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ABSTRACT

It is common to develop and validate classifiers through a process

of repeated testing, with nested training and/or test sets of increas-

ing size. We demonstrate in this paper that such repeated testing

leads to biased estimates of classifier effectiveness. Experiments

on a range of text classification tasks under three sequential testing

frameworks show all three lead to optimistic estimates of effective-

ness. We calculate empirical adjustments to unbias estimates on

our data set, and identify directions for research that could lead to

general techniques for avoiding bias while reducing labeling costs.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-

ware—performance evaluation.

General Terms

Performance
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1. INTRODUCTION
Classifiers are frequently produced by supervised learning, with

the classifier trained on one set of annotated examples, and then

tested on another set selected by random sampling. When this test-

ing is done a single time, textbook techniques of point estimation,

confidence interval estimation, and hypothesis testing on effective-

ness are directly applicable.

In many practical circumstances, however, effectiveness is tested

multiple times. The developer may repeatedly add examples to

the training data, retrain classifiers, and test until estimated effec-

tiveness reaches a target level. Or the classifier may already be

constructed, and the developer wishes to validate its effectiveness

while minimizing the number of test examples that need to be la-

beled. Or the developer may grow both training and tests sets at the

same time, seeking both to improve and to certify effectiveness.
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Unfortunately, as we observe in this paper, repeated testing of

a classifier’s effectiveness introduces statistical bias into estimates.

Statistical inference is based on the recognition that any particu-

lar measurement has an element of randomness to it. We may by

chance draw a sample that gives an optimistic estimate, leading us

to put into use a classifier less good than it appears. Conversely, we

may reject a classifier incorrectly based on a sample that gives too

pessimistic an estimate. But by drawing a sample randomly we can

quantify these risks, and reduce them through larger samples.

When we test repeatedly, however, the two dangers are not sym-

metric. An optimistic estimate will lead us to put a classifier into

use and congratulate ourselves on having annotated little data. A

pessimistic result will lead us to do more training, tuning and/or

testing. We are therefore more likely to accept overestimates than

underestimates in sequential testing, leading to an optimistic bias.

In this paper, we explore the behavior of sequential testing for

the three scenarios outlined above (fixed test and variable training;

fixed training and variable test; and both test and training variable).

Two estimates of effectiveness are considered: a point estimate of

the F1 score, and the lower bound of a one-sided 95% confidence

interval on F1. We empirically quantify the bias introduced by

sequential testing across a range of text classification tasks, provide

guidance for practitioners, and point to a range of open questions.

2. MATERIALS AND METHODS
We use SVMperf (V. 3.0) with a linear kernel [Joachims, 2006]

to train text classifiers optimized for F1, using flags “-c 1000 -l 1

-w 3”. Our data set is the RCV1-v2 collection of Reuters newswire

stories [Lewis et al., 2004]. Feature vectors were constructed using

the RCV1-v2 stopped, stemmed token files (On-Line Appendix 12

of Lewis et al. [2004]). Feature values were log TF x IDF weights,

with IDF equal to the natural log of the number of documents in the

collection divided by the number of documents the word occurs in.

We defined 29 binary classification tasks corresponding to the

29 Topics categories with at least 25,000 positive examples in the

804,414-document collection. The use of high frequency cate-

gories enabled studying several orders of magnitude of variation

in sample sizes. Our effectiveness measure is F1; that is, the har-

monic mean of precision and recall. We define F1 to equal 1.0

if a classifier makes no positive predictions on a data set with no

positive examples [Lewis, 1995].

Our experiments compare F1 estimates with true population F1.

We derive a highly accurate estimate of the latter from a randomly

sampled “truth set” of 700,000 of the RCV1-v2 documents. The

mean width of the two-sided confidence interval on that estimate is

0.0059—minuscule compared to the variations we see in estimates

from our smaller experimental test sets.



The test and training sets in our experiments are drawn from

these 700,000 documents and from the remaining 104,414 doc-

uments respectively. In each run, the training and/or test set was

grown in a nested fashion, by adding 20 randomly selected anno-

tated documents, retraining the classifier on the training set if nec-

essary, and estimating F1 based on the test set. The 20 documents

were either all added to test (Section 3.1), all added to training (Sec-

tion 3.2), or half added to training and half to test (Section 3.3).

