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ABSTRACT
This paper describes two new techniques for increasing the
accuracy of topic label assignment to conversational speech
from oral history interviews using supervised machine learn-
ing in conjunction with automatic speech recognition. The
first, time-shifted classification, leverages local sequence in-
formation from the order in which the story is told. The
second, temporal label weighting, takes the complementary
perspective by using the position within an interview to bias
label assignment probabilities. These methods, when used
in combination, yield between 6% and 15% relative improve-
ments in classification accuracy using a clipped R-precision
measure that models the utility of label sets as segment sum-
maries in interactive speech retrieval applications.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]: Miscellaneous

General Terms: Algorithms, Measurement

Keywords: spoken document classification, automatic topic
classification, classifying with domain knowledge

1. INTRODUCTION
Interactive information retrieval systems rely heavily on

the user’s ability to pose good queries and to recognize rel-
evant content. Collections of conversational speech pose
unique challenges for both tasks. How is the user to know
which words might be correctly indexed without understand-
ing both the way in which individuals spoke and the limi-
tations of speech processing components? And how can we
compactly summarize spoken content in ways that permit
users to select useful results from large result sets? Mod-
ern Web search engines use term sequences for both pur-
poses, accepting query terms that will be matched with
terms found in the documents, and displaying document
snippets containing occurrences of the query terms. That
approach does not transfer well to conversational speech
(e.g., recorded meetings, telephone calls, or interviews) be-
cause the best available automatic transcription yields sub-
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stantial error rates. State of the art Automatic Speech
Recognition (ASR) systems achieve word error rates be-
tween 15% and 50% on conversational speech [4], with that
wide variation resulting from differences in the degree to
which the system has been tuned (often at significant ex-
pense) to the characteristics of a particular collection. In
this paper, we experiment with a 25% word error rate tran-
scription, the best that is presently available for any collec-
tion of oral history interviews. Even so, at that error rate,
many of the most selective query terms are often misrecog-
nized, and few of the most informative snippets would be
completely correct.

When a suitable thesaurus and suitable training data are
available, using automatic transcription as a basis for topic
classification offers a potentially useful interaction paradigm.
Automatically assigned thesaurus terms can be displayed
as a “bulleted list” content summary, and iterative query
refinement can be done by incorporating thesaurus terms
that have been seen to describe useful content. Because
topic classification algorithms that leverage broad patterns
of term co-occurrence are available, this approach can yield
more robust summaries that are less sensitive than snippets
would be to variations in the word error rate. Word error
rates in large speech collections typically vary systematically
by speaker, so this might also help to minimize the natu-
ral bias that has been observed from term-based systems in
favor of the clearest speakers [14]. On the other hand, im-
plementing thesaurus-based search alone can make formula-
tion of an initial query challenging for untrained users, and
search topics that were not anticipated when the thesaurus
was created can be particularly difficult to express. The
natural approach is therefore to use free text and thesaurus-
based techniques together.

These considerations naturally raise the technical question
of how accurately it is possible to assign thesaurus terms to
spoken content. That is not a question that is easily an-
swered in the abstract, so in this paper we adopt the spe-
cific context of assigning thesaurus terms to manually parti-
tioned segments from English oral history interviews based
on a one-best ASR transcript. That formulation reveals two
salient characteristics of a topic classification problem that
are common to many types of sequentially-told stories (e.g.,
television programs, or the evolution of news reporting over
time): (1) the order in which the story is told provides po-
tentially useful evidence, and (2) different aspects of a story
evolve over different time scales as it is told. As a simple
example, we expect to find a review of prior work early in
this paper, experiment results towards the end, and a consis-



tent topical coverage throughout. In this paper we explore
how those effects can be leveraged to improve classification
accuracy in the context of a richly annotated oral history
collection.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews related work on topic classification for
spoken content. Section 3 then describes the test collec-
tion, training data and evaluation measures that we used
in our experiments. Sections 4, 5 and 6 present algorithms
for our baseline kNN classifier, an enhancement using time-
shifted classification, and an enhancement using temporal
label weighting. Section 7 describes our approach to evi-
dence combination, and section 8 presents the results of our
experiments that show improvements in classification accu-
racy of between 8 and 15% for leaf nodes in the thesaurus,
and improvements of between 6% and 13% for interior nodes.
Section 9 concludes the paper with some observations on the
broader utility of these techniques beyond the collection that
we used in our experiments.

