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Abstract 

This paper describes an effort to improve identification of 
human values that are directly or indirectly invoked 
within the prepared statements of witnesses before 
legislative and regulatory hearings. We automatically 
code human values at the sentence level using supervised 
machine learning techniques trained on a few thousand 
annotated sentences. To simulate an actual situation, we 
treat a quarter of the data as labeled for training and the 
remaining three quarters of the data as unlabeled for test. 
We find that augmenting the feature space using a 
combination of lexical and statistical co-occurrence 
evidence can yield about a 6% relative improvement in F1 
using a Support Vector Machine classifier.  
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1. Introduction 
 

Lexical features such as words and word stems have 
been shown to be a useful basis for studying affective 
dimensions such as sentiment or opinion when applied to 
first-person statements [1, 2]. Although sentiment analysis 
and opinion mining are useful in their own right, some 
social scientists have sought to look more deeply for 
factors that might help to explain, and perhaps ultimately 
to predict, sentiment and opinion [3]. In this paper, we 
seek to advance one such line of work that is focused on 
automatic classification of human values such as freedom 
or justice to which writers of first person statements 
appeal. 

In prior work [4], we have reported that lexical features 
can serve as a useful basis for classification of human 
values in the prepared statements of witnesses before 
legislative and regulatory hearings. The experiment in the 
prior work using k-NN (Nearest Neighbor) classifiers for 
2,005 sentences over 28 documents obtained a macro-
averaged F1 of 0.48 for eight human values. To scale up 
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social science research [3], we need to improve our ability 
to effectively analyze larger data corpora. In this paper, 
thus we employ a corpus containing 8,660 sentences in 
102 documents over six values, which is four times larger 
than in the corpus used in our previous work. 

From a technical perspective, the use of lexical features 
alone has, however, done relatively poorly when applied 
to low-prevalence values categories such as honor (which 
was annotated by a human annotator as invoked in only 
4% of the sentences in the test collection) that we use in 
our experiments. The reason for this problem seems to be 
that sentence-scale text classification necessarily results in 
feature sparsity (with sentences averaging just 16.5 
words), and that the paucity of positive training examples 
for low-prevalence simply exacerbate that problem. An 
obvious approach would be to augment the feature set, an 
approach that is well known to be effective in text 
retrieval applications with short queries (so-called “query 
expansion”). The risk, of course, is that unconstrained 
feature augmentation can adversely affect precision by 
generating a substantial number of infelicitous matches.  
Threading this needle between under- and over-
augmentation therefore requires attention to constraining 
the search space.  

In realistic situations, we usually have a small amount 
of labeled data annotated by humans and a large amount 
of related unlabeled data to be annotated. The role of our 
classifier here, of course, is assignment of human values 
as labels to unlabeled data. In many real-world situations, 
there would be a small, well-examined set of labeled data 
and larger collection of unlabeled data to be annotated. 
However, our corpus was relatively small (only 102 
testimonies) and was already exhaustively annotated. 
Thus, we must create a virtual situation as similar as 
possible to evaluate the efficiency of our proposed 
classifier using augmented feature vectors. We therefore 
use a smaller portion of the corpus as labeled data for 
training and the remainder of the corpus as unlabeled data 
for test, and we also use the both data for extracting word 
associations to augmenting the feature vector, in order to 
simulate a realistic scenario. 

This paper also reports on an experiment comparing 
multiple human annotators and the classifier to explore 



the possibility of replacing human annotators with our 
classifier.   

 The remainder of this paper is organized as follows. 
The next section introduces the human values inventory 
that we used. That is followed by a description of the test 
collection, our classifier design, results, and discussion in 
that order. The paper concludes with a brief description of 
next steps. 

