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ABSTRACT
PLAID, an efficient implementation of the ColBERT late interaction
bi-encoder using pretrained language models for ranking, consis-
tently achieves state-of-the-art performance in monolingual, cross-
language, and multilingual retrieval. PLAID differs from ColBERT
by assigning terms to clusters and representing those terms as clus-
ter centroids plus compressed residual vectors. While PLAID is ef-
fective in batch experiments, its performance degrades in streaming
settings where documents arrive over time because representations
of new tokens may be poorly modeled by the earlier tokens used
to select cluster centroids. PLAID Streaming Hierarchical Index-
ing that Runs on Terabytes of Temporal Text (PLAID SHIRTTT)
addresses this concern using multi-phase incremental indexing
based on hierarchical sharding. Experiments on ClueWeb09 and the
multilingual NeuCLIR collection demonstrate the effectiveness of
this approach both for the largest collection indexed to date by the
ColBERT architecture and in the multilingual setting, respectively.
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1 INTRODUCTION
Ranked retrieval using pretrained language models (PLMs) has
shown great promise on research test collections [9]. Two main
architectures have emerged, cross-encoders and bi-encoders [20].
Cross-encoders are generally used as rerankers because they must
process the query and the document passages together. Often a
lexical matcher like BM25 [21] is used to retrieve the documents
to be reranked, meaning that while a cross-encoder can match
queries and documents semantically, it will never be presented
with documents that lack an exact query string match.1

A bi-encoder, by contrast, encodes document passages separately
from the query, enabling encoding in an offline indexing phase
using GPUs. At query time, only the query needs to be encoded,
which, given its short length, can be done quickly using a CPU. A
bi-encoder’s dense representations can rank documents that are
semantically similar to the query, evenwithout exact stringmatches.
Moreover, if the bi-encoder’s token representations are built from a
multilingual Pretrained Language Model, documents in languages
other than that of the query can also be ranked. This architecture
could enable multilingual retrieval on the web. Bi-encoders offer
the promise of flexible and effective first-stage ranking.

Because of encoder limitations, bi-encoders normally break docu-
ments into passages; a useful heuristic is to use the highest passage
score as the document score [10]. A bi-encoder can encode a passage
using one or many vectors. The single vector approach, for which
the present state of the art is Contriever [14], is efficient and effec-
tive in monolingual tasks. A query is also represented as a single
vector. Passages are ranked by comparing the query vector to the
passage vector. But in multilingual tasks such as Cross-Language
Information Retrieval (CLIR), it is outperformed by ColBERT [15]
(our focus in this paper), where each token is represented by a
dense vector. At search time each query token is represented as a
vector and passages are ranked based on the passage tokens that are
closest to each query token. ColBERT is currently the state of the
art for full-collection (i.e., end-to-end) CLIR [16] and Multilingual
Information Retrieval (MLIR) [19]. PLAID [24], a space-efficient
implementation of ColBERT, is thus an obvious architecture to
consider for a high-volume multilingual document stream.

PLAID was designed for batch settings, because it needs access
to all (or nearly all) the documents at the start of indexing. That is
impractical in streaming settings, where documents are introduced

1Of course, the query for a lexical matcher can result from automatic query ,rewriting
and thus need not be the same as the query presented to the cross-encoder.
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Table 1: Effectiveness of centroids built at different points
along the Chinese NeuCLIR stream.

Stream Percent 5% 75% 90% 100%

nDCG@20 0.047 0.336 0.384 0.440
R@1000 0.301 0.540 0.655 0.795

over time. This paper proposes PLAID SHIRTTT (PLAID Streaming
Hierarchical Indexing that Runs on Terabytes of Temporal Text).
The key blocker to incremental indexing for streaming in the PLAID
architecture is its reliance on cluster centroids for term representa-
tion. As the vocabulary in the new documents moves away from
that in the documents from which the cluster centroids were built,
performance degrades precipitously. This paper proposes hierar-
chical sharding to adapt PLAID to a streaming setting. Its main
contributions include the architecture (PLAID SHIRTTT),2 evalua-
tion that demonstrates its effectiveness in both monolingual and
multilingual settings, and the first known application of a ColBERT
variant to a terabyte collection (ClueWeb09 [3]).

