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Abstract— We study the problem of assigning wavelengths
to a given set of multicast traffic requests with the objective
of minimizing the number of wavelengths used per fiber. We
assume that the underlying optical network is a tree and that
all-optical networking paradigm is employed. First, we prove that
the problem is NP hard even when the underlying network is
a simple star or path. Since assigning wavelengths to a given
set of unicast traffic requests on star and path networks is
easy, this shows that the the multicast wavelength assignment
problem is fundamentally harder than the unicast scenario.
Next we present GREEDY and SUBTREE-BASED: two simple
deterministic algorithms for assigning wavelengths to a given set
of multicast traffic requests when the underlying network is a
tree with maximum node degree 3 and 4 respectively. Of the two
wavelength assignment schemes, GREEDY is a g-approximation
algorithm, and SUBTREE-BASED is an approximation algo-

rithm with approximation ratio 1—30, 3 and 2 for the cases when the

underlying network is a tree with degree 4, 3 and 2, respectively.

I. INTRODUCTION

Supporting multicast traffic in Wavelength Division Mul-
tiplexing (WDM) based optical networks has been an area
of active research over the last few years. The reason for
this is twofold: firstly, a lot of the current and upcoming
applications such as HDTV, multimedia conferencing, dis-
tributed computing, etc., are inherently multicast in nature, and
secondly, WDM based optical communication networks are
capable of providing extremely high data transport capacities
at remarkably low error rates. A consequence of this high
data transfer rate at is that the cost of employing electronic
switching at the intermediate network nodes using the current
technology is prohibitively high. Hence, it is prudent to
switch traffic optically at the intermediate nodes and perform
electro-optic (opto-electronic) conversion at only the source
(destination) node. This is known as all-optical networking.

Multicast traffic requests can be supported in a WDM based
all-optical network by constructing individual light-trees for
each traffic request. A light-tree is a directed tree that is
rooted at the source node of the traffic request it supports
and spans all the destination nodes of the traffic request. In
the absence of wavelength converters at the nodes, which is
usually the case due to their high cost, light-trees must respect
the wavelength-continuity constraint, i.e., a light-tree must use
the same wavelength channel on all the optical fibers on which
it is routed.

Constructing light-trees requires the network nodes be
equipped with light splitters [1] and have tap-and-continue
[2] capability. Light splitting is the ability to split the in-
coming light on a particular wavelength and switch the re-
sulting streams onto multiple outgoing ports. This capability
is required at nodes where the light-tree bifurcates. Tap-and-
continue is the ability to tap a small amount of the incoming
light on a particular wavelength and let the rest of the light
go through. This capability is required at nodes that are the
destinations for the multicast traffic request being supported
by the light-tree, but are not the leaf nodes of the light-tree.

Routing and Wavelength Assignment (RWA) is a problem
of extreme importance in WDM based optical networks. In the
case of multicast traffic, RWA involves routing the light-trees
(corresponding to the given set of multicast traffic requests)
over the optical fiber links, and assigning wavelengths to them
while maintaining wavelength-continuity. The number of light-
trees that can simultaneously share an optical fiber is equal to
the number of wavelengths that can be multiplexed onto the
fiber. Since this is limited by the WDM technology, it is im-
portant to utilize the available wavelengths judiciously. Hence,
an important optimization criteria for RWA is minimizing the
total number of wavelengths required to support the given set
of traffic requests. This is sometimes referred to as the cost of
optics in the network.!

In this paper, we study the problem of RWA for mul-
ticast traffic with the objective of minimizing the number
of wavelengths required, when the underlying fiber network
is organized as a tree with each tree edge being a pair of
antiparallel directed fiber links. Such a network is referred to
as bidirected tree.

A. Notation

Some basic notation that is used throughout the paper
is introduced in this section. This is not a comprehensive
description and we keep on introducing more notations as and
when required in the paper.