2. RELATED WORK
The BBN OnTAP system appears to have been the first

to use automatically assigned topic labels to describe the
content of speech in an interactive information retrieval sys-
tem [10]. In their approach, topic labels are presented verti-
cally aligned with the salient sections of the transcript dur-
ing full-text display so that both can be scrolled together
(along with a third vertical region depicting speaker iden-
tity).

Byrne et al. presented classification results on parts of the
same collection used in this study, using the results of an
early ASR system with a higher word error rate [1]. Olsson
et al., also using parts of the same collection, later reported
classification results where the training examples were taken
from a second language [12]. Both showed that kNN was a
reasonable approach, given that the problem is multi-label
with many topic classes. Iurgel et al. reported classification
results on spoken content using combinations of binary sup-
port vector machines, although their task contained many
fewer classes [8].

A great deal of research has looked at incorporating do-
main knowledge to improve classification effectiveness for
text documents. In [7], domain knowledge from topical hi-
erarchies is used to enrich the document representation for
search. Other work has focused largely on compensating for
a shortage of available training data [2, 9, 15, 18], sometimes
requiring significant modification to the learning algorithm
(e.g., [18] developed a modified support vector machine clas-
sifier). Our work differs in the type of domain knowledge
considered (temporal evidence as opposed to expert knowl-
edge), in that we do not specifically consider the limited
training data problem, and in that our application focus is
on supporting search in speech collections. Our work also
differs from [5] (which exploited temporal evidence for clas-
sification), in that we do not adapt to evidence from pre-
viously seen stories, but rather to evidence from within the
same story (within the same interview).

3. EVALUATION FRAMEWORK
Exploring these questions requires a speech collection, ASR

results, a thesaurus, and examples of how recognized words
are used with different thesaurus labels. Fortunately, such

a collection now exists. In 2005 and again in 2006, the
Cross-Language Evaluation Forum (CLEF) Cross-Language
Speech Retrieval (CL-SR) track distributed a collection of
English oral history interviews with 246 Holocaust survivors,
rescuers and witnesses with one-best ASR results, a rich the-
saurus, and ground truth mappings between the ASR results
and the thesaurus labels. We use those ground truth map-
pings as the answer key for evaluating classification accu-
racy, so at the end of this section we describe how those map-
pings were created and introduce the clipped R-precision
measure that we use to characterize classification accuracy.
In between, we describe the disjoint training set of mappings
between text and thesaurus labels that we used to train our
classifier.

3.1 Evaluation Set
The interviews from which the CLEF CL-SR collection

was created were conducted by the Survivors of the Shoah
Visual History Foundation (VHF)1 late in the twentieth cen-
tury and recorded on videotape. Each interview was struc-
tured by the interviewer to proceed in roughly chronolog-
ical order through the interviewee’s life experiences, with
the first 20% or so typically addressing experiences before
the Second World War, the middle 60% typically address-
ing experiences during the war, and the final 20% typically
addressing experiences after the war. Most interviews are
in the form of an extended narrative with occasional steer-
ing comments from the interviewer, but more structured
question-answer formats were also sometimes used. At the
end of the interview, interviewees would often hold up arti-
facts (e.g., photographs) for the camera to record and say a
few words about them.

An initial thesaurus for indexing these materials was de-
veloped by VHF based on scholarly analysis of events dur-
ing the time frame the interviewees described. Professional
indexers, generally with academic training in disciplines re-
lated to the content of the collection, then manually seg-
mented each interview into topically coherent passages that
were recorded in a database as a standoff annotation to the
spoken content, which at that point was still recorded on
videotape. Each segment was then described by the indexer
by associating several thesaurus labels with a segment. Op-
erationally, it is useful to think of the segmentation process
as having been guided in some way by the thesaurus: when
a set of assigned thesaurus terms no longer described what
was being discussed, insertion of a segment boundary would
be appropriate. When indexers encountered concepts that
were not yet present in the thesaurus, they nominated new
thesaurus labels for consideration by the thesaurus mainte-
nance team (a thesaurus extension process generally known
as “literary warrant”). The resulting thesaurus thus covers
the topical scope of the collection quite well. The thesaurus
itself consists of two hierarchies, one a set of part-whole re-
lations (the “term” hierarchy) and one a set of is-a relations
(the “type” hierarchy). Figures 1 and 2 show some illus-
trative examples. These figures illustrate a distinction that
we will make throughout this paper, with Figure 1 drawn
from the branch of the thesaurus in which geography and
time periods appear (what we call the “geography” part)
and Figure 2 drawn from the remainder of the thesaurus
(which we generically refer to as the “concept” part).