 
2. The Meta-Inventory of Human Values 
 

The value categories for this study were selected from 
the Meta-Inventory of Human Values (MIHV) [6]. The 
MIHV was developed to support content analysis of 
prepared testimonies presented at public hearings related 
to the Net neutrality debate, building on earlier analysis of 
the role of values within a subset of this corpus [7]. Four 
rounds of refinement were conducted, seeking to optimize 
coverage of the values that writers drew on in this debate 
while maximizing inter-annotator agreement [8]. Four 
rounds of annotation were conducted to refine the 
annotation guidelines. For each round, four documents 
were randomly selected from the corpus for annotation by 
the seventh author of this paper and two independent 
annotators. Cohen’s Kappa [9] was used to characterize 
inter-annotator agreement, and Landis & Koch’s 
guidelines [10] were used to interpret the Kappa values, 
as is common in computational linguistics and other 
domains [11].  

Among the 16 value categories in the MIHV, six value 
categories consistently achieved substantial agreement 
(κ=0.61 to 0.80) or moderate agreement (κ=0.41 to 0.60) 
throughout the four rounds of the annotation processes. 
These six categories were then used by the seventh author 
of this paper to annotate the entire corpus. Twenty 
documents from the corpus were annotated by a second 
annotator. The Kappa values of the six value categories 
for these 20 documents are shown in Table 2. 
 
3. Test Collection 
 

The corpus for this study was created from written 
opening statements and testimonies prepared for and 
delivered at public hearings held by the U.S. Congress 
and the U.S. Federal Communications Commission (FCC). 
These were obtained from Lexis-Nexis Congressional 
web sites, and the FCC website. Each document was 
manually reviewed, and documents without any full-text 
content or with only slides were removed. The remaining 
102 documents were used for the experiments reported in 
this paper. Manual annotation of a subset of this corpus 
has been used to discover relationships between values 
and sentiment (e.g., positive sentiment toward Net 
neutrality was found to be correlated with the value 
innovation, and negative sentiment toward Net neutrality 

was found to be correlated with the value wealth [7]). The 
ultimate goal of our work is to be able to replicate similar 
experiments at a larger scale. All 9,890 sentences in each 
of 102 documents were manually annotated by one of the 
authors.1 Table 1 shows some examples. A total of 7,901 
sentences invoked at least one value (minimum 1, median 
1, mean 1.64, maximum 5). No value categories were 
assigned to the remaining 1,989 sentences, 340 of which 
were annotated as section headings. The average sentence 
length is 16.5 words. 

We limited the corpus to sentences of 40 words or less, 
because sentence boundaries for longer sentences are 
sometimes different from those of a tokenizer. We 
removed sentences annotated as section headings then 
8,713 sentences remained. Finally we also removed null 
sentences after eliminating stop words, leaving 8,660 
sentences for the experiments described in this paper. The 
numbers of sentences for each value are shown in Table 2. 

 

Table 1. Examples of values annotation. 

Values Sentence 

freedom, 
social 
order, 
honor 

This Committee has a long history of 
overseeing developments in 
communications industries and the 
Internet, and you have diligently promoted 
policies to ensure competition in these 
markets. 

innovation, 
wealth 

Akamai thus represents a creative way to 
use server hardware as a substitute for 
network hardware. 

justice 

Survival of the Internet requires that 
Internet Access Providers continue to take 
a proper, transparent role as participants in 
the Internet. 

 

Table 2. Prevalence, inter-annotator agreement (kappa) 

Value κ  # doc 
sentences 
(original) 

sentences 
(used) 

wealth  0.629 102 3,563 3,156 

social order 0.683 102 2,859 2,503 

justice 0.420 99 2,641 2,267 

freedom 0.620 101 2,431 2,155 

innovation 0.715 94 1,147 1,018 

honor 0.430 80 352 317 

                                                 
1 The author who performed the annotation did not participate in 
the design of the classifiers reported on in this paper. 



4. Proposed Approach 
 

This section describes our approach to automating 
annotation of human values. We adopt SVMs (Support 
Vector Machines) as our classifiers, which are among the 
most effective known approaches for document 
categorization [5]. An SVM is a vector space machine 
learning method which can work effectively in a high 
dimensional input space, so there is no reason not to 
consider expanding the baseline vectors computed 
directly from term occurrence in each sentence to partially 
model the background knowledge that a human reader 
brings to the interpretation of a sentence. From the 
perspective of the SVM classifier, this approach serves to 
help mitigate sparsity in the feature space. We consider 
two types of expansion strategies.  

