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ABSTRACT
�is paper investigates techniques for answering microblog ques-
tions by searching in a large community question answering web-
site. Some question transformations are considered, some propri-
eties of the answering platform are examined, how to select among
the various available con�gurations in a learning-to-rank frame-
work is studied.
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1 INTRODUCTION
Over 81% of the questions asked on the microblogging service Twit-
ter that are not addressed to a speci�c user receive no response [7].
For questions that express a true information need, any useful an-
swer might be highly appreciated. Unanswered questions can be
handled by suggesting answers to similar prior questions [9] or by
routing the new question to some relevant expert who might be
willing to provide an answer [5]. �is approach has been exten-
sively investigated using questions previously posted to the same
platform where the new question has been posted. Well known
techniques leverage features that can be extracted from old ques-
tions and answers, as well as the social graph between the users,
the questions and the answers.

Sometimes, however, it might be be�er to look elsewhere for
the answer. Community �estion Answering (CQA) websites such
as �ora and Yahoo!Answers have became very popular in the
last decade, gathering hundreds of millions of questions with their
answers. �is makes them a suitable place to �nd answers for
questions that have been posed elsewhere. In this paper we use
a large crawl of Yahoo!Answers to search for threads that are
potentially useful for a tweet question (Section 3), we compare the
importance of di�erent �elds in which we can search (Section 2),
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and we study some approaches for adapting the language of Twi�er
questions to that of Yahoo! Answers (Section 2.1). We present our
results in Section 4 before concluding with an overview of future
directions that can bene�t from our release of the annotations
(Section 5). To the best of our knowledge, this is the �rst work to
examine the usefulness of a CQA service for answering questions
posted on a microblogging service.

2 METHODS
In our search task, we want to retrieve a “thread” (i.e., an old ques-
tion with its answers) from Yahoo! Answers that would be useful
for answering the question newly posted to Twi�er. A thread has
several �elds in which we can search. A reasonable baseline is the
concatenation of the title and body of the question, together with
all of its answers. �is approximates a simple search for a web page
in a search engine. Alternatively, we can index each �eld separately.
�is allows us to study the importance of each �eld independently
from the others, and to examine di�erent combination possibilities.
We implement this alternative using BM25 [8].

�ere are two possibilities for indexing the �elds of a thread. In
the �rst, we index each �eld of the question, and the concatenation
of all of its answers. We call this indexing setup �estion-per-
Document (QpD). In the second, the indexed document contains
the two question �elds and a single answer. �at is, we index as
many documents for a given thread as there are answers. We call
this indexing setup Answer-per-Document (ApD). We refer to the
indexed �elds as question title (T), question body (B), title and body
concatenation (C), and answer(s) (A).

We experiment with various combinations of these four indexed
�elds. �e weight of each �eld is by default set to 1, but we also
perform a two dimensional grid search on theweights of the B andA
�elds in the QpD-TBA con�guration (i.e., �estion-Per-Document,
indexing the Title and Body separately along with a single Answer).
For each con�guration, we score the the top-1 thread, breaking ties
(which is o�en needed when searching only the T �eld) by selecting
the most recent thread.

2.1 �estion Rewriting
Tweets have characteristics that are less common in some other
platforms, some of which we address in this section.

2.1.1 Hashtag Segmentation. Twi�er users o�en use hashtags
to highlight some notion. Since Twi�er hashtags don’t contain
spaces, it is common to concatenate the terms of a multi-words
expression. Sometimes a CamelCase convention is used, as in “i
wonder if #�eBible is or will be on Net�ix?” In other instances,



no capitalization cues are present, as in “Is she Ilona or Elona?
#thearchers.” We expect hashtag segmentation to improve retrieval
e�ectiveness. Our segmentation approach has three stages. In the
�rst, we remove the # symbol, and use Google’s cloud natural lan-
guage API1 to see if the resulting term is classi�ed as an entity
(although we ignore entities of type OTHER). �is stage aims to
avoid segmenting single-word proper names such as “Washington.”
In the second stage, we generate one or more candidate segmen-
tations. If a hashtag follows the CamelCase convention (detected
with a regular expression), we segment at capital le�ers. Otherwise,
we use the vocabulary of our Twi�er index (Section 3.3) to extract
all possible segmentations (deleting any candidates containing 4 or
more words).2 Since some segmentations may be unreasonable (e.g.,
segmenting #iPhone into “i phone”), in the third stage, we remove
segmentations that appear (in order) less frequently in our Twi�er
index than the hashtag (without the #). If no segmentation passes
this �lter, we maintain the hashtag (without the #). Otherwise, we
replace it with the segmentation that has the highest frequency
(breaking ties arbitrarily).