In parallel with the indexing process, the original video-

1The successor to VHF is the USC Shoah Foundation Insti-



Term: Antarctica Type: Continents by time

Antarctica (1945-2000)

Figure 1: An example from the geography part of
the CLEF CL-SR topic thesaurus. Solid lines denote
part-whole (“term”) relations, dashed lines denote is-a
(“type”) relations.

Term: Military Type: Soldiers

Spanish Soldiers Turkish Soldiers

Figure 2: An example from the concept part of the
CLEF CL-SR thesaurus. Solid lines denote part-whole
(“term”) relations, dashed lines denote is-a (“type”)
relations.

tapes were digitized by VHF and then automatically tran-
scribed by IBM using an ASR system trained on 200 hours
of manually transcribed speech from 800 held out intervie-
wees (i.e., interviewees who do not appear in the test col-
lection that we used) [1]. The reported mean word error
rate for the one-best transcriptions that were provided by
IBM is 25% for most speakers, although for logistical reasons
transcriptions with an older system with a mean word error
rate of 35% were used in a few cases (e.g., when glitches
in the newer system that was still under development re-
sulted in no output). The standoff annotations recorded in
the database were used to automatically partition the re-
sulting transcripts into disjoint segments (with some small
automated adjustments to avoid splitting transcribed words
and to align to segment boundaries with pauses where pos-
sible). The resulting segments were then associated with
the unique identifiers for each thesaurus term that had been
manually assigned by the indexer to that segment, and the
result was stored as an XML data structure that was dis-
tributed by the Evaluation and Language Resources Distri-
bution Agency (ELDA) to participants in the CLEF 2006
CL-SR collection, version 4.0.

The CLEF-2006 CL-SR test collection was originally in-
tended for evaluation of ranked retrieval, and thus it con-
tains many components (e.g., topics and relevance judg-
ments) that we have not described here. A complete de-
scription of that collection can be found in [11]. One pre-
processing step used in creating that collection affects the
experiments that we report on in this paper, however. When
the VHF indexers segmented the collection, they typically
created one short segment for each artifact that was dis-
played at the conclusion of an interview. This resulted in a
proliferation of very short segments, each with relatively few
ASR-generated words. We elected to automatically remove
all very short segments from the collection because judging
topical relevance for such sections without seeing the video
was often impractical. As a result, those very short segments
were not used in our experiments. The remaining 8,104 seg-
ments have a unimodal segment length distribution with a
median of 4 minutes (about 500 words).

tute for Visual History and Education, or “VHI.”

A B C A B C

Concept labels Geography labels

Figure 3: Computing clipped R-precision for con-
cept and geography label hypotheses on three seg-
ments, A, B, C. Dashed circles indicate the label falls
below the clipping level M for the segment.

3.2 Training Set
The traditional structure of a topic classification problem

can be formulated as: given the words produced for that
segment by ASR, find the set of thesaurus labels that a hu-
man indexer would have assigned. In this paper, we adopt
a more general formulation: given a sequence of segments,
each with ASR-generated words, find the corresponding se-
quence of thesaurus label sets. In order to train a classifier,
we need training data in which such associations are known.
As it happens, an additional set of segments, each with sets
of topic labels assigned by the same indexers using the same
process, are available. These segments are not distributed
with the CLEF CL-SR collection, so we obtained them on
a research license from VHI for use in training our system.
There were initially over 186,000 segments in this collection,
but after deletion of short segments near the end of an in-
terview 168,584 training segments remained.