Our first type of strategy relies on statistically 
associated terms as a basis for expanding the feature set 
for each sentence.  Specifically, we model the semantic 
relatedness between words by same-sentence co-
occurrence statistics in some representative corpus (in our 
case, the full corpus being classified). We tried two 
specific measures to calculate term association: (1) CP 
(Conditional Probability), and (2) PMI (Pointwise Mutual 
Information) [12, 13]. Both are unsupervised, not 
requiring any human annotation. 
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where freq(wi) and freq(wj) are term occurrence counts, 
freq(wi,wj) is the term pair co-occurrence count, and N is 
total number of sentences in the corpus from which we 
learn the association statistics. To be used for expansion, 
we require that freq(wi)>θ1, freq(wj)>θ1 and freq(wi, 
wj)>θ2 (for our experiments we use θ1=θ2=10). For PMI, 
we accept all expansion terms with positive PMI values.  
For CP, we accept all expansion terms with the values 
between 0 to 1. Because we wish to learn the association 
statistics from a closely related corpus, we actually learn 
our term association statistics from the same collection 
that we use for evaluation. Both approaches are 
unsupervised (requiring no annotations), so using the 
evaluation corpus itself is practical, and representative of 
what could be done in a real applications.   

Our second type of expansion strategy relies on 
synonymy (“syn”) or (one-step immediate) hypernymy 
(“hyp”) relations that are encoded in a lexicon. 
Specifically, we use all matches to each lemmatized word 
that we find in the noun, verb, and adjective hierarchies in 
a thesaurus. Because we expect the thesaurus to have 
limited coverage of domain-specific terminology in any 
specific domain, we expect this approach to be most 
useful for general terminology. 

Figure 1 outlines our algorithm, with term association 
statistics (CP and PMI), and term relatedness (synonymy 
and hypernymy) found in steps 01 and 02, respectively. In 
step 03, the training data Tri for fold i of the cross-
validation consists of baseline binary vectors after 
stemming using a stemmer (i.e., word stem id’s with 
value 1 occur in the corresponding sentence; others have 
value 0).  If we freely expand the term vectors based on 
word association or on the lexicon in steps 07 or 08, 
respectively, the components of the augmented vectors 
would become denser (i.e., more 1’s from lexicon and real 
values for association), but less precise. We limit the loss 
of precision by first choosing, in step 06, which base 
stems to use as a basis for expansion.  To select this 
smaller base stems vector, in step 04 we train a classifier 
Γ(v)

base for each label to identify the stems whose presence 
is positively correlated with the presence of that label in 
the training set Tri, repeating the process for each 
category and within each category for each fold i. If the 
correlation is positive (i.e., greater than zero) in step 06, 
the stem is treated as a base stem for expansion. 

01: Create associative word dictionary using distributional 
similarities by (1) Conditional Probability and (2) PMI. 

02: Create (a) synonym and (b) hypernym dictionary by 
consulting a hand-crafted lexicon. 

03: Prepare cross-validation data set, where Tr1, …, TrN : 
training data, Te1, …, TeN  : test data, 

and both Tri  and Tei  (1≤ i ≤ N) consist of word id’s 
with score 1, that  occurred in each sentence.  
(The suffix N represents N-fold cross-validation.)  

04: Construct classifier Γ(v)
base by learning the training 

data Tr1, …, TrN for each value (v). 
05: Classify Te1, …, TeN  by the classifier  Γ(v)

base, and 
evaluate the result as the baseline effectiveness. 

06: Choose the base stems(i) for expanding the feature 
vectors, which contribute to classification for each 
value in each training data Tri. 

07: Expand feature vectors as Pri, Pei with PMI score 
and Cri, Cei with Conditional Probability using 
associative word dictionary, for each base stem (i). 

