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ABSTRACT
Early retrieval systems were used to search physical media (e.g.,
paper) using manually created metadata. Modern ranked retrieval
techniques are far more capable, but they require that content be
either born digital or digitized. For physical content, searching
metadata remains the state of the art. This paper seeks to change
that, using a textual-edge graph neural network to learn relations
between items from available metadata and from any content that
has been digitized. Results show that substantial improvement over
the best prior method can be achieved.

CCS CONCEPTS
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1 INTRODUCTION
Searching digital content is such a strong focus of IR research that
the digital content assumption is rarely even stated. There are, how-
ever, still massive quantities of documents in physical form (e.g.,
on paper, microfilm, or analog audio or video tape) that are un-
likely to be digitized any time soon. For example, only about 2.1%
of the estimated 11.9 billion pages held by the US National Archives
have been digitized, and at present rates (∼121,000 pages/day) full
digitization would take centuries [4]. Our focus is on searching
that which is not yet digital. The usual approach to this is man-
ually intensive: searchers must identify a repository with useful
content, use metadata there to get an idea where to look, learn
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how those parts of the repository are organized, and look through
many boxes. We propose to better automate the process by building
graphs from known content and learned relationships, training
graph embeddings to represent the content of archival storage con-
tainers (“boxes”), along with relations that can be discerned from
existing metadata. When a user poses a query, we embed the query
and then identify boxes with similar embeddings. The keys to this
approach are how we build the graph and our use of Edgeformer,
which learns mappings from text to predefined categories (in our
case, boxes) that we associate with edges in the graph.

2 RELATEDWORK
We describe archival metadata and digitization, summarize work
showing sampling content is useful, and introduce Edgeformers.

2.1 Archival Arrangement and Description
The scale of the description task in archives makes it impractical to
describe each item individually. Instead, archivists arrange materi-
als in ways expected to facilitate future access and then describe
that arrangement [9]. Because the people who created a collec-
tion did so in some “original order,” archivists make arrangement
more efficient by respecting that original order [6]. Hierarchically
structured metadata is then used to help searchers navigate the col-
lection. For example, US State Department records are organized by
time periods corresponding to changes in the Department’s filing
system; search within a period follows the arrangement of records
from that time. 1960’s State Department records were organized by
country, date, and a topic hierarchy (e.g., political affairs, economic
affairs, or management).1 Searchers can use this metadata to iden-
tify boxes that might contain something that they want to see, but
then they must look in those boxes to see what’s there.

In recent years, archives have digitized parts of their collections.
For reasons of scale and cost, the process has been highly selective,
often driven by public interest, or by interests of partners who pay
for it. For our experiments we use an extensively digitized set of
State Department records on Brazil, but there has been no similarly
extensive digitization for records involving (for example) Paraguay.

2.2 The Value of a Few Examples
Our work is motivated by Oard [5], who showed that with a few
scanned pages per box it was possible to guess which box might
contain what a searcher wished to see. Oard’s key result was that

1https://www.archives.gov/research/foreign-policy/state-dept/rg-59-central-
files/1963-1973
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Item Number Fraction
Searchable PDF 27,514
Date metadata 27,511 99.9%
Entity metadata 26,562 96.5%

Table 1: OCR and item-level metadata, 117-box collection.

guesses between five and 10 times better than random selection
could be achieved. He interpreted this as indicating that documents
could be “known by the company they keep.”While intriguing, there
are limitations to that work we seek to address. First, we would
expect learned embeddings to yield better results than lexical match-
ing. Second, Oard ranked documents separately using metadata
and OCR terms and then applied late fusion, but we would expect a
single unified model using OCR text and metadata to be better than
late fusion. Third, Oard’s experiments were based on sampling the
same number of scanned documents from every box, but in reality
digitization is highly uneven. To address these concerns, we extend
Oard’s test collection to model uneven digitization,2 and we recast
the task as learning a graph embedding.

2.3 Edgeformer-E
Edgeformers [2] were designed for bipartite graphs in which people
(one node type) comment on objects (the other node type) such as
products or movies. Different people comment on the same object,
and one personmay comment on different objects. In such cases, the
text must be associated with edges, not with nodes that represent
people or objects. One task is to interpret the text associated with
an edge to predict a category for that edge (e.g., the person likes or
dislikes the object) in a way that leverages the graph. We model our
application in an analogous way, with documents as one node type,
boxes as the other, the edge text being the text of the document, and
the category being the box in which the document will be found.