2 BACKGROUND
PLAID [24] and ColBERTv2 [25] addressed one of the main disad-
vantages of ColBERT [15]–the large index size (3 GB of text requires
a multi-vector retrieval index over 170 GB ). This space is mainly
consumed by dense term vectors. PLAID reduced index storage by
approximating each term vector as the combination of one of a few
canonical vectors with a residual. Canonical vectors are created
by K-means clustering of term vectors drawn from a sampled set
of documents, then selecting the centroid of each cluster. During
indexing, the centroid nearest each document term is identified
and a residual is computed to represent the distance between the
centroid and the term vector. Only the cluster id and the residual is
stored. The fewer bits used to represent the residual, the less storage
required for the index but also the more lossy the compression. At
retrieval time, document scores are the sum of the distance between
each query term its nearest document term; closer document terms
get higher scores.

When using PLAID in a streaming environment, we would like
fixed cluster centroids. Then all newly arriving documents could be
indexed by finding each term’s nearest centroid from this fixed set
and computing their residuals. Table 1 shows that clustering once
early in the stream does not work well. For instance, if centroids are
generated from the first 5% of the chronologically ordered Chinese
documents in the NeuCLIR test collection (see Section 4), nDCG@20
drops precipitously from 0.440 to 0.047. Even waiting until 75% of
the stream has arrived still yields rather poor results (nDCG@20
0.336). The reason for this degradation is that language use changes
over time. The NeuCLIR Collection spans 2016 to 2021, so the
centroids created early in the stream do not, for example, have a
cluster for COVID, and the nearest centroid cannot represent that
concept well (because compressed residuals are lossy). One solution
is to periodically re-compute cluster centroids. Doing so results in
new centroids, thus requiring all prior documents to be re-indexed
if retrospective search is to be supported.
2Code available at https://github.com/hltcoe/colbert-x.

Figure 1: The sharded stream. Large shards of size 𝐴 are fur-
ther partitioned into shards of 𝐵 documents. At any point in
the stream, the last shard is incomplete. The shaded boxes
represent the shards that make up the index at 𝑡𝑛𝑜𝑤 .

Sharding is a common approach when collection size exceeds the
capacity of a single index server [1]. Streaming adds the additional
complexity of non-stationary statistics; from the first TREC routing
task it was understood that in streaming tasks, collection statistics
must be modeled using prior data [2]. Many streaming evaluations,
such as the TREC Filtering [22] and Knowledge Base Acceleration
(KBA) [13] tracks, focus on making yes/no decisions as documents
arrive; in contrast, our focus is on optimally supporting ranked
retrieval over the full collection through the current time. We there-
fore introduce PLAID SHIRTTT, which uses hierarchical sharding
to balance indexing efficiency with the efficiency and effectiveness
of full-collection ranked retrieval in streaming settings.

3 PLAID SHIRTTT
PLAID’s cluster centroids are themselves derived from an underly-
ing PLM such as BERT [12]; ultimately the PLM determines docu-
ment scores. Our approach to indexing streaming documents accu-
mulates documents into shards. Each shard model is the set of dense
vectors representing the cluster centroids of the document terms
in that shard. There is tension between creating as large a shard as
possible (to minimize the number of shards that must be searched)
and creating shard models for newly arrived documents as soon as
possible (since a shard model based on earlier documents can be
suboptimal). PLAID SHIRTTT addresses this tension by indexing
each document a fixed, small number of times to balance document
ranking effectiveness against the efficiency costs of re-indexing and
of having too many shards. Figure 1 illustrates re-indexing three
times. The first time a document 𝑑 is indexed, a prior shard model
is used. Once a sufficient number 𝐵 of documents has arrived a
shard model containing document 𝑑 is created, and document 𝑑
is re-indexed. Once 𝑘 × 𝐵 = 𝐴 documents have arrived, the final
shard model containing document 𝑑 is created, and document 𝑑 is
once again re-indexed. The edge case of the start of the stream is
handled by running ColBERT V1 (without centroids or residuals)
until enough documents have arrived for an initial shard model.