08: Expand feature vectors as Sri, Sei for synonyms 
and Hri, Hei  for hypernyms using synonym  
and hypernym dictionary, for each base stem (i).   

09: Construct the augmented vectors for the both training 
data  ATr1, …, ATrN and test data ATe1, …, ATeN. 

       ATri = Tri  [+ Pri] [+Cri ] [+Sri ] [+Hri ], 
       ATei = Tei  [+ Pei] [+Cei ] [+Sei ] [+Hei ], 

  where + represents the vector concatenation operator 
and [ ] represents optional. 

10: Construct classifier Γ(v)
modified by learning the 

augmented training data ATr1, …, ATrN. 
11: Classify the augmented test ATe1, …, ATeN by 

Γ(v)
modified and evaluate the result. 

Figure 1. Classification with augmented feature vectors.  



5. Experiments 
 
In this section we report results for classifier selection and 
for classification, with and without expansion. 

5.1 Preliminary result and Classifier Design 

Before constructing of word vectors, we apply the 
following preprocessing steps. 
(1) Lemmatization using TreeTagger 3.2,2 to normalize 

each word to its corresponding WordNet3 root form. 
(2) Stopword removal using the SMART stopword list,4 

adapted for TreeTagger’s output. 
(3) Stemming by Porter’s stemmer [14]. 

Before focusing on SVM results, we conducted a 
preliminary experiment comparing k-Nearest Neighbor 
(kNN), naive Bayes (NB) and SVM classifiers. We used 
the University of Waikato’s Weka toolkit5 for kNN (with 
k=1) and NB, and throughout this paper we use 
TinySVM6 (with a second-degree polynomial kernel) as 
our SVM classifier. Table 3 shows the results for 102-fold 
document cross-validation (i.e., the average over 102 
classifiers, each trained on some set of 101 documents 
and tested on the one remaining held out document). For 
example, a sentence in a training document that was 
annotated with freedom and innovation would be a 
positive training example for each of those categories and 
a negative training instance for all other categories. 
Sentences annotated with no value categories are used as 
negative training examples for all categories. The SVM 
yielded the best results among the three classifiers by 
precision, recall, and F1, so we focus on polynomial 
kernel SVM classifiers for the remainder of this paper. 

Table 3. Classifier selection (102-fold doc cross-val). 

Classifier Prec Recall  F1 

kNN (k = 1) 0.6058 0.3434 0.4350

naive Bayes 0.5260 0.6177 0.6333

SVM 0.7730 0.6510 0.7068

   Each document in our corpus is the prepared testimony 
of a witness before a regulatory or legislative hearing, and 
human annotation was done one document at a time. Thus 
in next three subsections, we divide the 102 documents at 
document boundaries in a way that uses approximately 
25% of the sentences for training and the remaining 75% 
for testing.  This represents a realistic situation in which a 
user might reasonably completely annotate a few dozen 
documents as they work or an insightful and reliably 
usable coding frame and then uses an automated system 

                                                 
2 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/  
3 http://wordnet.princeton.edu/wordnet/  
4  http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-
list/english.stop 
5 http://www.cs.waikato.ac.nz/ml/weka/ 
6 http://chasen.org/~taku/software/TinySVM/ 

to annotate dozens or even hundreds more. In step 03 of 
Figure 1, we repeat this 25% / 75% split 102 times, each 
time anchoring a different document as the center of the 
evaluation subset for that 102-fold cross-validation.   

5.2 Comparison with Human Annotation 

To see how our SVM classifier compares with human 
annotator agreement on a per-category basis, we need to 
test on a single set of documents that have been multiply 
annotated. A total of 20 documents were therefore 
annotated for this purpose by a second annotator. We treat 
the first annotator’s annotations of those 20 documents as 
correct, and compute classifier effectiveness measures as 
if our additional annotator were a classifier, as in Table 4.  

Table 4. Human “classifier” effectiveness (20 docs). 

