity for post-translation resegmentation is
unclear. The simple expedient, finding the smallest
components of a translation that could possibly be
words, would usually result in indexing single char-
acters since almost every Chinese character can be
used alone as a word. Indexing overlapping charac-
ter bigrams is known to result in far better retrieval
effectiveness than indexing single characters [10], and
our experience in the MEI project (described below)
suggests that this is a reasonable approach to post-
translation resegmentation for queries that have been
translated into Chinese.

It is not immediately clear how post-translation
resegmentation and query formulation should inter-
act. Balanced translation and Pirkola’s method are
both reasonable approaches to combination of evi-
dence from alternate translations, but how should the
evidence from each bigram of a multi-character trans-
lation be combined? This was one of the key questions
that we investigated in the MEI project, which is de-
scribed in the next section.

31f properly weighted, it can be even better to index multiword
expressions and their constituent terms.

2.3 TheMEI Project

The MEI project team worked together for six
weeks in July and August of 2000 at the Johns Hop-
kins University Center for Language and Speech Pro-
cessing [5]. The principal focus of the project was de-
velopment of techniques for cross-language speech re-
trieval. The MEI project reused two test collections
that were originally developed for the Topic Detec-
tion and Tracking (TDT) evaluation. Both the TDT-2
and TDT-3 collections contain English newswire ar-
ticles from the New York Times and the Associated
Press, Mandarin Chinese radio broadcast stories from
the Voice of America (with known story boundaries),
and event-based relevance judgments for multiple top-
ics. Machine-produced (errorful) Chinese transcripts
of the Voice of America broadcasts are also available.
The MEI task was to perform query-by-example on the
collection of Mandarin Chinese audio stories, using a
single English newswire story as the example docu-
ment. Since this was a retrospective retrieval task, a
variant of mean average precision was used as the prin-
cipal measure of effectiveness.

Initial experiments using the TDT-2 collection (17
topics, 2,265 Mandarin Chinese audio stories) sug-
gested that balanced translation and Pirkola’s method
performed about equally well. Since post-translation
character bigram resegmentation seemed to help bal-
anced translation more than it helped Pirkola’s method
in our initial exploratory experiments, balanced trans-
lation was adopted for the remainder of the MEI
project. Ultimately, post-translation resegmentation
into overlapping character bigrams was found to pro-
duce a statistically significant 11% relative improve-
ment over the use of words when balanced translation
was used with the TDT-2 collection. We did all of our
development work with the TDT-2 collection, holding
out the entire TDT-3 collection (56 topics, 3,371 Man-
darin Chinese audio stories) for a formal evaluation at
the end of the project. Surprisingly, no improvement
over word-based retrieval was observed when bigram
resegmentation was used with balanced translation on
the TDT-3 collection. The MEI project thus framed
the questions well, but left for future work the care-
ful comparison of balanced translation with Pirkola’s
method and the detailed study of the interaction be-
tween those techniques and post-translation query re-
segmentation.

3 Experiment Design

Figure 3 is overview of the processing stages in our
ECIR experiments. English queries were formulated
by using every word in the title, description and narra-
tive fields of the topic description. The average query
length was 115 words, about 23% of the number of
words found in an average MEI query. Three alterna-



tive query translation algorithms were implemented:
Pirkola’s method, balanced translation, and the base-
line unbalanced “bag of translations” approach. Con-
sistent segmentation was used for both query formu-
lation and indexing. For word-based segmentation,
we used freely available software from the Linguis-
tic Data Consortium (LDC).* As an alternative, we
used locally-developed software to form overlapping
character bigrams. Term boundaries were known af-
ter query translation from English to Chinese, so only
within-term bigrams were generated. Term boundaries
were not known in the Chinese documents, so all pos-
sible bigrams were generated.> When only overlap-
ping bigrams were indexed, single-character Chinese
translations of query terms were effectively ignored.

English English
query Pre-translation query .
— Term translation

Term selection

Chinese
query

Y

Chinese
Retrieval query

Post-translation

query formulation

Figure 3. System design.

Our English/Chinese bilingual term list was repre-
sented in the GB code that is commonly used on the
Chinese mainland, but the document collection was
represented in the Big 5 code that is commonly used in
Taiwan and Hong Kong. Conversion from Big 5 to GB
is straightforward, since the mapping in that direction
is is generally many-to-one, so we chose to standard-
ize on GB and used freely available software to convert
the documents into that representation..

The ECIR collection contains 132,173 Mandarin
Chinese news articles from five news agencies in Tai-
wan, 50 topic descriptions, and relevance judgments
developed using a pooled assessment methodology
with seven participating systems. We used version
3.1p1 of the Inquery text retrieval system, which does
not include native support for the multibyte character
representation used in GB. This limitation was eas-
ily overcome by using the hexadecimal representa-
tion of each term. For example, the GB code for the
two-character Chinese word pei2chang2 (compensate)
would be represented as “OxC5E2B3A5.” For each
topic, Inquery produces a ranked list of documents,

4The LDC segmenter can generate only terms that are contained
in its term list. We made no adjustment to the term list to align it
with our translation lexicon. The LDC segmenter and the term list
are available at http://morph.ldc.upenn.edu/Projects/Chinese/.