One important limitation of our training collection is that
no ASR results are available for the words spoken in those
segments. Instead, VHI provided us with three-sentence
summaries written by the indexers for each segment that de-
scribe “who, what, when, where” in a fairly structured and
stylized way. We therefore trained our classifiers by acting
as if these summaries were representative of the words that
would have been generated by ASR for those segments.

3.3 Evaluation Measure
In a content description task, we want to show the user

only a small number of the best predicted labels. Supposing
we could show a user N labels, we might choose as our eval-
uation measure precision at a cutoff of N . Unfortunately,
this would unfairly penalize segments with only a few (say
3) correct labels placed at the top 3 ranks (giving a precision
of 3/N). Alternatively, we might choose a rank based mea-
sure such as R-precision (the precision at cutoff R, where R
is the number of correct labels for a segment), but this may
factor in label hypotheses which can never benefit the user
(i.e., if R > N).

As a solution to these problems, we take as our measure
the clipped R-precision. Clipped R-precision is defined as
the precision at cutoff M , where

M =

{
R, R ≤ N
N, R > N

(1)

Consider Figure 3. Three segments, A, B, C, have ranked
lists of both concept and geography labels. We would like



to show the user 6 concept and 4 geography labels.2 First,
consider concepts (N = 6). Segments A, B have R > 6, so
their clipped R-precision is 2

6
and 1

6
respectively. Segment

C has R = 3, R < N , so M = 3 and its clipped R-precision
is 2

3
. The calculation is the same for geography labels, now

with N = 4. For segments A,B, R > N , so M = N and
each have clipped R-precisions of 1

4
. For segment C, R =

2, so the score is 1
2
. Lastly, we average over segments, so

the clipped R-precisions on concepts in this example will be
( 2
6

+ 1
6

+ 1
3
)/3 = 5

18
. For geography, we have 1

3
.

Note that this evaluation measure is very severe: we give
credit to our system only when the indexer assigned exactly
the same content, no credit for being close enough that a
savvy user could make sense of it, and no credit for being
a perfectly fine assignment (i.e., one that is useful for the
purpose of description) that the indexer just did not hap-
pen to make (e.g., perhaps because of strictly standardized
rules of interpretation). Cumulatively, these effects may be
significant because (1) there are very many labels and the
segments may have multiple topics assigned (as opposed to
a single-label assignment problem in which we would not
expect indexers to forget to assign the one appropriate la-
bel) and (2) the thesaurus terms often have greater speci-
ficity than a user might desire. For example, in Figure 1 we
see that Antarctica (1945-2000) is a different topic than
Antarctica. Accordingly, the absolute value of our measure
should be interpreted generously when trying to imagine the
utility of the labels to the user of an interactive information
retrieval system.

4. BASELINE CLASSIFIER
Our baseline is a k-Nearest Neighbors (kNN) classifier us-

ing a symmetrized variant of Okapi term weighting [6, 13],

w(tf, dl) =
tf

0.5 + 1.5( dl
avdl

) + tf
,

where w(tf, dl) is the computed term weight, tf is the term
frequency, dl is the length of the document in which the
term occurs, and avdl is the average document length. It is
symmetric in the sense that both testing and training vectors
use the same weighting scheme. During classification, term
weights are multiplied by their inverse document frequency,

idf(df) = log

(
D − df + 0.5

df + 0.5

)
,

where D is the total number of segments in training. For
convenience, we represent this idf weighting as a matrix
vector product between A (a square matrix with the idf
weights on the diagonal) and a document vector. For a
test document with vector wT , we first find the k nearest
training vectors (neighbors) wi, i = 1, 2, . . . , k in the doc-
ument space, where our distance measure is the inner prod-
uct, (AwT )T wi.

The score for class c on test document vector wT is then
computed as the sum of inner products between AwT and

2It happens that the median number of true concept and
geography labels on segments is 3 and 2 respectively. We
therefore simulate showing the user twice as many of each
label type (6 and 4), which gives a total number of 10 labels
for presentation. The average thesaurus label contains four
words, so these should easily fit on four display lines.

Segment 1 Segment 2 Segment 3 . . .

Labels from Segment 1 Labels from Segment 2 Labels from Segment 3

time

Figure 4: A schematic view of the TSC training
setup. Segments are assigned labels from their tem-
porally adjacent segment. Likewise, the classifier
predicts labels for temporally adjacent (subsequent)
segments.

wj for j ∈ Kc, Kc = {j| neighbor wj has label c}. That is,

score(wT , c) =
∑

j∈Kc

(AwT )T wj .

