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ABSTRACT
Information retrieval systems rank documents, and shared-task eval-
uations yield results that can be used to rank information retrieval
systems. Comparing rankings in ways that can yield useful insights
is thus an important capability. When making such comparisons, it
is often useful to give greater weight to comparisons near the head
of a ranked list than to what happens further down. This is the fo-
cus of the widely used τAP measure. When scores are available,
gap-sensitive measures give greater weight to larger differences
than to smaller ones. This is the focus of the widely used Pear-
son correlation measure (ρ). This paper introduces a new measure,
τGAP, which combines both features. System comparisons from
the TREC 5 Ad Hoc track are used to illustrate the differences in
emphasis achieved by τAP, ρ , and the proposed τGAP.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation

Keywords
Evaluation Metric; Rank Correlation Coefficient

1. INTRODUCTION
In information retrieval evaluation, we often wish to compare

alternative systems based on some single-valued evaluation mea-
sures. For example, we might want to know whether comparing
systems using relevance judgments created by one user (to whom
we have access) can be used to compare systems in ways that are
predictive of what we would have seen had some other user made
the judgments [9]. Alternatively, we might want to know whether
we can better approximate the system comparison results we could
compute with very extensive relevance judgments on a large num-
ber of topics by reducing the number of topics or by reducing the
number of judgments per topic [2]. In such cases, we can formulate
our research question as asking about the correlation between two
ranked lists of scores, where the scores result from some evaluation
metric such as F1, Expected Reciprocal Rank (ERR), Normalized
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Discounted Cumulative Gain (NDCG), or Mean Average Precision
(MAP).

When making such comparisons, we focus on two desiderata.
First, we prefer that those differences to be large, since small dif-
ferences may not reflect any meaningful degree of impact on the
user experience [3]. Second, we prefer that those differences be
statistically significant, since unreliable measurements of differ-
ences could be misleading [7]. When extending our comparison
from pairs to large sets of systems, as is common in shared-task
evaluations such as TREC, CLEF, NTCIR and FIRE, we often care
more about distinguishing systems that are very different from each
other, which requires the evaluation metric to be gap-sensitive. We
also care more about the comparisons among the best systems than
we do about comparisons between, for example, the best and the
worst systems, which requires the evaluation metric to be head-
weighted.

Perhaps the most widely used measure of rank correlation in
information retrieval research is Kendall’s τ [4] in which swap-
ping systems is penalized. Yilmaz et al. [10] introduced a head-
weighted variant of τ that they call τAP that penalizes the mis-
ranking of the best systems (i.e., those near the head of the list),
and that measure is now also often reported. Buckley and Voorhees
have observed, however, that when systems receive very similar
scores we should care less about swaps than when those scores
are very different [1]. They therefore created a gap-sensitive mea-
sure by suppressing the effect of small swaps by treating any swap
within a “fuzziness value” (e.g., 5% relative to the smaller value)
as not being large enough to be counted. In this paper, we propose
to generalize that approach to penalize swaps in proportion to the
difference in scores, so that large swaps will gave the greatest influ-
ence on the measure, but small swaps are not completely ignored.
This approach thus potentially offers greater insight, without the
need to commit to a specific “fuzziness” threshold. Moreover, we
combine this more nuanced approach with the head-weighted de-
sign of τAP to produce a new correlation measure for ranked lists
of scores that is both head-weighted and gap-sensitive. We call our
new measure τGAP (for Gap And Position).

The remainder of the paper is organized as follows, Section 2 re-
views the prior work on the use of correlation measures for system
comparison. Section 3 then define τGAP and establishes that it has
a number of desirable properties. Section 4 complements this ana-
lytic perspective with empirical results for system scores from the
TREC 5 Ad Hoc task, and then further analyses the focus of differ-
ent correlation coefficient metrics through the heatmap of system
pair weights. Section 5 concludes the paper with some remarks on
limitations of the τGAP measure that may inspire further work on
this important problem.



2. RELATED WORK
The Pearson correlation coefficient between two items is defined

as the covariance of the two items divided by the product of their
standard deviations:

ρ =
E[(X−µX )(Y −µY )]

σX ·σY
(1)

where X and Y are the vectors of ranked lists; E is the expecta-
tion; σ is the standard deviation; and µ is the mean [6]. Given
two ranked lists of items, the Spearman correlation coefficient [11]
is defined as the Pearson correlation coefficient between the ranks
(i.e., with the ranks used in place of scores). The most widely used
measure in information retrieval research is neither Pearson nor
Spearman correlation, however, but rather Kendall’s τ [4]. Kendall’s
τ evaluates the correlation of two lists of items by counting their
concordant and discordant pairs.