Several text-aware Graph-Neural Networks (GNNs) have been
proposed. One approach is to cascade a pretrained language model
and a GNN, which has been used to model nodes [1, 3, 11]. Graph-
Formers [10] are more closely coupled, with GNNs nested between
Transformer layers so node encoding leverages both node text and
signals from neighbor nodes. However, these models assume only
nodes have associated text. Edgeformers, by contrast, model graphs
where text is associated with edges, not nodes [2]. Like Graphform-
ers, Edgeformers are built on Transformers [8]. Edge text is initially
embedded using BERT, but in Edgeformer-E the final embeddings
are also affected by the nodes to which that edge is connected.3
Edgeformer-E injects network signals into Transformer encoding
using virtual node tokens. Embeddings of virtual node tokens are
concatenated to the output embeddings of the text tokens in each
layer. After concatenation, the hidden state at each layer represents
both the edge’s associated text and the two nodes that it connects.

3 METHOD
Here we describe a new test collection and how we model that
collection, train Edgeformer-E, and perform inference.

2Available at https://github.com/tokinori8/archive-box-search
3There is also Edgeformer-N, which predicts node types, but we focus on Edgeformer-E.
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Figure 1: Graph design for the Edgeformer experiments.

3.1 A Larger Test Collection
To support richer experiments, we created a superset of Oard’s
collection. Following his approach [5], we collected PDF scans and
item-level metadata for 27,514 State Department records from the
U.S. National Archives and Records Administration (NARA) that
had been digitized by the Brown University Library.4 This includes
all documents for which the source was NARA, item-level metadata
indicated which box the document was stored in at NARA, and a
sufficient number of PDFs from that box were available to permit
sampling for training. Our documents together span 117 boxes.

Table 1 shows item-level metadata statistics for the collection.
Date metadata indicates the creation date of a document, Entity
metadata names people or organizations involved with the docu-
ment’s creation or receipt. As can be seen, some metadata fields
were missing for some documents. We extracted the OCR text from
the each PDF using python’s PyPDF2 library.5 The number of doc-
uments per box varies between 22 and 540, averaging 232.

Our test collection is fully digitized, but we simulate realistic
amounts of digitization. In uniform sampling, we randomly select 5
documents per box on which to train, a uniform 2.1% sample, mod-
eling the fact that 2.1% of NARA’s pages are digitized. In our second
approach, uneven sampling (Section 4.2), we select more documents
from some boxes than others, since the amount of digitization can
vary considerably from one part of a collection to another.

3.2 Modeling the Collection as a Graph
We model a collection as a textual-edge graph [2], which is a set
of nodes, a set of edges, a set of texts assigned to the edges, and
a set of categories assigned on the same edges. Our initial model
is a bipartite graph, with nodes for each Document and for each
Box, with each Document node linked to the node for the Box
containing that document. Each edge is labeled using the OCR text
for the first page of the corresponding document, truncated to 64
tokens, and the category assigned to an edge was the box in which
that document was found. The edges between Document and Box
nodes in Figure 1 illustrate this structure, although we note that
Edgeformer is blind to node labels, which are shown here only for
clarity. We also extend this to a tripartite graph by adding Year
and Entity nodes, as shown in Figure 1. Unlike Box nodes, which
4https://library.brown.edu/create/openingthearchives/en/
5https://pypi.org/project/PyPDF2/
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Edgeformer-E BM-25
Graph Model S@1 S@2 MRR S@1 S@2 MRR
OCR 13.7 ± 2.7 15.0 ± 3.5 21.8 16.3 ± 0.4 24.5 ± 0.4 25.5
OCR+Year 38.4 ± 2.3 39.4 ± 2.3 42.4
OCR+Entity 32.3 ± 1.4 35.6 ± 1.4 38.2
OCR+Year+Entity 40.8 ± 0.8 45.7 ± 0.8 50.8

Table 2: Title metadata query results (percent with standard
error), 35-box collection, 5 first-page OCR samples per box.

have one node per box, we created a single metadata node per type.
We set the text on each edge from a document to the Year node to
“Written in” and the category for that edge to that document’s year
(extracted from Date metadata). A document has only one date,
but it can have metadata specifying many entities (e.g., sender and
recipient). Although not shown in Figure 1, we created one edge
joining a Document node to the Entity node for each entity in the
metadata, setting the edge text in each case to “Related to” and the
category to a normalized version of the entity name (initials and
last name).6 Because Edgeformer is blind to node types, we foster
consistency by placing Document nodes first when defining edges.