For all experiments, we fixed the neighborhood size at k =
100, which was found to be roughly optimal for our baseline
system.

5. TIME SHIFTED CLASSIFICATION
One new source of information in oral history data is

the set of features associated with temporally adjacent seg-
ments. Features, here terms, may be class-predictive for not
only their own segment, but for the subsequent segments as
well. This is an example of local temporal evidence.

This intuition may be easily captured by a time-shifted
classification (TSC) scheme. In TSC, each training segment
is labeled with the subsequent segment’s labels. During clas-
sification, each test segment is used to assign labels to its
subsequent segment. This is illustrated in Figure 4. Because
the last segment in each interview has no associated time-
shifted labels, they are discarded in TSC training. Likewise,
the first segment from each test interview has no preceding
segment which may predict its labels, and so falls back to
using only the non-shifted label hypotheses. Note, this ap-
proach may easily be extended to predict labels on segments
temporally farther away.

Time shifted classification produces scores for labels on
segments, just as traditional non-shifted classification. Nat-
urally, we would like to combine these scores with those from
the original, non-shifted classification problem. We used a
simple linear combination of the scores for a class c and
document d,

STSC.comb(c, d) = λSorig(c, d) + (1 − λ)STSC(c, d),

where Sorig and STSC are the original and TSC scores re-
spectively.

We evaluated this combination approach on a set of 4,000
segments. For each setting of λ, we computed the clipped
R-precision and then took 500 bootstrap resamplings of size
4,000. The mean and confidence intervals of the clipped R-
precision are shown at each of several λ settings in Figure
5. Geography and concept labels are plotted separately.

We observe that optimal settings of λ occur at different
positions for geography and concept labels. For the best set-
ting on concepts, the time-shifted scores are only barely con-
sidered (i.e., λ is around 0.9), while for geography, they are
strongly considered (i.e., λ is roughly 0.6). This conforms
to our expectations, in that interviews were segmented by
change in topic, while successive topics may naturally occur
without a change in geography. On both label sets, we see
the clipped R-precision varies smoothly with respect to λ.
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Figure 5: Clipped R-precision vs. mixing parame-
ter λ for combining original and TSC classification
scores. White boxes show results for geography la-
bels, gray boxes show concept labels. Note, this is
only a preliminary analysis to gauge the smoothness
of the combination method.
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Figure 6: Years spoken in automatic speech recog-
nition transcripts versus the corresponding segment
time (as a fraction of total interview time) for three
interviews.

6. TEMPORAL LABEL WEIGHTING
We can also benefit from non-local temporal information

about a segment. For example, because interviewees were
prompted to relate their story in chronological order, we
would be less surprised to find a discussion of childhood at
an interview’s beginning than at its end. This chronological
ordering is observed in Figure 6, which shows the years noted
in the speech recognition transcripts plotted against segment
time for three different interviews. The noted years ramp
upwards quickly as the interviewees summarize their child-
hood, then progress slowly through their adult years, and
finally jump about somewhat erratically as artifacts from
throughout their life are introduced.

Because of this structure, topics may be more likely to
occur at some times than others. For example, discussions
of war crime trials are considerably more likely to occur
at the end of an interview than at the beginning (simply
because war crime trials tend to occur after a war). We can
exploit this intuition by weighting our label predictions by
p(c, t), the probability of label c occurring during the inter-
val of interview time t. We call this approach temporal label
weighting (TLW). These label weights, p(c, t) may be esti-

0.0 0.2 0.4 0.6 0.8 1.0

0
1
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3

Segment start time (% of interview)

D
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ty

War crime trials
Pre−war political activities
Berlin

Figure 7: Time density estimates for three com-
monly occurring labels. The top and bottom rugs
show where label examples occur, for war crime

trials and Berlin, respectively.

mated using smoothed kernel density estimators on held out
data. Figure 7 shows some example time density estimates.