We denote the cardinality of a finite set S by |.S|. We denote
the image of any mapping f : D — R, restricted to some set
S C D, by f(S). Given a graph G, we denote the edge set
by E¢ and the vertex set by V. An edge between vertices

ICost of electronics, as determined by the number of electronic components
such as Line Terminating Equipments (LTEs) required in the network, is also
an important optimization criteria and has been well studied.



u,v € Vg is denoted by {u,v}. Similarly, given a directed
graph D, we denote the set of directed edges by F5 and
the set of vertices by V5. For a pair of vertices u,v € V55, a
directed edge from u to v is denoted by (u,v). The undirected
graph obtalned by replacing all the directed arcs of directed
graph D by undirected edges is denoted by || D||. By G we
denote the complement of a given graph G, ie., Vg = Vg
and Es = {{u,v}|u,v € Vi and {u,v} ¢ Ec}. A bidirected
tree can be constructed from any given tree H by replacing
all the edges of H by pairs of antiparallel directed edges. The
bidirected tree thus generated is denoted by Tyr. The graph H
is then referred to as the host tree of the bidirected tree TH A
rooted subtree R of a given bidirected tree TH, rooted at vertex
v € Vp_, is a subgraph of Ty such that ||R|| is a subtree of
the host tree H, and every vertex u € Vj \ {v} has in-degree
1 whereas the root vertex v has in- degree 0. Let R be a set of
rooted subtrees of bidirected tree TH We denote the set of the
all rooted subtrees in R that contain directed edge (u,v) €
Eg by R[(u,v)], ie, R[(u,v)] = {R € R|(u,v) € E}.
With a slight abuse notation, we denote the set of all the rooted
subtrees in R that contain directed edges (u,v) or (v,u), by
Rl{u,v}], ie, R[{u,v}] = {R € Rl{u,v} € E 5} A set
of rooted subtrees R of bidirected tree TH are said to collide
on directed edge (u,v) € Eg  if for every ReR, (u,v) e
E . If the directed edge on which the collision occurs is not
important for the subsequent discussion, we simply say that
the rooted subtrees collide.

Given a circle C, an arc A on C is determined by pair of
points [ raon the circle, referred to as the left and right end

points of A, respectively. Arc A is then denoted by (l -~ rA)C,
and is the set of all points on C encountered while traversmg
the circle in clockwise direction starting from point ZZ and

ending at point r ;. Arcs 22, ﬁ on circle C are said to overlap,

if they share some common point, i.e., if A; ﬂA # (). An
arc A on circle C' is said to contain another arc A on C, if
all the points of A are also in Al, ie., if A - A .

B. Problem Definition

Observe that if the fiber network is a bidirected tree and
all-optical networking paradigm is employed, then specifying
a multicast traffic request actually fixes the routing for the
corresponding light-tree. The light-tree is the rooted subtree
of the bidirected tree, rooted at the source of the multicast
traffic request and spanning the set of the destination nodes of
the multicast traffic request. Hence, in our problem we model
the given set of multicast traffic requests as a given set of
rooted subtrees of the bidirected fiber tree.”

The problem of assigning wavelengths to a given set of
multicast traffic requests in a WDM based all-optical network,
where the fiber links are organized as a bidirected trees, with
the objective of minimizing the number of wavelengths used,
is referred to as Minimum Multicast Wavelength Assignment

2Henceforth, in this paper, we use the terms ‘rooted subtree’ and ‘multicast
traffic request’ interchangeably. This should not cause any confusion.

(MIN-MC-WA) problem. The exact definition of the MIN-
WC-WA problem is presented below.

Problem 1.1 (MIN-MC-WA): Given a pair {T, R}, where
T is a bidirected tree, and R = {R1,.. R‘R‘} is a set of
rooted subtrees of T'; consider a set of mappings A{T,R}
from R to N = {1,2,3,...}, such that for any mapping
AEA (TR} if a pair of rooted subtrees Ei, ﬁj € R collide,
then \(R;) # A(R;).

Determine the mapping A* = argmin |A(R)].

)\EA{f,R}

Note that corresponding to any instance {f , R} of the MIN-
MC-WA problem, we can define a conflict graph G (TR}

— R. There is an edge {R;, R;} €

having vertex set Vg{f =)
if and only if R;, R}- € R collide.