3.3 Graph Learning and Inference
We train Edgeformer-E for edge classification, with inference given
two nodes and the edge text to predict the edge category from
learned embeddings. The number of node pairs for training depends
on the sampled documents and the graphmodel (Section 4).We used
90% of the sample for training, 10% for validation. Given a query, we
then compute its text embedding, use that embedding to perform
an approximate nearest neighbor search over known edge category
embeddings, and finally a softmax layer ranks edge categories. For
models with more than Box categories, we filter out categories not
corresponding to Box nodes. We configured Edgeformer-E as in [2],
with 12-layer BERT, 768 dimensions,7 and 64-dimension bottleneck
features for node embeddings. However, we changed the size of last
softmax layer to the number of edge categories. We used AdamW
with learning rate 0.001, early stopping patience 3 epochs, batch
size 25, and macro 𝐹1 as the optimization target.

4 RESULTS
Like Oard [5], we evaluate with known item retrieval, first randomly
selecting a target box, then a target document (not one used for
training). We use Brown’s target document title as the query, and
we report Success at rank 1 (S@1) and in the top two (S@2), and
Mean Reciprocal Rank (MRR). For Edgeformer-E (and per-query
BM-25 comparisons) we resample and retrain for each query. For
other BM-25 runs we followOard and draw 100 queries per sample.8

4.1 Uniform Sampling
For comparison with Oard we first use uniform sampling, drawing
5 random first-page samples per box (i.e., the first page of each of
5 documents). Tables 2 and 3 summarize results on Oard’s 35-box
and our 117-box collection, respectively. Table 2 shows that with
title metadata queries Edgeformer-E’s overall S@1 is slightly worse

6We used the same normalization process for people and organizations.
7https://huggingface.co/bert-base-uncased
8We used Oard’s BM-25 code from https://github.com/oard/BoxFinder.

Edgeformer-E BM-25
Graph Model S@1 S@2 MRR S@1 S@2 MRR
OCR 5.3 ± 0.9 7.0 ± 0.6 10.3 17.4 ± 0.4 24.5 ± 0.4 24.4
OCR+Year 23.3 ± 2.8 24.3 ± 2.8 26.6
OCR+Entity 18.0 ± 1.0 19.3 ± 0.7 20.5
OCR+Year+Entity 21.7 ± 1.8 24.3 ± 0.9 26.2

Table 3: Title metadata query results (percent with standard
error), 117-box collection, 5 first-page OCR samples per box.

in the OCR-only condition than Oard’s BM-25 ranking (which also
was OCR-only). Manually inspecting ranked lists from 300 queries,
we see that BM-25 did better than Edgeformer-E on the 48 queries
that requested a “summary” or a “weeka” (a type of summary). On
the other 252 queries, Edgeformer-E (38 at rank 1) does better than
BM-25 (25 at rank 1), particularly on shorter queries (median query
words for correct box at rank 1 was 3 for Edgeformer, 6 for BM-25).

Adding Year or Entity edges to the graph for Edgeformer-E
yields very substantial improvements in S@1, and adding both does
slightly better by S@1 then the better of the two (Year alone). To
see why, we computed per-box MRR by averaging across queries
that target a specific box, finding that relatively high MRR (above
0.4) was common for Edgeformer-E OCR+Year (20 of 35 boxes),
whereas that was rare for Edgeformer-E OCR (4 boxes) or BM-25
OCR (7 boxes). Looking at the topic codes assigned to folders in
those boxes, we see that for 6 of the 7 boxes on which BM-25 OCR
achieved an MRR above 0.4, every folder in the box was coded as
"General" (e.g., general policy trends, or general political analysis),
whereas 14 of the 20 boxes on which Edgeformer-E OCR+Year did
that well included at least some folders focused on specific topics
(e.g., political parties, local government, or elections). From this
we conclude that the supervised learning in Edgeformer-E is able
to handle cases involving more specific topics better than can be
done by BM-25’s unsupervised approach. BM-25 can, however, find
boxes in which few-shot learning isn’t as representative of a box’s
full range of content: for 6 of the 7 "General" boxes where BM-25
did well, its MRR exceeded that of Edgeformer-E OCR+Year.

In Table 3, we see that moving from 35 to 117 boxes has little
effect on BM-25, but Edgeformer-E results are adversely affected by
every measure. This results from a tuning issue with Edgeformer-E
training, which stops within 4 epochs on 173 of 300 queries on the
117-box collection, whereas such early stopping is rare on the 35-
box collection. When it happens, this results in overfitting to small
samples. Adding links to a metadata node (Year or Entity) does help,
again yielding improvements over Edgeformer-E OCR by every
measure. Moreover, Figure 3 shows we can do even better with only
some of the Document to Year edges. S@1 peaks when training with
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Figure 3: Random Doc-Year link ablation, 117-box collection.