Kernel density estimators are non-parametric estimators
for probability density functions, similar in purpose to his-
tograms, except that they are smooth and do not require
a bin width be chosen. The intuition is that observations
about a point x should contribute to the density, more so if
they are nearby, less so if they are far away. This notion of
distance is encoded in a kernel K, so that the density at a
point x is estimated as

f̂(x) =
1

n

n∑
i=1

K
(x − xi

b

)
,

for observations xi, i = 1, 2, . . . , n, where the bandwidth b
parameterizes the width of the kernel (specifically, in this
case, the bandwidth is the kernel’s standard deviation). An
applications-oriented introduction to kernel density estima-
tors may be found in [17].

Various kernels may be used, although they are normally
chosen to be smooth, unimodal, to peak at 0, and to be a
probability density function, i.e.,

∫
K(u)du = 1. We pro-

duce our time density estimates using a Gaussian kernel
density estimator

K(u) =
1√
2π

exp (−1

2
u2),

where the bandwidth is chosen such that (1) the distribution
is unimodal for classes with few example and (2) the distri-
bution may have multiple modes when they are strongly
supported by available examples. Our default bandwidth is
computed according to Silverman’s “rule of thumb” (the de-
fault in the R statistics package) [16]. In practice, for classes
with fewer than 100 examples, we iteratively increase this
default smoothing bandwidth until the density function’s
derivative has no more than one zero crossing (i.e., the func-
tion has one maximum). This is illustrated in Figure 8 for
an artificial label with only two training examples. With our
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Figure 8: Three choices of bandwidth for smoothing
a Gaussian kernel density estimate with very few ex-
amples (here 2). In (a), the density is bimodal with
the default choice of bandwidth. At (c), a band-
width is chosen providing a unimodal density func-
tion. Note two tick marks on the bottom edge of the
graph show the position of the training examples in
time.

default bandwidth, the density function is bimodal (Figure
8a), which can not be strongly supported with so few ex-
amples. In Figure 8b, the bandwidth is increased slightly,
and then again in Figure 8c. We terminate at this final
bandwidth, which provides a unimodal density estimate.

Note that our weighting function is a density, so that it
approximately integrates to one. This is true, of course, re-
gardless of the number of label examples. This is made clear
in Figure 7, where war crime trials has a greater mode
than Berlin, despite Berlin having many more examples
(as seen on Berlin’s rug—the tick marks on the bottom
edge showing the observations’ positions). This is reason-
able because the preponderance of a label’s examples (i.e.,
its prior probability) is already modeled implicitly by kNN.
Now, to estimate p(c, t), we ought to integrate our estimated
density function over the temporal extent of the test docu-
ment. Because the segment durations have fairly low vari-
ance however, we approximate our weighting, p(c, t), by the
estimated density function for class c at the start time of
interval t. This approximation will be at least roughly pro-
portional to the integrated probability mass—and has the
advantage of not requiring runtime numerical integration,
provided the density function is fairly flat.3 On the other
hand, this approximation will be bad where the first deriva-
tive of the density function is large. To mitigate this effect,
we dampen the values logarithmically before applying the
weights to our baseline classification scores. This gives our
combination formula

STLW.comb(c, d) = Sorig(c, d) × log (1 + p(c, t)),

where c is the class, d is the document, and p(c, t) is the
temporal label weight for label c at the start time t. We use
log (1 + p(c, t)) because (1) it is positive for p(c, t) ∈ (0,∞)
and (2) for small p(c, t), log (1 + p(c, t)) ≈ p(c, t).

7. COMBINING EVIDENCE
We may also combine the local evidence provided by TSC

with the less localized evidence provided by TLW. Again,
we use a simple linear combination of scores,

Sfinal(c, d) = γSTSC.comb(c, d) + (1 − γ)STLW.comb(c, d).

As before, we evaluated this combination approach on a set
of 4,000 segments. Figure 9 shows the parameter sweep.

3To see this, imagine approximating the integral over a small
region by drawing a box under the density function.
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Figure 9: Clipped R-precision vs. mixing parameter
γ for combining TLW and TSC classification Output.
White boxes show results forgeography labels, gray
boxes show concept labels. Note, this is a prelimi-
nary analysis looking for smoothness. We shouldn’t,
for example, conclude that TSC scores are not used
on concepts (we will see that they are).