Eq

(TR}
C. Related Work

Although RWA has long been a problem of interest, like
most other problems in optical networks, a majority of the
work is concentrated either on developing new heuristics or
on writing Integer Linear Programs (ILPs) for various flavors
of the problem. Primarily, this is because the problem is
extremely hard to solve in the general settings. Hence effort
must be made to study the problem in somewhat restrictive,
and yet plausible settings. For example, since most of the
optical networks are organized as a collection of simple
network topologies such as rings, stars, paths and trees, it is
prudent to study the problem for these network topologies.
Observe that in all these simple topologies, for a particular
traffic request, the routing is either fixed (such as in paths,
stars, trees, unidirectional rings), or the number of available
route options are few (such as in bidirectional rings). Hence,
the RWA problem simply reduces to the problem of assigning
wavelengths. Another simplification that is sometimes imposed
is to assume that the traffic demands are symmetric in nature,
i.e., if there is a traffic request with source u and destination
v, then there is another traffic demand with source v and
destination u. A further simplification of this problem is to
ensure that the pair of corresponding symmetric traffic requests
between any pair of nodes are assigned the same wavelength.
This problem is sometimes known as the Minimum Undirected
Wavelength Assignment (MIN-UWA).

Since the problem of wavelength assignment (or for that
matter, almost any resource allocation problem) can be recast
as a vertex coloring problem on the corresponding conflict
graph, it is not surprising that most of the theoretical results
have come from the graph theory community. In particular, [3]
established the hardness of MIN-UWA in stars by proving its
equivalence to the problem of edge coloring in multigraphs,
which is known to be NP hard [4]. In fact, this equivalence also
proves that approximating MIN-UWA with an approximation
ratio of % — € in general trees is NP hard for any € > 0. But
on trees with bounded degree, MIN-UWA can be solved in
polynomial time. The best known algorithm for the problem,
presented in [5], achieves the approximation ratio of %.

MIN-UWA can be viewed as a restricted case of assigning



(a) ARC-COL problem. (b)
problem in bipartite star.

Equivalent MC-WA

Fig. 1. Construction of an equivalent MC-WA problem in bipartite star from
a ARC-COL problem.

wavelengths to a given set of subtrees of a tree.® Let us denote
this problem as the Minimum Subtree Wavelength Assignment
(MIN-SUB-WA) problem. This problem in itself (as well as
its variants) is of interest in the graph theoretic community. In
[6], it was shown that the problem, when restricted to binary
trees, is equivalent to vertex coloring in chordal graphs [7], and
therefore is easy to solve [8]. Along similar lines, [9] proved
that the problem, when restricted to degree 4 trees, can be
treated as vertex coloring in weakly chordal graphs [10], and
therefore is also easy to solve [11].

There is another body of results that does not assume
that the given set of traffic requests are symmetric. More
specifically, consider the problem of MIN-MC-WA, when all
the traffic requests are actually unicast. Let us denote this
restricted problem as Minimum Unicast Wavelength Assign-
ment (MIN-UC-WA). It was proved in [12] that MIN-UC-WA
is NP hard. A stricter result in [13] proved that MIN-UC-
WA remains NP hard even under restricted settings, such as
when the bidirected tree is restricted to having depth 3, or
when the maximum number of traffic requests that can share
some common directed edge is restricted to being 3. The best
known deterministic algorithm for the problem, presented in
[14], has an approximation ratio of % Moreover, it is known
that no greedy, deterministic algorithm can achieve a better
approximation ratio than g

In [15], it was proved that MIN-UC-WA is NP hard even
in bidirected binary trees. This is unlike the case in the
undirected problem MIN-UWA, which, as stated before, is
tractable for bounded degree trees. No deterministic algorithm
with an approximation ratio of better than g is known for
the problem. This approximation ratio is same as that for
MIN-UC-WA in general bidirected trees. A randomized greedy
algorithm, with approximation ratio %, for MIN-UC-WA in
binary bidirected trees with restricted depth was presented
in [16]. Some inapproximability results for the problem were

3In MIN-UWA, each subtree is in fact a path.

also presented in the paper. Later, in [17], it was proved that
approximating MIN-UC-WA in bidirected binary trees with an
approximation ratio ? — € for any € > 0 is NP hard.