20%–30% of those links, indicating that adding some edges helps
learn better embeddings, but that too many edges with the same
text (here, "Written in") risks overwhelming the Document to Box
edge text from which we are seeing to learn to rank. A limitation of
Edgeformer-E is that it has no concept of node type, so it can’t learn
to give edges between different node types different weights. Here
we modulate an edge type’s effect with ablation when training, but
we will want more direct ways of controlling relative influence.

This effect may also partially explain why adding the sparser Year
metadata yields more improvement than does adding the denser En-
tity metadata. Almost every document has one year, but documents
on average have 2.5 links to Entities. Edgeformer-E OCR+Entity,
with no random ablation, thus adds even more edges, potentially
benefiting from additional relations but at the cost of further deem-
phasizing the document text that we seek to map to box categories.

To further investigate this effect, we created nested 60, 50 and 40-
box collections, all supersets of the 35-box collection. We see consis-
tent decline in S@1with increasing collection size for Edgeformer-E
OCR and OCR+Year, but no decline is evident for BM-25.

Finally, we note that in both tables S@2 is much better than
S@1 for BM-25, but Edgeformer-E sees no benefit beyond random
selection (∼3% for 35-box, ∼1% for 117). From this we conclude that
our softmax ranking adds little beyond binary classification.

4.2 Uneven Sampling
Our experiments in Section 4.1 were based on uniform sampling,
but that is often not the case in real collections. In this section we
characterize the distribution of nodes and edges in an actual archive
and then use that distribution to sample elements of our collection.
Of the 526 NARARecord Groupswith estimates for digitized pages,9
47 have 2% or more of their content digitized. The left side of
Figure 2 shows the digitized fraction for the 117 most digitized
NARA record groups (which cover 99.7% of all digitized documents).
The right side shows a 117-box distribution of documents per box
that approximates that observed distribution, with a mean of five
documents per box and a minimum of one document per box.

Known-item queries were again selected with uniform random
sampling of box then target document, as in all our experiments.
OCR columns in Table 4 show results for Edgeformer-E and BM-25
on uneven samples of our 117-box collection. Edgeformer-E does
better with uneven than uniform sampling, whereas BM-25 does
worse. For Edgeformer-E, the number of samples for cases where
the correct box is at rank 1 is far larger (averaging 4.7 per box) than
9No estimates are available for 62 record groups.

Samples BM-25 Edgeformer-E
Sampling per Box OCR OCR GPT-4
Uneven mean=5 12.7 ± 0.3 38.0 ± 0.6 43.3 ± 2.3
Uniform 5 17.4 ± 0.4 5.3 ± 0.9 4.0 ± 1.2
Uniform 10 21.2 ± 0.4 49.3 ± 3.7 46.0 ± 3.5

Table 4: S@1, title queries, 117-box collection.

when the correct box is lower in the ranked list (1.1 per box). As the
uniform sampling results in Table 4 show, Edgeformer-E does much
better with 10 samples per box than with 5, and uneven sampling
produces some boxes with many more than 5 training samples.

4.3 OCR Rewriting
OCR text poses two difficulties for Edgeformer-E. First, BERT’s
WordPiece tokenizer is not optimized for text with OCR errors. Sec-
ond, some documents (e.g., telegrams) start with formatted headers
that are not specific to the document’s topic. We might address
both issues using abstractive summarization. We therefore used
GPT-4 to summarize the OCR text for each document and then
substituted that text for the OCR in our experiments (without Year
or Entity metadata). We told GPT-4 that the text may contain errors,
as recommended by OpenAI.10 Our prompt is: “Please summarize
the text below within 60 words. The text is the first page of an
archival document scanned by OCR. That may contain some errors.
Text: [OCR text]”. Inspection of GPT-4 results indicates that the
summaries focus well on the document’s topic, that their length is
typically 80 to 100 words, and that OCR errors have little effect on
the summaries. Table 4 shows results for using GPT-4 summaries in
place of OCR text for both training and test. Results are similar for
uniform samples, but GPT-4 summaries do seem to improve uneven
sampling results a bit; the improvement results from 17 additional
boxes at rank 1 that each had only a single training sample.