Hierarchical sharding limits the number of shards that need to
be searched at any time. Each shard requires a CPU with sufficient
memory to load the inverted cluster centroid index to support inter-
active search. For instance, searching one hundred shards requires
one hundred CPUs, each with access to hundreds of gigabytes of
memory. Thus, the optimal settings of 𝐴 and 𝐵 depend on the rate
of the stream and the resources available to support interactive
search. It may be advantageous to introduce more layers of the
hierarchy to maintain a reasonable number of shards. Since each
layer of the hierarchy involves re-indexing the documents seen

https://github.com/hltcoe/colbert-x
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Table 2: Collection Statistics

Collection ClueWeb09 NeuCLIR
TREC Tracks Web 09-12 2012 2022 2023

# of Docs 504M 10.00M
# of Passages 31B 58.9M

# of Topics 200 50 41 65

# Shards 108 21
Sizes(𝐴/𝐵) 5M/500K 500K/100K

so far using GPUs, this cost must also be considered when setting
shard sizes. Finally, PLAID requires at least 2000 passages,3 (each
document may comprise more than one passage). We choose 𝐴 to
create the largest shards our hardware will accommodate, and 𝐵 to
balance the number of shards with the arrival rate (with larger 𝐵,
documents will be represented by older shard models longer). We
assume that when implementing PLAID SHIRTTT that both the
data-rates and how long documents must remain in the index are
known.

At search time, each active shard is searched using PLAID’s
standard approach. Because all document scores are based on the
same PLM (differing only in the effect of the lossy residuals), they
are comparable and can be merged. Efficient implementation will
search shards in parallel, merging results only for the highest ranked
documents from each shard.

4 EXPERIMENT DESIGN
Our experiments seek to answer three questions: (1) Is PLAID
SHIRTTT effective for large collections that arrive as a stream? (2)
How efficient is PLAID SHIRTTT? and (3) How effective is PLAID
SHIRTTT for MLIR? Table 2 provides statistics for our two test
collections. We chose ClueWeb09 [3] because its size matches our
aspirations to work at large scale; retrieval evaluation is supported
by extant relevance judgments for a large number of topics, and the
documents can be date-ordered. This collection was used in four
years of the TREC Web Track, where web-style topics of the era
were developed. We report results over all 200 topics [4–7]. The
query field of a topic was often vague; however, because dense
retrieval benefits from queries with more context, we combined the
query and description fields to form our queries. The reusability of
this collection is questionable [23] when using evaluation measures
that treat unjudged documents as not relevant. We follow Sakai [23]
in using the compressed-list metrics MAP′ and nDCG′@20 that
treat unjudged documents as not retrieved.

ClueWeb emphasizes scale, whereas NeuCLIR emphasizes mul-
tilinguality. With ten million documents from the news subset of
CommonCrawl, NeuCLIR is presently the largest available test col-
lection for MLIR; It is tiny though relative to ClueWeb, and thus
has relatively small shards. The NeuCLIR MLIR task is to retrieve
relevant documents from any of the collection’s three languages
(Chinese, Persian, Russian). For queries, we follow the majority of
TREC 2022 and 2023 NeuCLIR track participants [17, 18] in using

3https://github.com/stanford-futuredata/ColBERT/issues/181#issuecomment-
1613956350

the title and description fields of each of the 41 and 65 topics as
queries, respectively. We report nDCG@20, the primary measure
reported by the TREC 2022 and 2023 NeuCLIR tracks, as well as
other measures.

For each collection, we simulate a stream by ordering the doc-
uments by date, arbitrarily ordering documents with the same
timestamp.4 We extract text from web pages using the newspaper5
Python package, which also associates a date with each article.6 If
newspaper cannot identify a date, we examine the warc header for
dates, preferring the last-modified field over the date field. If this
too fails, we use the article crawl date. While NeuCLIR was released
with text extracted by newspaper, ClueWeb09 was released as raw
web pages. About three million documents that fail processing or
lack both a title and content once processed are not indexed.