An extensive compllation of complexity results on both
MIN-UWA and MIN-UC-WA problems are presented in [13]
and [17]. And a comprehensive survey of algorithmic results

for the problems is presented in [18], [19] and [20].

D. Organization

The rest of the paper is organized as follows. In Section
I, we prove a pair of hardness results for restricted cases
of the wavelength assignment problem. In Sections III and
IV, we present two approximation algorithms for MIN-MC-
WA problem {Ty, R}, when the degree of the host tree H
is restricted to being at most 3, and 4, respectively. Finally in
Section V, we conclude the paper.

II. HARDNESS RESULTS

In this section, we prove that MC-WA, the decision version
of MIN-MC-WA is NP complete even when the underlying
physical topology is restricted to being a bidirected star
(Theorem 2.4) or a bidirected path (Theorem 2.5). Here
bidirected star and bidirected path have the obvious meanings
(as extended from the definition of bidirected trees).

Recall that MIN-UC-WA is the restricted problem of MIN-
MC-WA in which all the traffic requests are unicast. The
hardness results presented in this section show that the prob-
lem of MIN-MC-WA is inherently harder than the problem of
MIN-UC-WA. This is because MIN-UC-WA is known to be
solvable in polynomial time when the underlying fiber network
is either a bidirected star or a bidirected path. Hence simply
tweaking the approximation algorithms developed for MIN-
UC-WA may not result in good algorithms for MIN-MC-WA,
and there is a need to develop and study new techniques for
the MIN-MC-WA problem.

First let us define the MC-WA problem.

Problem 2.1 (MC-WA): Given a triple {T,R, k} where T
is a bidirected tree, R is a set of rooted subtrees of T and k
is a positive integer; consider a set of mappings A (TR} from
R to N, such that for any mapping A € A (TR} if a palr of

rooted subtrees R;, R € R collide, then \(R;) # A(R i)

Is there a mapping )\ € A ) such that [A(R)| < k?

We prove both our hardness results by reductions to cir-
cular arc coloring (ARC-COL). For completeness, the exact
definition of the ARC-COL is given next.

Problem 2.2 (ARC-COL): Given a triple {C, A,[}, where
C is a circle, A is a set of arcs on the circle with distinct end
points, and [ is a positive integer; consider a set of mappings
©c,a) from A to N such that for any mapplng 0e 6{(; A}
if a pair of arcs Al,A € A overlap, then 0(A4;) # 0(A,).

Is there a mapping 0* € O¢¢, 43 such that [0*(A)| < 1?

It is known that ARC-COL is NP complete [21].

To show the NP completeness of MC-WA problem in the
desired restricted settings, we first prove that the general MC-
WA problem is in NP.

Lemma 2.3: MC-WA is in NP.



Proof- Given any instance of {T,R,k}, of the MC-
WA problem, and any mapping A : R — N, we can verify
in polynomial time, whether A is a certificate, as defined in
the problem definition 2.1, for the given instance of MC-WA
problem or not. Hence, MC-WA is in NP. |

Now we present the two hardness results.
Theorem 2.4: MC-WA restricted to bidirected stars is NP
complete.

Proof: Let {C, A, k} be any given instance of the ARC-
COL problem. Label the end points of the arcs from pg to
PojA|—1 starting with any end point of any arc, and moving
clockwise on the circle. Now generate an instance of MC-WA
problem as follows:

(i) Construct a bidirected star S with 2|.A| 4+ 1 vertices.
Label the leaf vertices from vg to vg) 4|1 starting from
any leaf vertex and traversing clockwise through all the
leaves. Label the eye of the star as vy 4.

Corresponding to each arc ﬁz € A, construct
a rooted subtree ﬁi of S with directed edge set

(i)

Eﬂ = {(v2|A‘,vj)|(pj,pj+1)c - A\Z} and vertex set
Vi, = {243 Ulvl(j, pi41)e © A}t Let R =
{Rl, Ce 7R\A|}-

This is a polynomial time construction. An example construc-
tion is presented in Figure 1.