We compute two estimates of F1 from each test set. First, the

F1 score on the test set is taken as a point estimate, F̂1, of the true

F1. Second, we find the lower bound, θ, of a lower one-sided 95%

confidence interval on F1. We compute this confidence interval

estimate by taking the 5th percentile of 40,000 Monte Carlo draws

on beta-binomial posteriors on the classifier’s true positive and false

positive rates, using the method described by Webber [2013] (see

Goutte and Gaussier [2005] for a similar binomial posterior on F1).

(Similar sequential biases would arise for other interval methods, or

other effectiveness measures such as precision or recall.)

Webber [2013] shows that this Monte Carlo procedure gives cov-

erage probabilities very close to the nominal 95% level for two-

tailed intervals on recall, in contrast to commonly used normal ap-

proximations. Nevertheless, we checked the accuracy of the method

for one-tailed intervals on F1. We calculated an observed coverage;

namely, the proportion of testing points at which the lower bound

of the confidence interval is at or below the true F1 score. An edge

case occurs when the classifier achieves no true positives on the

test set, either because the classifier is poor or the test set has no

positive examples. In this case, the lower bound of the confidence

interval is 0.0, guaranteeing 100% coverage. To avoid crediting the

algorithm for this trivial case, we computed coverage only on cases

with at least 100 training and 100 test examples. With this restric-

tion, we find that the observed coverage of Webber’s algorithm is

very near 95% in all experiments.

As will be seen, however, applying sequential stopping rules to

nominal 95% confidence intervals leads to stopping conditions with

actual coverage lower than 95% in all three scenarios studied. One

way to adjust for this might be to compute the confidence interval

at a nominal level higher than 95%, but assert only a 95% level

for the resulting interval. For each protocol, we calculate what the

nominal level must be to achieve 95% coverage with our data set.

3. RESULTS
We present results for three conditions: variable test, variable

training, and variable both test and training.

3.1 Variable Test, Fixed Training
First, we consider the case where a classifier has been produced

using a fixed training set. A developer wishes to certify, at a given

confidence level, that the classifier exceeds a target value of effec-

tiveness. We assume that a testing budget of 10,000 annotations

is available, but that the developer would prefer to pay for fewer

annotations if possible. This is the standard setting in sequential

sampling theory [Wetherill and Glazebrook, 1986]. We assume that

they iteratively annotate randomly selected examples, add them to

the test data, and compute the two estimates of F1 (point estimate

and lower bound of a one-sided lower 95% confidence interval).

The developer decides to accept the classifier (and stop testing) if

at some point the lower confidence limit exceeds the target value of

F1. They reason (erroneously) that they will accept an inadequate

classifier at most 5% of the time. They reject the classifier if the

budget of 10,000 annotations is used up without accepting.

Figure 1 shows the results of one such classifier evaluation run.

The target value of F1 is 0.5, while the true effectiveness (unbe-
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Figure 1: Variable test, fixed training. The dashed line is true

effectiveness (F1); the dotted line is the target F1; the solid line

is estimated F1, for increasing test set sizes; and the bold line

is the lower bound of the 95% one-sided confidence interval on

F1. Results are shown for a single run for Topic C31.

knownst to the developer) is 0.42. The point estimate F̂1 happens

to almost always be above its true value, and for many test set sizes

above the substantially higher target value. The lower bound of the

confidence interval is more conservative, but wanders above the

true value at several points, and above the developer’s target for

several test sets in the range of 100 to 200 documents. The devel-

oper would have mistakenly halted testing and accepted the classi-

fier upon reaching the test set of size 120. For large test sets, both

the point estimate and the lower bound of the confidence interval

approach the true value of effectiveness, but our developer would

never reach these test set sizes. Figure 1 is only for a single run, and

perhaps (from a reliable evaluation perspective) an unlucky one. A

95% confidence interval is expected to fail roughly 5% of the time.

We therefore performed the same experiment across all 29 topics,

and made 20 runs for each topic. In each case the target effec-

tiveness was set infinitesimally above the true effectiveness of the

classifier, so that the classifier should be rejected in every run; not

doing so counts as a failed evaluation. Unsurprisingly, the point es-

timate exceeded the target value at some point on almost every run.

So using the point estimate would fail almost 100% of the time.

But even the lower bound of the confidence interval exceeded the

target value 31.55% of the time (far more than the nominal 5% the

developer might expect), causing the classifier to be erroneously

accepted. The observed coverage of the confidence intervals was

95.68%, making clear that the problem is the developer’s sequen-

tial stopping rule, not the (single-test) confidence interval estimate.