5Some document bigrams contained punctuation or white space,
but such bigrams would never match query bigrams and hence did
not affect retrieval results.

6ftp://ftp.cuhk.hk/pub/chinese/ifcss/software/unix/convert/

for which retrieval effectiveness measures were com-
puted using NTCIR-2 ECIR relevance judgments and
the freely available trec_eval software. In this paper we
report mean uninterpolated average precision over 50
topics, and treat differences as statistically significant
if a two-tailed paired ¢-test results in p < 0.05.

We focused our experiments on three questions:

e Is Pircola’s structured query method effective
for Chinese?

e Can post-translation resegmentation into char-
acter bigrams improve over word-based tech-
niques?

e Can limiting the number of translation alterna-
tives that must be considered improve retrieval
effectiveness?

As originally designed, Pirkola’s method is a word-
based technique. The Chinese implementation is thus
quite straightforward when words found using the
LDC segmenter are indexed. The design space is
far larger in the second case, since both Pirkola’s
structured query method and Levow and Oard’s bal-
anced translation technique are silent on the question
of which Inquery operator (if any) should be used to
group the component bigrams of a translation that con-
tains more than two Chinese characters. The sim-
plest approach is to treat multiple bigrams from the
same translation in the same way as multiple transla-
tions from the same English term. The MEI project
reported that balancing the contribution of each term
using the #sum operator could be helpful when us-
ing balanced translation, so we tried that condition as
well. Nesting a #sum inside a #syn is not possible be-
cause #sum produces belief values while #syn operates
on term frequency and document frequency statistics.
Accordingly, when using Pirkola’s structured query
method we instead tried the #0Dn (ordered distance)
operator.” That operator computes term frequency
and document frequency statistics for the specified or-
dered sequence of bigrams. This is essentially a “back
door” way of approximating word-based translation,
but with the matching based on the known translations
(rather than the LDC term list).

4 Resultsand Analysis

We submitted three experiment runs for official
judgment, and scored an additional eight runs locally
using the ECIR relevance judgments. We adopted
a four-field nomenclature to indicate the experiment
conditions for each run:

Indexed unit. “wrd” for automatically segmented
words, “char” for overlapping character bi-
grams.

"The value of n was set separately for each translation at one
fewer than the number of bigrams.



| Official Run

UMD-ECIR-LO-01
UMD-ECIR-LO-02
UMD-ECIR-LO-03

| Condition |
char_all_syn_od
char_3_syn_od
wrd_3_syn

Table 1. Official runs.

Number of trandations. The maximum number of
translation alternatives that would be consid-
ered. In our experiments, this is either "all” or
!!311.

Trandation grouping operator. The Inquery opera-
tor used to group the alternate Chinese transla-
tions of a single English query term. We used
”syn” for Pirkola’s method, ”sum” for balanced
translation, or "none” for unbalanced queries.

Bigram grouping operator. The Inquery operator
used to group the constituent bigrams of a sin-
gle Chinese term. We used "od” to enforce an
ordered distance constraint (adjacent and in or-
der), “sum” to use average bigram weight, or
”none” (effectively treating bigrams as if they
were alternate translations). This field was omit-
ted for word-based retrieval.

For example, the best run for character bigram-based
retrieval is “char_all_syn_od”, which means we in-
dexed character bigrams, used all of the translation al-
ternatives that were found in the dictionary for each
query term, grouped alternate translations with In-
query’s #syn operator, and grouped the constituent
bigrams of any translation that contained more than
two characters using the #ODn operator with an ap-
propriate value of n. Similarly, for the best word-
based retrieval result, “wrd_all_syn” indicates that we
indexed automatically segmented Chinese words, used
all known translation alternatives, and grouped the al-
ternate translations for each term using Inquery’s #syn
operator. Table 1 shows the correspondence between
our official runs and this nomenclature.

41 Results

Figure 4 shows the recall-precision curves for the
word-based retrieval techniques that we tried, and Fig-
ure 5 shows curves for the character bigram-based
techniques that we tried. Table 2 compares the mean
uninterpolated average precision for runs under com-
parable conditions. For words, the Pirkola:balanced
difference and the Pirkola:unbalanced difference are
statistically significant. The balanced:unbalanced dif-
ference is small, and not statistically significant. For
character bigrams, the Pirkola:balanced difference is

statistically significant, but the Pirkola:unbalanced and
balanced:unbalanced differences are not.
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Figure 4. Word-based techniques.
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Figure 5. Character bigram-based tech-
niques.

4.2 Analysis

Our initial analysis of these results has produced the
following observations:

e We achieved the best results from Pirkola’s
word-based method. Among word-based meth-
ods, Pirkola’s method clearly outperformed the
other two techniques that we tried. Among
bigram-based methods, char_all_syn_.od and
char_all_syn_none did the best and were statis-
tically indistinguishable. Pirkola’s word-based
method was statistically significantly better than
either of these, making it the clear winner. Ta-
ble 3 shows the results of two cross-bigram op-
erators.

o We did not find an effective cross-bigram oper-
ator. No significant differences in mean uninter-
polated average precision resulted from the ad-




[ || #syn | #sum | #none ||

Word 0.36 | 019 | 0.19
Bigrams | 0.24 | 0.11 | 0.23

Table 2. Comparison of words and char-
acter bigrams (no cross-bigram operator,
all translations).