Our ClueWeb09 runs use the ColBERTv2 checkpoint fine-tuned
from a BERT [12] Base model, as released by the ColBERT au-
thors [25]. For NeuCLIR, we use the ColBERT-X model, fine-tuned
with multilingual Translate-Train [19] from XLM-RoBERTa Large
model [8] on English to Chinese, Persian, and Russian. We store
one bit for each residual vector dimension. At search time, we
retrieve the top fifty (Web topics) or one thousand (NeuCLIR top-
ics) passages from each shard and aggregate passage scores with
MaxP [10] to form document scores. Table 2 shows how we set
the values of 𝐴 and 𝐵 for large and small shards respectively. The
sizes for ClueWeb reflect our recommendation to balance hardware
limits against number of shards; NeuCLIR sizes were selected to
force creation of a non-trivial number of shards.

5 RESULTS
Our first research question asks whether PLAID SHIRTTT is effec-
tive for a large streaming collection. We use ClueWeb09 for these
experiments. Results in Table 3 report performance on topics from
2012, alongside the best run from that year’s TREC Web track for
reference, uogTrA44xu [7]. These runs are not comparable because
the latter used only the topic’s short and often vague Query (Q)
field, while our runs use the Query and Description (Q+D) fields
as the query. We include the reference run uogTrA44xu to verify
that our prime measures are similar to those of the track partici-
pants. Note that non-prime metrics are much lower, due to the low
number of judged documents in the top twenty. Our main result
is over all 200 topics for years 2009 to 2012. PLAID SHIRTTT sig-
nificantly outperforms our BM25 baseline on both nDCG′@20 and
MAP′ by a two-tailed paired 𝑡-test with Bonferroni correction for
two tests at 𝑝 > 0.05. Compared to the Oracle Shard Model, which
creates a single shard model for all of ClueWeb09, PLAID SHIRTTT
achieves 96% of its nDCG′@20 performance. This indicates that
document scores from different shards are remarkably comparable,
leading to good hierarchical sharding effectiveness. We conclude
that PLAID SHIRTTT is effective at scale, outperforming a BM25
lexical baseline at ranking judged relevant documents and judged
non-relevant documents.

Our second question is what data rate can be accommodated
with a specific hardware configuration. Here we compare PLAID

4https://huggingface.co/datasets/hltcoe/plaid-shirttt-doc-date
5https://pypi.org/project/newspaper3k/
6Persian dates before 1900 are converted to the Gregorian calendar.
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Table 3: ClueWeb09 Results. † indicates statistically significant improvement over BM25. PLAID SHIRTTT percentages are
percentage of Oracle.

Topics Queries Approach nDCG′@20 MAP′ nDCG@20 MAP Jg@20

Web12 Q uogTrA44xu 0.348 0.331 0.339 0.217 1.000
Web12 Q+D BM25 0.355 0.245 0.070 0.049 0.194
Web12 Q+D Oracle Model 0.457 0.296 0.113 0.060 0.160
Web12 Q+D PLAID SHIRTTT 0.437 0.288 0.100 0.058 0.152

Web09-12 Q+D BM25 0.323 0.217 0.094 0.058 0.300
Web09-12 Q+D Oracle Model 0.448† 0.278† 0.132 0.079 0.216
Web09-12 Q+D PLAID SHIRTTT 0.431† (96%) 0.272† (98%) 0.129 (98%) 0.077 (97%) 0.215

Table 4: NeuCLIR MLIR Results. † indicates statistically significant improvement over PSQ.