Value Prec Recall  F1 

wealth 0.7345 0.8711 0.7970 

social order 0.7751 0.7588 0.7669 

justice 0.6635 0.4638 0.5460 

freedom 0.6810 0.7682 0.7220 

innovation 0.7644 0.7197 0.7414 

honor 0.3950 0.5529 0.4608 

average 0.7117 0.7320 0.7217 

Comparable results for the baseline classifier, tested on 
the same 20 documents and trained on the remaining 82 
documents, are shown in Table 5. As can be seen, our 
baseline classifier does about as well as a human second 
annotator did on social order and freedom, and it actually 
does a bit better than our second annotator did on justice! 

Table 5. Baseline classifier (82 train:20 test docs). 

Value Prec Recall  F1 

wealth 0.8160 0.6536 0.7258 

social order 0.7828 0.7468 0.7644 

justice 0.6518 0.5691 0.6076 

freedom 0.7362 0.7048 0.7201 

innovation 0.7800 0.6393 0.7027 

honor 0.4800 0.1412 0.2182 

average 0.7550 0.6505 0.6988 

Under comparable conditions, but using expansion 
PMI’ + syn’, both with our base word constraint), we get 
about the same average F1 (0.6991). From this we 
conclude that once we have enough training data, 
expansion is of little help overall (although we do see a 
4% relative gain in honor from expansion, perhaps 
because honor has the fewest positive training examples).  
We compute relative improvement as (b-a)/a, where a 
and b are the two efficiency values being compared. 



5.3 Overall Effect of Expansion 

Table 6 shows results for the unexpanded baseline, and 
for our several variants of expansion, as averages over the 
six human values for precision, recall, and F1. The symbol 
“+” represents the vector concatenation operator and the 
symbol ’ (for “constrained”) means that the expansion is 
constrained to be based only on the base stems chosen in 
step 06. As can be seen, the constraint is helpful when 
lexicon-based expansion is used, but it is not necessary 
(and indeed it seems harmful) when CP or PMI 
association scores are used (because CP and PMI already 
include a selection threshold). 

Table 6. Average (25% train:75% test, 102-doc cross-val). 

Method Prec Recall  F1 

(0)  : baseline 0.7515 0.5108  0.6082

(0)+(1)  : CP 0.7249 0.5744 0.6410

(0)+(1)’ : CP’ 0.7487 0.5158 0.6108

(0)+(2)  : PMI 0.6760 0.5956 0.6332

(0)+(2)’ : PMI’ 0.7478 0.5137 0.6090

(0)+(a)  : syn 0.7067 0.4676 0.5628

(0)+(a)’ : syn’ 0.7487 0.5159 0.6109

(0)+(b)  : hyp 0.6906 0.5068  0.5846

(0)+(b)’ : hyp’ 0.7485 0.5154 0.6105

(0)+(b)’+(c)’ : syn’ + hyp’  0.7713 0.5153 0.6103

(0)+(1) +(a)’: CP + syn’ 0.7278 0.5761 0.6432
(0)+(2) +(a)’: PMI + syn’ 0.6756 0.6005 0.6359

 
As comparing Tables 3 and 6 shows, F1 declines by 

about 0.1 absolute when trained with 25% rather than 
99% of the documents (compare 0.7068 with 0.6082). 
Comparing the best results in Table 6 with the baseline 
indicates that augmenting feature vectors using both CP 
and syn’ recovers some of that loss, yielding a 0.035 
absolute (and 5.4% relative) improvement in F1 over the 
baseline that uses only lexical features (compare 0.6432).  
From this we conclude that expansion is most useful 
when only a limited number of training documents can be 
annotated (as is the case in many practical applications). 

5.3 Per-Category Analysis 

Averages can hide important details, so we also report 
results for each of our six human value categories.  Table 
7, corresponds to the first line in Table 6; Table 8 
corresponds to the second to last line in that table 
(expansion using CP+syn’, which yields gives the best 
average F1).  Table 9 shows the relative improvements in 
F1, which average about 6% ((0.6432-0.6082)/0.6082).  
Again, we see the largest improvement for honor, for 
which the fewest positive training examples are available. 