By construction, a pair of arcs Zl, Z € A overlap
if and only if the corresponding pair of rooted subtrees
R77 R € R collide. This is because arc (p,, pp)c is contained
in both AZ, AJ if and only if the set of directed edges
{(va1.4],va), (V2)4], Vat1), - - -5 (V2)4), Vb—1)} is common to
both Ei,éj. Hence, there is a bijection between the set of
mappings O ¢, 43 and A{S Ry Moreover for any 0 € ©(c 43
and the corresponding A € Az 1. |0(A)] = [A(R)]. This
proves that the instance {C, A, k} of ARC-COL is equivalent
to the instance {S, R, k} of MC-WA where S is a bidirected
tree. Hence the problem of ARC-COL is reducible to the
problem of MC-WA restricted to bidirected stars. Finally,
applying Lemma 2.3 completes the proof. |

Theorem 2.5: MC-WA restricted to bidirected paths is NP
complete.

Proof: Let {C, A, k} be any given instance of the ARC-
COL problem. From among the 2|.A| end points belonging to
all the arcs in A4, select a point p that satisfies the following:

(i) Point p is a left end point of some arc in A.

(ii) The first end point encountered on traversing the circle
C in anticlockwise direction while starting from point
p, is a right end point of some arc in 4.

Such an end point must exist because, of the 2|.4| end points
belonging to all the arcs in A, exactly |.4]| are left end points
and |A| are right end points for arcs in A. Next, label the
end points of the arcs from pg to py| 4/—; starting by labeling
the selected end point p as pg, and moving clockwise on the
circle.

“Here the addition is assumed to be modulo 2|.A|.

Partition the set A into subsets A7 and A where A7 is
the set of all the arcs in A that contain arc (pa|.4)—1,P0)cC

and A" = A\ A’ Without loss of any generality,
assume that A’ {A1,..., A4}, Therefore, A1 =
{ﬁ‘ AT 1]s s 21| Al }- A consequence of the labeling described

above is that none of the arcs in the set A’ have either py or
P2|.A]—1 as an end point.

Next, construct a bidirected path P with 2|.A| + 4|4;]
vertices that are labeled from v_z| 4, t0 vo(|a4).4,))—1 Starting
from one leaf and traversing the path to reach the other leaf.
For every arc A\i € A, construct a set of rooted subtrees R;

of P.1f arc A; = (py,,pr;)c € Al = {A1,..., A 41|}, then
Ri = {Ri1,Ri2 Ri3,
Riay, Rigys oo Ria, ii s
Ris, Risyr.. Ris, alisia )
having
Vi, = {vagai-2,v204/40-3:- - v-2i},
Eg . = {vaqap+i-2:v244+)-3),
(Va2 A|+3)—3> V2(| A +i)—4)
s (V—2i41,v-2i) },
Va,, = v vt vaqa4i-1}
Eg , = Alv,v41), (041, 01,42),
o (V2141 +i) -2, V2(A+9)-1) )
Vi, = {v-2it,v-zite,.. ol
Eg, = {(v_2ip1,v_2i42), (V_2i12,v_2i13),
o (Ur—1, 05
and for every j € {1,2,...,k— |AT| +i—1},

Vi, = {02141 +4) =35 V2( A +i)—25 V2(l A +i)—1 )
Eﬁi,% = {(v2a140)-2, v2(14]+)-3);
(Va(| A 44)—25 V2(|A|+i)—1) }>

Vﬁmj = {v_2i,v-2i11,V-2i42},

Eﬁi,sj = {(v-2i41,v-2i), (V-2i41,V-2i+2) }-
Otherwise, if arc A; = (p,pr)c € Al =
{Ajar141,- -5 Ajay ), then R; = {R;} having

Vi, {vi,, 1,41, -+, Ur, },
E_’» = {(Uliavli+1)7"'(U’f"i—hvﬁ)}'

Let R = UlA‘ R;. This is a polynomial time construction. An
example construction is presented in Figure 2.

We claim that the answer to the ARC-COL problem
{C, Ak} is YES if and only if the answer to the MC-
WA problem {P R, k} is YES. To prove this claim, first
assume that the answer to the ARC-COL problem {C, A, k}
is YES. Let 6* be the mapping as described in ARC-COL
definition 2.2. Without loss of any generality, assume that
0*(A) = {1,2,...,]0*(A)|}, where |0*(A)| < k. Construct



(a) ARC-COL problem.