2.1.2 Spelling Correction. Twi�er is mostly accessed from mo-
bile devices3 on which small keyboards increase the chance of
misspellings. Consider for example “Why did the great awaking
happen?” We have li�le hope for �nding an answer unless the
spelling of awaking is corrected to awakening. �is problem is
particularly critical when the misspelled word is a key term in the
question. Another impact appears when a high frequency word
(e.g., a stop word) is misspelled, typically resulting in a rare word
with high IDF. For example, because we lowercase everything be-
fore performing a search, “should igo to school tomorrow?” leads
to the undesirable retrieval of threads about Inter-Governmental
Organizations (IGO).

We perform spelling correction in three steps. As with hashtag
segmentation, we �rst exclude terms that are classi�ed as entities
(of a type other than OTHER). We then generate a list of (up to) the
1,000 closest words by Levenstein distance, using a model trained
on character n-grams from our Twi�er index.4 Finally, we keep
only alternatives for which both their document frequency and the
document frequencies of the terms to their le� and right (up to
the �rst stopword) are greater than those of the original word. If
any alternatives pass this �lter, we return the alternative with the
highest document frequency as the possible correction. To limit the
e�ect of correction mistakes, we treat the possible correction as a
synonym of the original word, computing the BM25 score for each
�eld a�er summing the term frequencies of the original term and
its possible correction and approximating the combined document
frequency with the maximum of the two document frequencies
(which is the document frequency of the possible correction).

2.1.3 Synonyms. �e informal language of tweets encourages
the adoption of some writing conventions that are less frequent
in other platforms. For example, you and conversations would be
synonyms to u and convos in “Should u read your kids convos on
the Internet?” We �nd synonyms in three stages. �e �rst and

1h�ps://cloud.google.com/natural-language
2We use the WordBreakSpellChecker.suggestWordBreaks() method of Lucene 6.3.
3h�p://venturebeat.com/?p=2014007
4We use the SpellChecker.suggestSimilar() method of Lucene 6.3.
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Figure 1: An architecture for detecting duplicate questions.

the third stages are identical to what we do for spelling correction.
For the second stage (suggesting a candidate synonym), we use a
word2vec [6] model trained on our Twi�er corpus to suggest the
nearest word to the original one, but only if the cosine similarity of
their vectors exceeds an arbitrary threshold of 0.5.

2.2 Term Statistics
�e importance of a term is indicated, in the BM25 scoring function,
by its IDF. As a result, the same term might have di�erent IDF
values in di�erent corpora. For the question “What am I gunna
do with this dog for the night?” we observe that night has a high
IDF in Yahoo! Answers compared to dog �e opposite (and we
think more desirable) relative IDF rank is true for Twi�er, however.
Some words seem to su�er from a “cost of fame” in which they
are so important that many questions are asked about them in
Yahoo!Answers, (where there is an entire subcategory for dogs),
thus diminishing their IDF. To mitigate this e�ect, we can use the
IDF statistics from our Twi�er index.

2.3 �estion/�estion Similarity
Similar questions might be phrased in di�erent ways, so we need
some way of measuring the extent to which a Twi�er question
is similar to a question in Yahoo!Answers. �ora has recently
released a corpus of 404,351 pairs of questions, amongwhich 149,306
are indicated to be duplicates.5 Weuse 90% of those pairs to train the
neural network depicted in Figure 1, and the remaining validation
subset to stop training when the accuracy does not improve over
the best prior results in the previous 10 epochs. We return the
model that has the best accuracy (85.5%) on that validation set, a�er
optimizing it with ADAM [4], using mean squared error as a loss
function as implemented in Keras.6

2.4 Selecting Con�gurations and Answers
�eapproaches we have introduced so far aim to �nd con�gurations
that work the best on average. However, it is possible to use the
features of the questions and the answers to select the thread to
be retrieved given the votes of di�erent con�gurations, and our
prior knowledge of their average performance. Here we present a
three-stage process to select the best thread among those returned
by several con�gurations.
5h�p://qim.ec.quoracdn.net/quora duplicate questions.tsv
6h�p://keras.io
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2.4.1 Ordering the Configurations. Let N be the number of avail-
able con�gurations, C1, ...Cn≤N be a subset of con�gurations, and
T1, ...Tm be the number of training questions. Every pair (Ci ,Tj ) cor-
responds to a retrieved thread with a score Si, j . �e maximum av-
erage score, over the training questions, that can be achieved given
this combination (with an oracle) would be: Ŝ = 1

m
∑
Ti maxCj Si, j .

Our goal is to �nd the subset of con�gurations that maximizes this
value given n. With as many as 74 con�gurations in our experi-
ments, a greedy search is considerably more e�cient than exhaus-
tively trying every possible combination. We start by �nding the
best single con�guration. We then repeatedly use the best com-
bination we obtained at iteration n − 1, which gave us potential
average score Ŝn−1, and iterate over the remaining con�gurations
to maximize Ŝn . �is process yields an ordered list of con�gurations
that can be added, one at a time, to form several combinations.