To fulfill the specific evaluation needs for different tasks, var-
ious definitions of correlation coefficients derived from Kendall’s
τ have been proposed. Kendall’s tau rank distance [5] measures
the disagreements between two ranking lists by counting the swaps
that the bubble sort algorithm needed to sort one list in the same
order as the other. The AP Correlation coefficient (τAP), proposed
by Yilmaz et al. [10], focuses and penalizes more on the errors at
high rankings. Given a ground-truth list and prediction list, τAP of
the two lists is defined as:

τAP =
2

(N−1)
·

N

∑
i=2

Ci
i−1

−1 (2)

where N is the number of items in the list; Ci is the number of items
above rank i in the prediction list and correctly ranked with respect
to the item at rank i in the ground-truth list. For each item at rank
i, τAP only checks the positions of the i−1 items with ranks above
i, and calculates the proportion of the correctly ordered items with
respect to the item at rank i. Finally, the value of τAP is a linear
combination of all ranks i in the prediction list.

3. THE TAU GAP COEFFICIENT
τGAP is a non-parametric correlation coefficient, particularly sen-

sitive to errors at high rankings and errors for item pairs with large
score differences (gaps). In this section, we present the definition
of τGAP. Since the definition of τAP and τGAP are both based on
swapped item pairs counting, we further explore the mathematical
properties of τGAP comparing with τAP.

τGAP =
2

(N−1)
·

N

∑
i=2

∑ j<i |CG ji|
∑ j<i |G ji|

−1 (3)

Given two ranked lists, a ground truth list and a prediction list,
τGAP is defined as in Equation 3, where N is the number of items
in the lists; i represents the item at rank i in the prediction list; j is
the item ranked higher than i in the prediction list; G ji is the gap
between the item at rank j and item at rank i in ground-truth list;
CG ji returns the same value as G ji when the item pair ( j, i) in the
prediction list are ranked in the same order as in the ground-truth
list, otherwise, return 0. For each item at rank i in the prediction
list, τGAP only considers the rank relation of the i− 1 item pairs
( j, i). ∑ j<i |G ji| is the sum of all the gaps for the i− 1 item pairs,
and ∑ j<i |CG ji| is the sum of the gaps for correctly ordered pairs.

THEOREM 1. The value of τGAP is always between −1 and 1.

PROOF. For each item at rank i, there will be i−1 pairs of items
( j, i) taken into the consideration by τGAP. ∑ j<i |G ji| is the sum of
the gaps of these i−1 pairs of items. ∑ j<i |CG ji| is the sum of the

gaps that the prediction list ranks the two items ( j, i) in the same or-
der as the ground-truth list. Therefore, ∑ j<i |CGji|

∑ j<i |Gji| is always between

0 and 1. Normalized across all ranks i, 1
(N−1) ·∑N

i=2
∑ j<i |CGji|
∑ j<i |Gji| is

always between 0 and 1; 2
(N−1) ·∑

N
i=2

∑ j<i |CGji|
∑ j<i |G ji| is always between

0 and 2. Then the value of τGAP is always between −1 and 1.

THEOREM 2. If the gaps between the items follow the uniform
distribution, then τGAP is equal to τAP.

PROOF. Let the uniform gap be g, then ∑ j<i |G ji| = (i− 1) · g,
and ∑ j<i |CG ji|=Ci ·g. Therefore,

τGAP =
2

(N−1)
·

N

∑
i=2

Ci ·g
(i−1) ·g −1

=
2

(N−1)
·

N

∑
i=2

Ci
(i−1)

−1 = τAP

(4)

Moreover, if the errors are uniformly distributed over the all the
ranks in prediction list, then τGAP, τAP and τ are equivalent.

THEOREM 3. For two prediction lists with same number of items
N and same number of errors located at the same ranks, if the er-
rors of one list have large gaps and the errors of the other list have
small gaps, then the value of τGAP for the list with large error gaps
τGAP−Large will be smaller than the τGAP for the list with small
error gaps τGAP−Small .

PROOF. If we define FG ji as the gap between items at rank i
and rank j when the item pair ( j, i) in the prediction list are ranked
in the converse order as in the ground-truth list, or otherwise 0, then
τGAP could be represented as:

τGAP =
2

(N−1)
·

N

∑
i=2

∑ j<i |CG ji|
∑ j<i |CG ji|+∑ j<i |FG ji|

−1 (5)

If two prediction lists have the same number of errors located at the
same ranks, then their will have the same N, i, j and CG ji. The only
difference between τGAP−Large and τGAP−Small is that τGAP−Large
has larger values for FG ji, so that the value of τGAP−Large will be
always smaller than τGAP−Small .