Fig. 2.

a mapping A : R — N using the mapping 6* as described

next. First, for every i € {1,2,...,|Af
A(Rip) = A(iz) = MBi) = 0°(4y), (1)
and for every i € {|A/| + 1,|Al| +2,...,|Al},
ME;) = 07(4)). 2
Next, forevery i € {1,...,|A!|},j € {1,...,k—|Al|+i—1},
ARia,) = MRis,) =min {{1,2,....k}\Fi;}, 3
where

B :LL_jl (AR, ) JUO (A A A )

Later in this proof, we shall show that, for every ¢ €
{1, A}, 5 € {1,....k — |A| + i — 1}, the set
{1,2,...,k}\ F;; # 0. Hence, mapping X is well defined.
Observe that according to our construction, collisions be-
tween rooted subtrees in the set R can be classified as follows:
(1) A pair of rooted subtrees R“ R € {R|A1|+1, .. E|A‘}
collide if and only if arcs Al, A e AH overlap
Let S; = {Ri,... R|A1 i for 1 €{1,2,3}. Fori €
{1,2,3}, all the rooted subtrees in the set S; collide.
Note that all the arcs in the set A7 = {4, ..., 2|A1‘}
contain the arc (p| 4|—1,P0)c and therefore, are mutually
overlapping.
For i € {JA!| +1,...,]A]} and j € {1,...,|A1]},
rooted subtree ﬁl collides with at least one of the rooted
subtrees R‘Lg,ﬁj’g if and only if arcs A; € A/l and
Aj e AT overlap.

(ii)

(iii)

Ry
Ris
o N =
Bus o
- R T X X
+ o+ i - e e ™ om o
T %X ‘ T A
& ™ & B ] T T X X = < X =
) ) i ) B I B
,,,,,,,,,,
r——0- - - —-4p— 40— 4—— - - - —0—O0—0—p—- - - O—OPp—(
A
Sas S5 Sis f?,mx Ry Ry S Say S
Sij=A{Rij.....Ri }

Je-ialjrica

(b) Equivalent MC-WA problem in bipartite path.

Construction of an equivalent MC-WA problem in bipartite path from a ARC-COL problem.

(iv) Let S@j = {Ri,jla ey RiJk—\_AIHi—l} for ¢+ €
{1,...,]A"} and j € {4,5}. For i € {1,...,|A![}
all the rooted subtrees in the set S; 4 collide with
each other, and also with all the rooted subtrees in the
sets {éi,ly ‘e aé|AI|,1} and {R}Q, ey E‘AI‘,Q}; and all
the rooted subtrees in the set S; 5 collide with each
otller, and agso with all thS: rooted gubtrees in the sets
{Ri,h ey RlAIl,l} and {Riyg, ey R‘All’g}.

Besides the collisions described above, there can be no other
collisions between the rooted subtrees in the set R.

Consider a collision of type (i). Since arcs ﬁz, 2 overlap,

( ) #+ 9*( ;). Also, the mapping A for rooted subtrees
RI,R is defined according to (2). Hence )\( DE- )\( i)

Consider a collision of type (ii). Since arcs in the set A’
are mutually overlapping, 6* maps distinct arcs in the set to
distinct values. Also, the mapping A for rooted subtrees in the
sets S;, for ¢ € {1, 2,3} is defined according to (1). Hence, for
i € {1, 2,3}, distinct rooted subtrees in the set S; are assigned
distinct values by the mapping .

Consider a collision of type (iii). Since arcs g,, 2 overlap,

0% (A;) # 0% (A j)- Also, the mapping A for rooted subtrees R;
is defined according to (2), and for rooted subtrees R] 2, RJ 2,
it is defined according to (1). Hence )\(R 5.2), )\(Rj’g) #
A(R;).

Consider a collision of type (iv). Equation (1) ensures that

o ({4 ...,

Z\AII}) = A({R)i,la Ei,z,éi73, ..