Topics Approach nDCG@20 MAP R@100 R@1000 Jg@20

NeuCLIR22 PSQ+HMM w/ Score Fusion 0.315 0.195 0.269 0.594 0.901
NeuCLIR22 Oracle Model 0.375 0.236 0.330 0.612 0.898
NeuCLIR22 PLAID SHIRTTT 0.381† 0.228 (97%) 0.306 (93%) 0.602 (98%) 0.901

NeuCLIR23 PSQ+HMM w/ Score Fusion 0.289 0.225 0.402 0.0.693 0.933
NeuCLIR23 Oracle Model 0.330 0.281 0.468 0.760 0.922
NeuCLIR23 PLAID SHIRTTT 0.337† 0.268 (95%) 0.431 (92%) 0.757 (100%) 0.927

SHIRTTT to BM25; the Oracle model is not considered because
it does not represent the streaming setting that PLAID SHIRTTT
addresses. Accounting for re-indexing as small shards are merged
into large shards, indexing the terabyte-scale ClueWeb09 collection
requires about 71 days on an NVidia V100 GPU. The number of
documents per shard was fixed as shown in Table 2; the number of
passages varied from 24M to 51M for large shardswith𝐴 documents,
and from 2M to 7M for smaller shards with 𝐵 documents. Large
shards took on average seven hours to build, while smaller shards
required around thirty minutes. Thus we could index well over half
a million documents per hour on this hardware. Since shards can be
searched in parallel on separate CPUs, total search time is the search
time of a large shard plus the time to merge results; this averaged
1.3 seconds per query on ClueWeb09. To field this configuration
requires 108 CPUs each with 200GB of memory to hold the indexes
loaded into memory and service the queries. The index requires
8.4 TB of disk. For contrast, the sparse BM25 index used 0.4 TB of
disk, took 36 days of CPU time to build, and BM25 query execution
averaged 0.07 seconds on 1 CPU with 2GB memory. Thus PLAID
SHIRTTTrequires significantly more compute resources to build
the index and to search. Operationally, the added compute resources
will need to be justified by the increase in effectiveness.

Our third question is about MLIR. Table 4 compares PLAID
SHIRTTT to two other approaches on the NeuCLIR 2022 and 2023
datasets: PSQ+HMM [11, 26–28] with score fusion, and an Oracle
Shard Model. PSQ+HMM is a fast non-neural baseline that relies
on translation tables from statistical machine translation. This ap-
proach was chosen for its similarity to monolingual BM25 in being
entirely non-neural. Since PSQ+HMM is a CLIR algorithm, MLIR is
facilitated by score fusion across the languages without normaliza-
tion. When PLAID SHIRTTT ranks the top 1000 documents in each

shard, it achieves essentially the same score as the oracle model for
nDCG@20 on both query sets, demonstrating the effectiveness of
hierarchical sharding. We hypothesize that the strong performance
on nDCG@20 may be the result of two factors that make it different
from the ClueWeb experiments: (1) there are fewer shards; and (2)
NeuCLIR data is more recent and was crawled closer to its creation
date, so the dates associated with articles are likely more reliable
than for ClueWeb. On the NeuCLIR datasets, Recall at 100 is most
negatively affected by sharding relative to the oracle performance.
This is not seen in Recall at 1000, so there may be differences aris-
ing from variations in the lossy vector compression Finally, PLAID
SHIRTTT statistically outperforms the PSQ baseline as measured
by nDCG@20 (two-tailed paired t-test with correction).

6 CONCLUSION
PLAID SHIRTTT provides a way to support multi-vector dense
retrieval over a streaming collection of documents at large scale.
Its search speed supports interactive search. While the hierarchi-
cal sharding approach requires a document to be indexed more
than once, it allows for good performance on retrieval regardless
of how long ago the document arrived. While there is no doubt
that utilizing a bi-encoder is more computationally expensive, the
multilingual pretrained language model has additional benefits over
sparse retrieval approaches. In a multilingual stream, a document
language might be unknown, requiring the system to run Language
Identification prior to PSQ+HMM; this adds an additional source of
error and performance degradation, which is eliminated for PLAID.
While PLAID SHIRTTT may not be worth the computational ex-
pense for monolingual retrieval, for multilingual retrieval PLAID,
and thus PLAID SHIRTTT, has clear advantage.
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