THEOREM 4. For a prediction list, if the swapped item pairs
always have small gaps, then the value of τGAP is larger than τAP;
if the swapped item pairs always have large gaps, then the value of
τGAP is smaller than τAP.

PROOF. The expectation of the difference between τGAP and
τAP is:

E[τGAP− τAP] =
2

N−1
·

N

∑
i=2

(
∑ j<i CG ji

∑ j<i G ji
− Ci

i−1

)

=
2

N−1
·

N

∑
i=2

(i−1)∑ j<i CG ji−Ci ∑ j<i G ji

(i−1)∑ j<i G ji

(6)

Let Pi be the probability that the items before item i in the predic-
tion list are ranked as the same order as in ground-truth list, then
we have

Ci = Pi · (i−1) (7)



Then

E[τGAP− τAP] =
2

N−1
·

N

∑
i=2

(i−1)(∑ j<i CG ji−Pi ∑ j<i G ji)

(i−1)∑ j<i G ji

=
2

N−1
·

N

∑
i=2

(
1

∑ j<i G ji
·
(

∑
j<i

CG ji−Pi ∑
j<i

G ji

))

(8)
The overall expectation of E[τGAP− τAP] is a linear combination
over all ranks i ∈ [2,N]. However, for each rank position i in the
predict list, the expectation of the difference between τGAP and τAP
is:

Ei[τGAP− τAP] =
2

∑ j<i G ji
·
(

∑
j<i

CG ji−Pi ∑
j<i

G ji

)
(9)

Since ∑ j<i G ji is always positive, the relation between τGAP and
τAP at rank i depends on (∑ j<i CG ji−Pi ∑ j<i G ji). For rank i, there
are (i− 1) pairs of items and their corresponding gaps in the pre-
diction list taken into consideration, and there are Pi(i−1) pairs or-
dered correctly. ∑ j<i CG ji is the sum of the gaps for these correct
ordered pairs, and Pi ∑ j<i G ji is a definite proportion of the total
gaps of the (i−1) pairs. If the Pi(i−1) correctly ordered pairs with
large gaps, then ∑ j<i CG ji > Pi ∑ j<i G ji, and Ei[τGAP− τAP] > 0;
if the Pi(i−1) correctly ordered pairs focus on the pairs with small
gaps, then Ei[τGAP− τAP]< 0; ideally, if the Pi(i−1) correctly or-
dered pairs are distributed randomly across all levels of gaps, then
Ei[τGAP − τAP] = 0. Since the expectation of E[τGAP − τAP] is a
linear combination over all Ei[τGAP− τAP], we could conclude that
if the error gaps of a prediction list are relatively small, then τGAP
is larger than τAP; if the error gaps of a prediction list are relatively
large, then τGAP is smaller than τAP.

4. COMPARISON OF THE METRICS
In this section, we use 61 participating systems from TREC 5,

ranked by MAP, as a case study to compare the different emphases
of the correlation coefficients ρ , τAP and our proposed τGAP.

4.1 Correlation Scores for Prediction Lists
Figure 1 shows the result of a two-sided paired t-test for each

pair of systems based on Average Precision (AP) scores for each of
the 50 topics as samples, with both axes sorted in the same order. In
that figure, system pairs with p < 0.05 are plotted as white (37%)
and system pairs with p ≥ 0.05 are plotted as black (63%). This
illustrates clearly that swaps among many of the systems (near the
main diagonal, where score differences are smallest) would offer
little insight into whether one evaluation framework yielded system
comparisons that we meaningfully different from another.

Figures 2 and 3 then each illustrate two ways of making ranked
lists to compare. Each dot represents a system, with the true (TREC-
5) rank of that system plotted on the X-axis, and a randomly per-
muted rank on the Y-axis. We produce the random permutations
by randomly selecting five system pairs each time and swapping
them. In Figure 2, we randomly select systems pairs that are statis-
tically significantly different from each other (i.e., five of what were
black dots in Figure 1). We do these five random draws 50 times
(Figure 2 shows only one of the 50 times). The correlation coef-
ficient metrics that result are ρ = 0.70; τAP = 0.68; τGAP = 0.65,
averaging over 50 such random draws of five pairs to swap. In
Figure 3, we randomly select system pairs from among the set of
pairs that are not statistically significantly different from each other
(i.e., five of what were white dots in Figure 1). We do this 50
times. The correlation coefficient metrics that result are ρ = 0.99;

τAP = 0.92; τGAP = 0.97, averaging over 50 such random draws of
pairs to swap. In general, we can see that swapping system pairs
with large gaps yields lower correlation scores with any measure
than swapping system pairs with small gaps. But the key obser-
vation to make is that, as proven in theorem 4, when the swapped
system pairs have relative large gaps, τGAP = 0.65 is lower than
τAP = 0.68; whereas when the swapped system pairs have rela-
tively small gaps, τGAP = 0.97 is larger than τAP = 0.92.