5 CONCLUSION AND FUTUREWORK
We have introduced a new test collection to better characterize
searching for physical documents, including uniform and uneven
sampling and a broader range of metadata. We performed the first
experiments for this task using a graph neural network, obtaining
strikingly better results than prior work when a sufficient number
of training samples are available. In future work we plan to explore
a broader range of text-aware graph models, including models such
as Graphformer in which text can be associated with nodes. We
also plan to expand the range of graph structures we explore, and
to experiment with additional metadata that is available for our
new collection. Suzuki et al. [7] have shown that it is also possi-
ble to find descriptions of archival content in scholarly literature,
and we expect the richer training data obtained in that way could
lead to further improvements. Demonstrating that would require a
different approach to test collection development, however.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant JP23KK0005.

10https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-
getting-better-results

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Searching for Physical Documents SIGIR ’24, July 14–18, 2024, Washington, DC

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing

Liu. 2020. Hierarchical Graph Network for Multi-hop Question Answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).
Association for Computational Linguistics, 8823–8838. https://doi.org/10.18653/
v1/2020.emnlp-main.710

[2] Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. 2022. Edgeformers: Graph-
Empowered Transformers for Representation Learning on Textual-Edge Net-
works. In The Eleventh International Conference on Learning Representations.

[3] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi
Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. AdsGNN: Behavior-
Graph Augmented Relevance Modeling in Sponsored Search. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’21). Association for Computing Machinery, New
York, NY, USA, 223–232. https://doi.org/10.1145/3404835.3462926

[4] National Archives and Records Administration. 2024. Record Group Explorer
Data. Website https://www.archives.gov/findingaid/stat/discovery, visited Janu-
ary 11, 2024.

[5] Douglas W. Oard. 2023. Known by the Company It Keeps: Proximity-Based
Indexing for Physical Content in Archival Repositories. In Linking Theory and
Practice of Digital Libraries: 27th International Conference on Theory and Practice
of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26-29, 2023, Proceedings
(Lecture Notes in Computer Science, Vol. 14241). Springer, 17–30. https://doi.org/
10.1007/978-3-031-43849-3_3

[6] T. R. Schellenberg. 1961. Archival Principles of Arrangement. The American
Archivist 24, 1 (1961), 11–24.

[7] Tokinori Suzuki, DouglasW. Oard, Emi Ishita, and Yoichi Tomiura. 2023. Automat-
ically Detecting References from the Scholarly Literature to Records in Archives.
In Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine
Collaboration - 25th International Conference on Asia-Pacific Digital Libraries,
ICADL 2023, Taipei, Taiwan, December 4-7, 2023, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 14458), Dion Hoe-Lian Goh, Shu-Jiun Chen, and
Suppawong Tuarob (Eds.). Springer, 100–107. https://doi.org/10.1007/978-981-
99-8088-8_9

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[9] Gregory Wiedeman. 2019. The Historical Hazards of Finding Aids. The American
Archivist 82, 2 (2019), 381–420.

[10] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal,
Amit Singh, Guangzhong Sun, and Xing Xie. 2021. GraphFormers: GNN-
nested Transformers for Representation Learning on Textual Graph. In Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Asso-
ciates, Inc., 28798–28810. https://proceedings.neurips.cc/paper_files/paper/2021/
file/f18a6d1cde4b205199de8729a6637b42-Paper.pdf

[11] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang,
Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. 2021. TextGNN: Improving
Text Encoder via Graph Neural Network in Sponsored Search. In Proceedings
of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for
Computing Machinery, New York, NY, USA, 2848–2857. https://doi.org/10.1145/
3442381.3449842

5

https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.1145/3404835.3462926
https://www.archives.gov/findingaid/stat/discovery
https://doi.org/10.1007/978-3-031-43849-3_3
https://doi.org/10.1007/978-3-031-43849-3_3
https://doi.org/10.1007/978-981-99-8088-8_9
https://doi.org/10.1007/978-981-99-8088-8_9
https://proceedings.neurips.cc/paper_files/paper/2021/file/f18a6d1cde4b205199de8729a6637b42-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f18a6d1cde4b205199de8729a6637b42-Paper.pdf
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842

	Abstract
	1 Introduction
	2 Related Work
	2.1 Archival Arrangement and Description
	2.2 The Value of a Few Examples
	2.3 Edgeformer-E

	3 Method
	3.1 A Larger Test Collection
	3.2 Modeling the Collection as a Graph
	3.3 Graph Learning and Inference

	4 Results
	4.1 Uniform Sampling
	4.2 Uneven Sampling
	4.3 OCR Rewriting

	5 Conclusion and Future Work
	Acknowledgments
	References