. ,E|AI‘,1, R“AI',2,R‘|AI‘73}) .(5)



From (4) and (5), we get

j—1
Fi,j - )\( U {ﬁi,4m}U{Ei,1>ﬁi,27ﬁi,37'-'

m=1
. ,R’|AI|717R"AI‘_’2,E|A1|’3} ) (6)

Mapping A for rooted subtrees in the sets S;;, for ¢ €
{1,...,|AL} and j € {4,5} is defined according to (3).
Hence, for i € {1,...,|.A%|} and j € {4,5}, distinct rooted
subtrees in the set S; ; are assigned values by the mapping A
that are distinct not only with each other, but also from the
values assigned by the mapping A to the rooted subtrees in
the set {th 12,R13,.. R‘AI‘]_,R'AI'Q,R‘AI"?)}

Hence, the mapping A respects all the collisions among
rooted subtrees in the set R and is therefore a legal mapping
as described in MC-WA definition 2.1, i.e., A € A PR

Now, we shall show that, for every ¢ € {1,.. |.AI I}, 7 €
{1,...,k — |A| +i — 1}, the set {1,2,...,k}\JFJ # 0.
Hence, mapping A is well defined. For this, observe that for

every i € {1,...,|A![},
Fin| = AT =i+ 1,
and for every j € {2,...,k— |Al| +i—1},
[Fijl = [Fijoa| +1= AT =i+
Hence, for every i € {1,...,|A[}

max |F;
k—|AT|+i—1}

, = |Fi p—jar|4iol + 1=k -1
Je{1,..,

The above analysis also shows that, |A\(R)| = k. Hence, the
answer to the MC-WA problem {P, R, k} is also YES.

Now assume that the answer to the MC-WA problem
{15 R,k} is YES. Let A* be a mapping as described in MC-
WA definition 2.1. First observe that for any legal A € A 3
IA(R)| > k. This is because

A (U {R a0, U {§A172}>

m=1

BR

INR)| > = k.

The equahty is because there are exactly k rooted subtrees in
the set U 1{R|A 4o U{R‘Az‘ 2}, and all of them collide
on the directed edge <v2(\A|+|AI\) 2, V2(| A|+|AT]) - 1) S EP’
therefore the legality of mapping A forces it to assign distinct
values to all the rooted subtrees in the set. Now, since \* €
A PR is a legal mapping and is also a certificate for MC-WA
problem {P, R, k}, |\*(R)| = k.

Now observing all the collisions among the rooted
subtrees on directed edges (Ug(lA‘+‘AI|)_27’UQ(‘Al_A'_‘AID_l)
and (Va(|4|+|.47)—25 V2(].A|+].AT[)—3)> We note that the distinct
rooted subtrees in the set U:l;ll{}_ﬂ Al|a, } are assigned
diffegent values according to the mapping )\"‘L and also
N(RBang) = MRz ¢ XNUn{Bana, ).
Continuing similar line of reasoning and observing,
for every i € {|Af|,...,1}, pairs of directed edges
(Va1 A+ =25 V2(| A +i)-1)s  (V2(jA]+i)—2 V2(|A+i)—3), and

Algorithm 1 GREEDY

Require: MIN-MC-WA problem instance {7, R}, where host tree H has
degree at most 3.
Ensure: \GPY ¢ A T T
H,R} . . .
1: Perform a BFS on host tree H starting with an arbitrary vertex as the
root and enumerate the tree edges in the order of their discovery. Let

{e1,...,€|gy |} be the ordered set of edges Fpr.
2: Py« 0
3: fori=1to |[Ey| do
4 Q; —Rle \ Pi-1
5:  if edge e; = {u,v} € EY then
6: Let )\1’>\2€A{TH¢Q1LUP1'—1}
7: A1 (Rj), /\Q(R ) — )\GDY(ﬁj) for Rj € Pij—1 (unassigned
otherw1se) ~
8: PROCESS-EDGE-1(T, {u, v}, Pi—1, Qi, A1)
9: PROCESS-EDGE-2(T, {{u, v}, {u, w}, {u, z}},
7)1 1, Qu )\2)
10: if X1 (Pi—1 J Qi)| < [A2(Piz1|J Qi) then
11: AGDY (R;) — A1 (R;) for every R, € Q;
12: else
13: )\GDY(R]-) — /\Q(Rj) for every Rj €9;
14: end if
15:  else
16: while 3 some unassigned RJ € Q; do
17: )\GDY(R )« min{l € N | # Ry € Pi_1|J Qi such that
R],R;C conflict and AGPY (R,) = 1}
18: end while
19: end if
20: Pi — Pi_1 U Q;
21: end for