4.2 Weights for System Pairs
Figures 4, 5 and 6 show the weight for each system pair in eval-

uating the correlation coefficient of two ranked lists under the mea-
surement of ρ , τAP and τGAP respectively. The systems are also
ranked by their ground truth MAP scores. So cell (1, 61) repre-
sents the weight of only swapping the systems at rank 1 and rank
61. In detail, taking τGAP in Figure 6 as example, the value of
cell (1, 61) is calculated by: (1) produce the prediction list by only
swapping the systems at rank 1 and 61 in ground truth list; (2)
calculate the value of τGAP between the ground truth list and the
prediction list; (3) fill the value of (1− τGAP) to cell (1, 61); (4)
after filling in all the cells, rescale the matrix to (0, 1) and build the
heatmap. Therefore, in general, darker cells represent system pairs
with higher weight in evaluating the correlation coefficient.

Figure 4 shows the heatmap of system pair weights by using ρ .
Since ρ is only sensitive to the score difference, not the ranks of
items, we can observe that the value of ρ is dominated by the
swapping pairs with large differences, probably composed of a sys-
tem at very high rank and a system at very low rank. The system
pairs along the diagonal with non-significant difference get lower
weights as expected. However, the swap of top ranked systems also
get lower weights because of their relatively small difference. The
heatmap of τAP in figure 5 shows a progressively decreasing from
the top-left corner of (1, 1) to the bottom-right corner of (61, 61)
due to its sensitivity over ranks. However, comparing Figure 5 with
Figure 1, we can see that the 37% non-significant system pairs still
get non-ignorable weights in calculating τAP. Figure 6 shows the
heatmap using τGAP. Since τGAP is sensitive to both top ranked
systems and the gap between system pairs, we can also observe a
decreasing of weights for the system pairs from top-left corner to
the bottom-right corner. At the same time, we can see a expansion
of the lower weight area (bright-ish area) along the diagonal line
comparing with the heatmap of τAP. This is due to τGAP’s sensi-
tivity to the system pairs with small difference. Overall, the value
of τGAP is dominated by the top ranked system pairs with large
difference.

5. CONCLUSION
In this paper, we proposed a new metric τGAP for evaluating

the correlation coefficient between two ranked lists of scores. We
have shown that τGAP is sensitive to both top ranked items and to
swapped item pairs that exhibit larger differences. Through anal-
ysis, we have shown that τGAP compares favorably with both ρ
and τAP, and using the TREC 5 Ad Hoc track as a case study we
have illustrated that the swaps that τGAP is most sensitive to the
ones we have argued we should care the most about. Although we
have introduced τGAP in the context of system comparison, it is of
course a general correlation coefficient for ranked lists of scores
that could be applied in any case in which both a head-weighted
and gap-sensitive measure would be useful. There are, however,
some characteristics of τGAP that might be further improved upon.
For example, it might be useful to completely discount differences
in scores that are not statistically reliable indicators of real differ-
ences in system behavior. As Figure 1 illustrates, such cases can
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Figure 1: Significance of the MAP differ-
ence on TREC 5.
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Figure 2: Significant difference between
system pairs.
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Figure 3: No significant difference be-
tween system pairs.
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Figure 4: Gap-Sensitive: ρ
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Figure 5: Head-Weighted: τAP
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Figure 6: The proposed τGAP

be common. As another example, τGAP implicitly presumes that
the scores are represented on a meaningful interval scale, meaning
that (for example) a user would prefer a difference of 0.2 twice as
much as they would prefer a difference of 0.1. User studies have
shown that some current evaluation measures do not exhibit any-
where near this degree of correlation to extrinsic measures of suc-
cess such as task completion rates [8]. Future extensions that more
closely model extrinsic measures of satisfaction or success might
therefore be useful. Nonetheless, we see the progression from τ to
τAP and now to τGAP to be a useful one, and one that can perhaps
serve as a basis for future extensions of these and other kinds.
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