2.4.2 Learning to Rank Threads. With some combination of con-
�gurations that, collectively, retrieves a set of threads, we want
to learn to rank those threads. For every pair of a question and a
retrieved thread, we extract the following vector of features:

• �e BM25 scores of the title, the body, and the answer(s).
• �e neural similarity scores between the question, and

each of the three �elds above.
• �e number of answers in the thread (log scaled).
• �e min, max, mean and standard deviation of the scores

of each answer, both for BM25 and neural similarity.
• �e number of threads with the same BM25 score as the

candidate (log scaled)
• All the same features, using the rewri�en question (with

the three rewriting operations).
• Binary indicators of whether each con�guration returned

that thread.

Given a training question with several threads, we integerize the
ground truth score for each thread (Section 3) using 0.5, 1.5 and 2.5
as cuto� points to produce scores of 0 (bad), 1( fair), 2 (good) or 3
(excellent). Finally, we train a learning-to-rank (L2R) model based
on those threads using the SVMrank so�ware [3].

2.4.3 Selecting the Best Combination of Configurations. Given
an ordered list of con�gurations (Section 2.4.1) and a model for
ranking the threads of a particular combination of con�gurations
(Section 2.4.2), we can select the best combination. To do so, we start
with the best single con�guration, and record its e�ectiveness on
the training and validation questions, considering it to be the best
combination so far. �en, we iterate over the ordered con�gurations,
one at a time, adding each to the pool of con�gurations, and training
its L2R model. We record the average score of the predictions on
the training and validation questions using the actual ground truth
scores (not the integerized versions). If the e�ectiveness increases
in both sets, we consider the actual combination to be the best
one. We stop when we �nish our enumeration, and return the most
recent best combination.

3 TEST COLLECTION
We present a set of Twi�er questions, a crawl of Yahoo! Answers,
and a collection of tweets used to build a language model.

3.1 �estions and Answers
Among questions with real information needs, only a small fraction
could reasonably be answered by an automated system. Consider,
for example, “@user hey, when u coming back?” Clearly, the asker
would want an answer to this question, but probably only the
mentioned user could provide it. It would be advisable for an
answering system to skip such questions. We have collected a set
of 5,000 questions posted on Twi�er in February 2016 and asked
annotators on the crowdsourcing platform CrowdFlower to indicate
whether some stranger probably exists who could read the question
and o�er a useful answer. In this paper, we use the resulting set of
362 tweets deemed to be answerable questions, with a 177/85/100
split between training, validation and test.

With the large base of old questions and answers available in
Yahoo!Answers, we hope to successfully �nd useful answers to
a substantial number of questions asked on Twi�er. One option
would be to issue the question as a query and rely on the questions
and answers retrieved by its“black box” internal search engine.
However, this would prevent us from studying the di�erent options
for building and using the inverted index. �us, we obtain a crawl of
123M questions and 673M answers from [2]. We exclude questions
and answers that contain any term from a “dirty word” list,7 and
index all of the remaining questions and answers posted prior to
2016 (to avoid “leaking” future information to new answers).

3.2 Ground Truth
We also collect annotations for the results of our experiments using
CrowdFlower. Because our task is similar, we adopt the same 4-
level relevance scale (bad, fair, good, excellent) as the the TREC
LiveQA track [1]. We assign the weighted average score over three
annotators (where the weight is computed from annotator accuracy
on a set of questions with known answers) as the ground-truth
relevance score of the thread. Annotators with accuracy scores
below 85% were removed and replaced.

As assessing all answers to a question might be impractical when
many answers exist, we present only the question title, body, and a
what we expect to be the best few answers. We select these answers
in part based on metadata from Yahoo! Answers and in part based
on whichever of our systems found the answer. We �rst select the
best answer, as designated by the asker, if one exists. Otherwise,
we select the answer with the highest di�erence between thumbs-
up and thumbs-down votes, breaking ties by the score assigned
by the system that found that answer. We also include whatever
answer our system scored highest. In both cases, if multiple systems
retrieve the same thread but disagree on which is the best answer,
we include the best answers from each.

We obtained the annotations in several batches. In each batch we
gathered the annotations for all threads that had not been previously
assessed for all 362 questions. �is allowed us to use the results
of prior annotations to incrementally improve our systems, thus
generating a richer test set, akin to the way systems from one year
are used to guide the development of test collections in subsequent
years at shared-task evaluations such as TREC. We note, however,
that di�erent annotators assessed di�erent batches.