While the bias introduced by overfitting has long been a sub-

ject of study in machine learning [Toussaint, 1974], the bias intro-

duced by sequential testing appears to have been ignored. Sequen-

tial stopping rules, and techniques for unbiasing estimates when us-

ing them, have been studied in statistics and quality control [Sieg-

mund, 1985, Wetherill and Glazebrook, 1986]. The theory is well

developed (if not simple) for cases such as the binomial propor-

tion and the normal mean. Unfortunately, F1, as the ratio of two

unknown quantities, is substantially more difficult to address ana-

lytically. We can, however, observe an empirical adjustment on our

dataset. To achieve actual 95% confidence, assuming that lower-

bound effectiveness is tested every 20 documents, we should set a

nominal confidence level of 99.5%.
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Figure 2: Fixed test, variable training. True classifier effective-

ness (measured by F1) as the training set is increased is shown

as a dashed green line; the estimated effectiveness, based on a

test set of 1,067, is the solid blue line; and the 95% lower-bound

confidence on that effectiveness is the bold gold line.

3.2 Fixed Test, Variable Training
Next we examine a common use of sequential testing in classifier

construction. The developer of the classifier has a fixed, randomly

selected test set. Training examples are selected, annotated, and

used to improve the classifier. At regular intervals, the classifier is

tested on the test set. We assume that training and testing continue

until the estimated effectiveness of the classifier reaches some tar-

get value, or when a total of 15,000 documents have been labeled.

We fix the test set size at 1,067 documents (a commonly used value

that gives a maximum two-sided confidence interval width of ±3%

on a binomial proportion). This corresponds to training budgets be-

tween 13 and 13,933, with increments of 20 documents. However,

the choice of a particular test set size is not critical to our results.

Figure 2 shows an example of this scenario. The developer has

set a target value of 0.7 on F1. Thinking themselves conservative,

they decide to stop training when the lower confidence limit on F1

exceeds 0.7. They (erroneously) reason they will accept an inad-

equate classifier at most 5% of the time they use this procedure.

They reject the classifier if the combined budget of 15,000 annota-

tions is used up without accepting.

The true effectiveness of the classifier rises fairly smoothly with

the addition of training data, as we would expect. The two estimates

of effectiveness are, however, far more erratic. Both the point esti-

mate (at 333 training examples) and, surprisingly, the lower bound

of the confidence interval (at 473 examples) exceed the target value

well before the true effectiveness does (at 660 examples).

The erratic behavior evinced in Figure 2 seems at first surprising

given a fixed test set and steady growth in true effectiveness. How-

ever, while the true effectiveness of successive classifiers increases

fairly steadily as the training set grows in size, their behavior on a

particular test set of modest size can fluctuate greatly from classifier

to classifier. It is not the case that training improvements smoothly

and monotonically convert test set errors into test set successes.

Thus, even though no additional sampling is being performed, ran-

dom fluctuations in estimated effectiveness occur, and we are more

likely to stop when those fluctuations lead to overstating effective-

ness than when they lead to understating it.

Does Figure 2 simply show an unlucky case? We again ran 29

topics and 20 runs per topic. In each run, we set the target value for

effectiveness to be 90% of the highest true effectiveness achieved

(usually at the largest training set size) during the run. The effec-

tiveness of the classifier was estimated after each addition of 20

annotated examples to the training set. We examined two stop-

ping rules: stopping when the point estimate first hits this target,

and stopping when the lower confidence interval bound first hits

this target. For unbiased point estimates, we might expect the first

rule to stop early 50% of the time (the point estimate is as likely

to be above as below the true effectiveness), and the latter rule to

stop early only 5% of the time. In practice, across 29 topics and

20 runs per topic, we found that the point-estimate rule stopped

early 53.58% of the time. The lower-bound stopping rule stops

early 8.13% of the time. The latter of these values is significantly

different from the expected proportion (p < 0.01 under an exact bi-

nomial test with 29∗20 = 580 observations); the former is not sig-

nificantly different, but the jaggedness of the estimate curve means

that there inevitably is an optimistic bias, though our number of cat-

egories and runs was too small to demonstrate this at the p = 0.05

level. The observed confidence interval coverage for this scenario

is 95.26%, so again it is the stopping rules that are the problem.