Table 7. Baseline (25% train:75% test, 102-doc cross-val). 

Value Prec Recall  F1 

wealth 0.7699 0.5529 0.6436 

social order 0.8203 0.6243 0.7090 

justice 0.6636 0.3796 0.4829 

freedom 0.7025 0.5377 0.6092 

innovation 0.8308 0.4694 0.5998 

honor 0.3490   0.07187 0.1192 

average 0.7515 0.5108 0.6082 

Table 8. CP+syn’ Classifier (same cond. as Table 6). 

Value Prec Recall  F1 

wealth 0.7547 0.6247 0.6835 

social order 0.8014 0.7019 0.7483 

justice 0.6368 0.4693 0.5404 

freedom 0.6790 0.5762 0.6233 

innovation 0.7843 0.5024 0.6125 

honor 0.3511 0.0884 0.1413 

average  0.7278 0.5761 0.6432 

Table 9. Relative F1 improvement (from Table 7 to 8). 

 
wealth

social 
order

 
justice

 
freedom 

 
innovation

 
honor

6.2% 5.6% 11.9% 2.3% 2.1% 18.5% 

5.4 Sentence Cross Validation 

In prior work, we had reported results for 10-fold cross- 
validation, using randomly selected sentences [4].  Table 
10 shows results for that design (with our present values 
categories; in our earlier work we had used a different 
values inventory).   

Table 10. Classifier effectiveness (10-fold sent. cross-val). 

Method Prec Recall  F1 

(0)  : baseline 0.7868 0.6672 0.7221

(0)+(1): CP 0.8077 0.6547 0.7232

(0)+(1)’: CP’ 0.7936 0.6674 0.7251

(0)+(2): PMI 0.7996 0.6527 0.7187

(0)+(2)’: PMI’ 0.7935 0.6672 0.7249

(0)+(a)’: syn’ 0.7840 0.6701 0.7226

(0)+(b)’: hyp’ 0.7838 0.6704 0.7227

(0)+(2)’+(a)’: PMI’ + syn’ 0.7963 0.6704 0.7279



As can be seen, because random sentence selection can 
divide sentences from the same document between the 
training and test sets of the same fold, the baseline results 
exceed that of even 102-fold document cross-validation 
(i.e., better baseline F1, even with a bit less training data).  
Moreover, we see a somewhat different pattern of 
comparisons (e.g., now the base stems constraint helps 
PMI rather than hurting it).  Because randomly selecting 
sentences does not model the real annotation task as well 
as selecting entire documents would, we caution against 
using 10-fold sentence cross-validation for these types of 
experiments.   
 
6. Conclusion and Future Work 
 

In this paper, we have applied SVMs with augmented 
feature vectors to identify human values for sentences to 
automate content analysis in social science. The key issue 
that we have addressed is conquering sparsity. The 
combination of evidence from statistical term associations 
and lexical evidence for synonyms has been shown to be 
effective. We have improved very substantially over our 
previously reported results by using annotations based on 
a new human values inventory that are well matched to 
our task, we have adopted a more realistic (and more 
conservative) document-selection approach to cross-
validation, and we have demonstrated that substantial 
improvements in the effectiveness of sentence 
classification can be achieved using expansion.  

For this paper, we have adopted a relatively 
conventional approach to evaluation, measuring the effect 
of errors on individual errors using F1. For some types of 
content analysis in social science, however, 
counterbalancing errors (one false positive for each false 
negative) might not affect the conclusions that we draw.  
This suggests that we may actually wish to minimize bias 
rather than accuracy, and therefore in future work we plan 
to also explore measures in which we focus on the bias-
variance tradeoff. 

We now have some degree of confidence that we might 
reasonably apply our classifiers in support of some types 
of social science at a far larger scale than would be 
possible using human annotations alone, which could help 
us to find interesting signals within the vast and noisy 
Web-scale information [3]. That is our ultimate goal.  
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