[ || #syn | #sum ||
None 0.24 | 0.11
#Sum 0.10
#0ODn || 0.26

Table 3. Effect of cross-bigram operators
(vertical) for two cross-translation oper-
ators (horizontal) .

dition of cross-bigram operators when the cross-
translation operator was held constant.

e Limiting the number of translation alternatives
in the way that we tried does not appear to be
helpful. Table 4 shows a contrastive condition in
which only the three translations with the high-
est frequency in a monolingual Chinese corpus
were used. We used a corpus frequency list pro-
vided by LDC for this purpose.®. This resulted
in a statistically significant decrease in unin-
terpolated mean average precision for Pirkola’s
word-based method. No statistically significant
effect was observed for balanced translation. Fi-
nally, limiting the number of translation alterna-
tives had a statistically significant adverse effect
on the one post-translation resegmentation con-
figuration that we tried.

4.3 Comparison with MEI Results

In the MEI project, we found that post-translation
resegmentation into character bigrams could be help-

8 Available at http://morph.ldc.upenn.edu/Projects/Chinese/

ful (with balanced translation and no cross-bigram op-
erator). With the ECIR collection, post-translation
resegmentation resulted in a statistically significant
decrease in mean uninterpolated average precision
(again, with balanced translation and no cross-bigram
operator). In the MEI project, we also had some indi-
cation that balanced translation and Pirkola’s method
performed about equally well. With the ECIR collec-
tion, we observed that Pirkola’s method achieved a sta-
tistically significant improvement over balanced trans-
lation (with automatically segmented words). Several
factors might explain these differences:

e The comparison between Pirkola’s method and
balanced translation that was done in the MEI
project was based on a preliminary system con-
figuration, and time constraints precluded repli-
cation of that experiment using the final MEI
configuration. Our conclusion at MEI that those
two techniques performed about equally well
must therefore be regarded as tentative.

e Multiword expressions were translated in our
MEI experiments whenever the expression
could be found in our dictionary. Because of
time constraints, in ECIR we used word-by-
word translation instead. This almost certainly
resulted in a lower baseline and fewer multiword
translations. With fewer long translations, mul-
tiple bigrams may have been less common.

e The TDT-2 and TDT-3 test collections are far
smaller than the ECIR test collection and the
MEI queries were considerably longer. To-
gether, these effects would seem to make the
ECIR a more challenging evaluation environ-
ment.

e The test collections used in MEI included
speech recognition errors. This could tend to fa-
vor shorter indexing units such as character bi-
grams.

e We attempted to translate every query term for
ECIR, but for MEI we performed pre-translation
stopword removal. This may tend to favor
Pirkola’s method at ECIR, since at least one
translation of an English stopword is likely to
be common.

e Exhaustive relevance judgment was done for the
TDT collections, but a pooled relevance assess-

[ Max Trans || wrd_syn* | wrd_sum_* | charsyn_*_od ||

ment methodology was used for ECIR. Rele-

all 0.36 0.19 0.26

vance judgments in TDT and ECIR were also

3 0.30 0.22 0.16

based on different criteria. A TDT audio story

Table 4. Effect of limiting translation al-
ternatives (*=all or *=3).

was judged as relevant if it resulted from the
same event as the example story. A ECIR docu-
ment was judged to be relevant if the subject of
the document was the same as the subject speci-
fied in the topic description. Overall, we suspect



that TDT topics are likely to be somewhat finer-
grained than ECIR topics, but a careful compar-
ison would be needed to substantiate this con-
jecture.

o We used segmentation software from New Mex-
ico State University (NMSU) for MEI. For
ECIR, we found that the LDC segmenter was
better able to handle the large collection. We
prefer to use the NMSU segmenter when pos-
sible because it includes specific provisions for
proper segmentation of common proper names.

The obvious next step is for us to repeat our ECIR
experiments using the final MEI configuration. We
have not yet had the chance to do that, so for the mo-
ment the strongest statement we can make is that our
ECIR results indicate that we have not yet found an ap-
proach to post-translation resegmentation for Chinese
that outperforms the use of Pirkola’s method without
post-translation resegmentation.

5 Conclusion

Our experiments indicate that Pirkola’s method for
the formulation of structured queries is well suited
for use in Chinese. We found that it is better to use
all translations with Pirkola’s method rather than lim-
iting consideration to the three most common ones.
Post-translation resegmentation of Chinese seems to
be an intriguing idea, but it is not yet clear how
post-translation resegmentation can be effectively in-
tegrated with Pirkola’s method or with balanced trans-
lation. A diverse set of English/Chinese CLIR test col-
lections are now available, and we are interested in ex-
ploiting those resources to continue our exploration of
the ideas introduced in this paper.
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