This bias is smaller than in Section 3.1, but also difficult to at-

tack analytically. The theory of sequential testing has focused on

estimating fixed distributions, not time varying ones. Computa-

tional learning theory has found the analysis of learning curves

challenging even in the generalization framework (corresponding

to our comparatively smooth curve of true effectiveness) [Haussler

et al., 1996]—we do not know of a treatment of learning curves

for finite test sets. Lacking analytical guidance, we observe that a

nominal confidence level of 97% is required to achieve an actual

confidence of 95%.

3.3 Variable Test, Variable Training
Finally, we consider the situation in which both test and training

set are increased over time. Though not a widely used approach, it

has the advantage of avoiding committing to too small or too large

a testing or training set size at the outset. Many adaptive policies

are possible; we consider the simple one of allocating as many doc-

uments to testing as we do to training (for our experiments, 10 to

training and 10 to test at each increment, then performing the test).

Figure 3 shows what happens for a single run on a single topic

under this regime. We assume the developer has set a target value of

0.6 on F1, and decides to stop training and testing when the lower

confidence limit exceeds this target. They reject the classifier if the

combined budget of 15,000 annotations is used up first.

Again, the increase in true effectiveness with increasing train-

ing set sizes is relatively smooth. And again, the point estimate

on effectiveness is more erratic, here from a combination of both

changing classifiers (as the training set is increased) and the chang-

ing content of the test set. The lower bound once more varies with

the point estimate, shrinking the gap gradually, since half of the

annotations go to testing. Both the point estimate of F1 and the

lower bound of the confidence interval hit the target of 0.6 before

true effectiveness reaches it: the developer would stop too early.

We once more estimate the degree of bias by observing behavior

across all 29 topics and 20 runs. Setting the target effectiveness at

90% of maximum actual effectiveness, we find that the point esti-

mate crosses this threshold prematurely 68.38% of the time, while

the lower bound crosses it prematurely 9.40% of the time. The

observed coverage for this scenario is 95.39%, showing again that

stopping rules are at fault. Here, a nominal confidence level of 98%

is required to achieve an actual confidence of 95%.
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Figure 3: Variable test, variable training. The dashed green

line gives true effectiveness (F1) of the classifier at each train-

ing set size. The solid blue line gives a point estimate on effec-

tiveness of a test set as large as the training set at each point.

The bold gold line is the lower bound of a 95% lower one-sided

confidence interval estimate.

3.4 Empirical Bias
To generalize our observations on the nominal confidence of

95%, we tried a range of confidence levels between 50% and 99%.

Figure 4 shows the actual confidence of the three scenarios studied

in this paper. It is, in all cases, lower than the nominal confidence

(as shown by the dashed line), and most markedly so for the vari-

able test, fixed training case. These curves can serve as an indicator

to correct the bias resulting from sequential sampling, though it is

unclear how well they generalize to other conditions.

4. CONCLUSIONS AND FUTURE WORK
We have examined the bias involved in three sequential testing

methods: fixed training and variable test; fixed test and variable

training; and both test and training variable. The bias in fixed train-

ing and variable test is severe: a nominal 95% confidence interval

provides only 68% coverage in practice, for the scenario considered

here. Variable training and fixed test also introduces a significant

bias to estimates, with a nominal 95% giving 92% coverage. The

combination of variable training and variable test has only slightly

greater bias than variable training with fixed test; a nominal cover-

age interval of 95% gives actual coverage of 91%. These are not

due to problems in the Monte Carlo method of calculating inter-

vals on F1, which gives coverage very close to nominal levels for

all three conditions. The bias lies solely in the use of sequential

testing.

For the case of fixed training (and fixed classifiers in general)

and variable test a sequential sampling analysis of the F-measure

would be of great practical value, enabling valid estimates while

saving labeling costs. Both traditional analytical approaches (e.g.

Brownian motion approximations [Siegmund, 1985]) and simula-

tion techniques are worth considering. For the cases in which the

training set varies, estimation must track the moving target of the

learning curve. Analytical solutions are likely impossible, and even

simulation techniques will require confronting issues of classifier

stability [Kearns and Ron, 1999].
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Figure 4: Actual confidence corresponding to nominal confi-

dence level.

In this paper, we have provided empirical adjustments to con-

fidence limits, but these apply only to the particular scenarios and

dataset explored here. For other cases, they may provide some rule-

of-thumb guidance for developers, but they cannot stand in place of

a statistically well grounded validation. For now, a trustworthy val-

idation requires testing the final classifier once on a set of annotated

instances that is used for no other purpose.
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