For each setting of γ, we computed the clipped R-precision
and then took 500 bootstrap resamplings of size 4,000. The
combination parameter λ (used to produce the TSC results
which are here combined with the TLW results), was taken
from the similar analysis shown in Figure 5. The mean and
confidence intervals of the clipped R-precision are shown at
each of several γ settings in Figure 9. Again, we observe
that optimal settings of γ occur at different positions for
both geography and concept labels. On both label sets, we
see the clipped R-precision varies smoothly with respect to
γ. In the experimental section, we will determine γ from the
held out portion in our cross-fold validation.

8. EXPERIMENTS
Our training set is a collection of 168,584 segments, as

described in Section 3. Each segment in the training col-
lection has one or more manually assigned thesaurus terms,
from a set of 13,764 unique thesaurus labels, which in turn
are drawn from a larger set of about 40,000 labels in the full
thesaurus. The training features are words taken from sum-
maries of each segment written by human indexers. The
classification task is to assign thesaurus labels to a set of
8,104 new segments, where features are drawn from auto-
matic speech recognition transcripts of the words spoken in
those segments. This data is available as the ASRTEXT2006B

field of the CLEF 2006 version 4.0 CL-SR collection. We
also know every segment’s position in its interview and its
temporally adjacent segments.

To facilitate statistical testing and allow our combination
parameters to be tuned on fair data, we use K-fold val-
idation (K = 10). Our testing segments are partitioned
into K folds and, for each fold, the combination parame-
ters (λ, γ) are chosen to optimize the clipped R-precision on
the remaining K−1 folds.4 We searched for optimal mixing

4We emphasize that for the experiments reported in this



mean(λ) s.d.(λ) mean(γ) s.d.(γ)
Geography 0.59 0.05 0.44 0.14

Concepts 0.93 0.0 0.18 0.01

Table 1: Mean values for the mixing parameters λ, γ
(averaged over the cross-validation folds) and their
standard deviation.
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Figure 10: Clipped R-precision for each setting, av-
eraged over the cross-validation folds. Tick marks
at the base of a bar indicate that, by a paired t-
test with α = 0.01, the bar’s clipped R-precision is
significantly better than the left-adjacent bar.

parameters by stepping through with increment of 0.01. Ta-
ble 1 shows the mean and standard deviation for the mixing
parameters (averaging over the K folds).

Figure 10 shows the final results from our experiments.
For each setting, the averaged clipped R-precision over the
K validation folds is shown. To test for statistically sig-
nificant improvement, we compare the clipped R-precision
across the K validation folds using paired t-tests with α =
0.01.5 The results of this significance testing are shown in
Figure 10: bars which have clipped R-precision significantly
larger than the bar to their left are marked with a tick at
their base. For example, we see that TSC significantly im-
proves upon the baseline for geography labels (at both the
leaves and one level up in each of the two thesaurus hierar-
chies), but not for concepts. Note that each grouping of bars
contains at least one tick mark: accordingly, using tempo-
ral evidence improves upon our baseline for both label sets,
at both levels in both thesaurus hierarchies, with statistical
significance. These improvements are tabulated in Table 2.

As Table 2 shows, moving one level up (“1LU”) in the
“term” (i.e., part-whole) hierarchy to classify to the first
interior node improves the overall accuracy of concept clas-
sification, but does little to benefit geography. Conversely,
moving one level up in the “type” (i.e., is-a) hierarchy bene-
fits geography classification more than concepts. These im-

section we use evidence combination parameters learned
through cross-validation, not those learned on the 4,000-
segment sets described in the previous sections. This dis-
tinction is important because those 4,000-segment sets are
a part of the 8,104 set on which we now report results.
5Our training sets overlap and thus violate an independence
assumption, but the probability of Type I error nevertheless
tends to be acceptably small [3]. Alternatively, Fisher sign
tests comparing clipped R-precision on paired segments in
one fold show the same improvements are significant.

part location baseline TSC&TLW R.I. (%)
geo leaf 0.2012 0.2322 +15.4

concept leaf 0.1896 0.2054 +8.3
geo 1LU term 0.2182 0.2474 +13.4

concept 1LU term 0.3116 0.3317 +6.4
geo 1LU type 0.2618 0.2777 +6.1

concept 1LU type 0.2175 0.2323 +6.8

Table 2: Averaged clipped R-precision for each label
set and thesaurus level, for both the baseline and
combination approach. The relative improvement
(R.I.) using the combined temporal evidence is also
shown.