7Downloaded from h�ps://gist.github.com/roxlu/1769577
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3.3 Twitter Language Model
For language modeling, we obtained the Twi�er random 1% public
sample stream between January 2012 and December 2015 from the
Internet Archive.8 We keep only English tweets and index them
with Lucene (without stemming or stopword removal), recording
the positions of each indexed term in its tweet. We use this posi-
tional index as a language model to guide our question transforma-
tions (Section 2.1).

4 RESULTS
We experiment with a combinations of 74 con�gurations. Table 1
shows the average top-1 accuracy (on a [0-3] scale) for some of
the combinations. First, we observe that the single best �eld is the
Title (line 1). It is signi�cantly (p < 0.05, two-sided paired t-test)
be�er than the Body and the Answer �elds (lines 2 and 7) in all sets
(i.e., training, validation and test). Searching using this �eld is also
be�er than searching using the entire page as a single �eld (line
8), with a signi�cance observed in the training and test sets. It also
appears that question-per-document indexing may be a bit be�er
than answer-per-document indexing (compare lines 5, 6 and 7 to 9,
10 and 11), but weak signi�cance is observed only in the training set
(p < 0.1). Tuning the weights of the �elds (line 12) seems to over�t
to the training set, where it is signi�cantly (p < 0.05) be�er than
all combinations other than QpD-T (i.e., lines 2 through 11). On the
validation and test sets, this tuning is not be�er than some of those
combinations. None of the query rewriting methods, individually
or in combination, improve the results signi�cantly, and the same
is true for using the IDF of the Twi�er index. Insigni�cant positive
di�erences, when observed, are restricted to the training set. �e
statistically signi�cant improvements we observe (p < 0.01) with
the L2R model over all con�gurations appears to be an instance
of over��ing. In fact, the results over the validation set decrease
slightly (from 1.48 of line 5 to 1.45 in line 26), and the gain we get
in the test set (from 1.32 to 1.37) is not statistically signi�cant.

5 CONCLUSION
We studied the possibility of answering the questions asked on
Twi�er using Yahoo!Answers, and found that, on average, two
thirds of the answerable questions do have an excellent answer
there. We found that searching in the title �eld of the old questions
yields a signi�cant improvement over search in the concatenation
of all the �elds of a CQA thread. Small improvements are sometimes
observed using various techniques, such as the tuning the weights
of the indexed �elds, rewriting the tweet question, and using the IDF
of an index of tweets. While none of these techniques is particularly
be�er than the others, the pool of diverse threads they retrieve
suggests that a failure analysis might help to identify techniques
that can be employed for speci�c question types. We have released
our test collection to encourage further investigation.9
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Table 1: E�ectiveness of con�gurations over the scale [0-3].

# Con�guration Fields Average score
Train. Valid. Test

1 BM25 QpD-T 1.22 1.19 1.32
2 BM25 QpD-B 0.80 0.89 0.75
3 BM25 QpD-TB 1.10 1.14 1.05
4 BM25 QpD-C 1.13 1.16 1.20
5 BM25 QpD-TA 1.20 1.48 1.21
6 BM25 QpD-TBA 1.11 1.22 1.14
7 BM25 QpD-A 0.79 0.82 0.74
8 BM25 QpD-P 0.85 1.09 0.88

9 BM25 ApD-TA 1.10 1.27 1.12
10 BM25 ApD-TBA 1.02 1.15 1.04
11 BM25 ApD-A 0.54 0.68 0.41

12 Weighted BM25 QpD-TBA 1.32 1.28 1.32

13 BM25 + Hashtag Split QpD-T 1.24 1.19 1.31
14 BM25 + Hashtag Split QpD-TA 1.22 1.46 1.20

15 BM25 + Spell Correction QpD-T 1.23 1.19 1.30
16 BM25 + Spell Correction QpD-TB 1.13 1.17 1.03
17 BM25 + Spell Correction QpD-TA 1.21 1.48 1.19

18 BM25 + Synonyms QpD-T 1.22 1.24 1.29
19 BM25 + Synonyms QpD-TA 1.21 1.43 1.22

20 BM25 + 3 Rewriters QpD-T 1.25 1.24 1.27
21 BM25 + 3 Rewriters QpD-TA 1.23 1.41 1.19
22 BM25 + 3 Rewriters QpD-C 1.12 1.17 1.10

23 BM25 + Twi�er IDF QpD-T 1.21 1.08 1.32
24 BM25 + Twi�er IDF QpD-TA 1.09 1.38 0.96
25 BM25 + Twi�er IDF QpD-P 0.82 1.15 0.97

26 L2R = (12) + (20) + (25) + (22) 1.43 1.45 1.37

27 Oracle 1.90 2.03 1.86

Foundation) and by an IBM Ph.D. Fellowship. �e statements made
herein are solely the responsibility of the authors.
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