provements are not surprising by themselves—the smaller
number of interior nodes simply results in an easier classifi-
cation problem. In both cases, however, further statistically
significant improvements of about 6% are still observed even
over the stronger of the two baselines when TSC and/or
TLW are applied (and mean values for the combination are
never lower than either used alone). This indicates that
TSC and TLW, and the combination strategy that we have
employed, have utility across a range of thesaurus granulari-
ties that might be important in practical applications. This
analysis also tells us something about how far the tempo-
rally informed methods are moving class hypotheses in the
hierarchy to make correct class assignments. If, for exam-
ple, the temporal evidence was only able to correct a class
assignment having a common parent node with the correct
label, we would expect classification improvements to wash
away when class hypotheses were pushed up the hierarchy.
As this does not occur, it appears the proposed methods are
also correcting many “far misses” in the topic thesaurus.

9. CONCLUSION
The most obvious limitation to the techniques that we

have described is the requirement for both a thesaurus (or
some other source of appropriate topic labels) and a train-
ing set in which those labels have been associated with
text in a way that is representative of how the classifier
should behave. Of course, that same condition applies to
any text classification problem based on supervised machine
learning—all that we have really done is remove the docu-
ment independence assumption by observing that in this col-
lection, classification assignments do indeed depend on both
the absolute and the relative position of segments within an
interview.

This suggests several directions for future research. The
most fundamental, perhaps best thought of as research in
digital libraries rather than topic classification, is to iden-
tify other applications that exhibit similar properties and for
which a suitable topic inventory is available or could afford-
ably be constructed. A second research direction would be
to raise our baseline by, for example, automatically trans-
forming the human-written summaries from the training col-
lection into something more like ASR output. This would
amount to fundamental research in feature set transforma-
tion for topic classification with ASR input, and it seems
likely that benefits could accrue from such an approach. Of
course, we’d also hope to compare that approach to training
on a complete set of ASR transcripts.
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Figure 11: Features sorted by χ2
max score on both

the original and time-shifted classification problem.
TSC features are less informative and have a dif-
ferent feature ordering than the unshifted problem.

A third research direction, and the one most directly in-
spired by our results, is to explore other ways of leveraging
position and sequence dependencies. One obvious approach
to try would be a Hidden Markov Model (or some other
form of sequence model) in which prior label assignments
are used to bias classification decisions. Another approach
to try would be to apply a decay function that decreases
the contribution of individual words to a category as those
words appear further back in time. Considering a more nu-
anced decomposition of the thesaurus than the geography
vs. everything else approach that we tried might also yield
additional insights. And, at the most basic level, a range of
functions for combining evidence remains to be explored.

For time-shifted classification, features predictive for a
segment are likely to be different than those predictive for
adjacent segments. This may be especially important when
feature selection is used. Consider, for example, that χ2

feature selectors [19] are based on testing for term-class
independence—and this will surely vary between the tra-
ditional and TSC case. Figure 11 shows the most predictive
features, according to χ2

max, for both the original and TSC
case. In this study, we considered only the all-features case.
We expect future work may show additional improvements
by incorporating feature selection with TSC.

Ultimately, the value of topic classification is revealed in
the way the results are actually used, so studying the be-
havior of searchers presented with a system that incorpo-
rates both text-based and topic-based speech searching will
be important. Machines further down a processing pipeline
can also use topic classification. For example, topic classi-
fication can serve as a source of vocabulary with which to
augment an index, either by using terms from the topic la-
bels directly, or by using the topics as pivot points in a blind
feedback strategy. So extrinsic evaluations in which the util-
ity of topic classification is assessed through its influence on
ranked retrieval will also be important.

So, much remains to be done. But we should emphasize
here in conclusion what we have shown—that the structure
of stories told in the form of oral history interviews can be
leveraged to improve topic classification effectiveness. With
the substantial investments now being made in ASR for con-
versational speech, we can reasonably anticipate the creation
of new collections for which these techniques should be di-
rectly applicable.
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