(v_2i41,V—2i), (V_2i4+1,V_2;12), we have, for distinct
i,j € {|A",... 1},
N (Rig) = A (Ri2) = N (Ria). ()
and
N (Rin) # X (Bja). (8)
Consider a mapping 6 : A — N defined as
0(A;) = \(Ri.1) 9)
for i € {1,...,|A’|}, and
6(A;) = N (Ry) (10)

for i € {|Af| +1,...,|A|}. First note that
0(A)] < [N (R)] = k.

Next we prove that ¢ is a legal mapping as defined in ARC-
COL definition 2.2. Suppose arcs Ai,ﬁj € A overlap. If
ﬁz,g € Al (in which case, they necessarily overlap on
arc (pajaj-1,Po)c). then by (8) and (9), 0(A;) # 6(4;). 1
Az,A € AH then by (10) and the fact that \* is legal

0(A;) # 0(A;). If A, EAIandA e A, then A;, A;’s
overlap ensures that rooted subtree R collides with at least
one of the rooted subtree R} 25 ]:ZZ 3. Hence, by (9), (10) and the
fact that \* is legal, 9( i) 7 0( ;). This shows that mapping
0 is indeed legal. Hence, the answer to the ARC-COL problem
C, A, k} is also YES.

This proves that the problem of ARC-COL is reducible to
the problem of MC-WA restricted to bipartite paths. Finally,
applying Lemma 2.3 completes the proof. u



Subroutine 2 PROCESS-EDGE-1

Subroutine 3 PROCESS-EDGE-2

Require: {T‘H, {u,v} € Eg,P U Q, A} such that the degree of the host
tree H is at most 3, P is the set of rooted subtrees of TH that have already
been assigned wavelengths according to the mapping A : P — N and
Q is the set of all the unassigned rooted subtrees of T“H that contain
either directed link (u,v) or (v,u).

Ensure: Complete the mapping A to A : PU Q — N such that A €
Aty p Jer

L: Bl<_GT ,P{u,v}] UQ
2: for all pairs RJ Ry, € Pl{u,v}] U Q such that Ej, Ry, do not collide
do
3 if any one of the following is true:
() Ry, By, € P and MN(R;) # MRy)
(ii) R €9, Ry, € P and 3R, € P such that A\(R;) = A(Ry) and
R7, Ry collide
then L.

4 EBl <_EB1 U{{ijRk}}

5 end if

6: end for ~

7: Determine a maximum matching Mz, C Ep . {Bi is bipartite.}

8: for all matched edges {ﬁj, Ek} € Mp, such that Rj € Q and I?k cP
do

9:  A(Rj) — A(Ry)

10: end for .

11: while 3 some unassigned R; € Q do

12:  if 3 matched edge {R;, Ri} € Mp, then

13: A(R;), N(Ry) «— min{m € N|# &, € P|J Q such that &, &,
or ﬁk, ﬁl collide and A(ﬁl) =m}

14: else B o

15: MR;) — min{m € N | A R; € P|J Q such that R}, R, collide
and A(R;) = m}

16: end if

17: end while

III. GREEDY ASSIGNMENT

In this section, we present a greedy strategy for MC-WA
problem {T}, R}, where the host tree H has degree at most
3. The scheme is a g-approximation algorithm.

First the host tree edges are ordered according to a Breadth
First Searching (BFS) starting from any arbitrary node. Let
the edge set ordered according to the BFS be Ey =
{e1,...,ep,}. The algorithm then proceeds in rounds. In
the ¢-th round, host tree edge e; is processed. We denote the
set of traffic requests that have been assigned wavelengths at
the end of round i by P;. We let Py = (). Processing edge e;
involves assigning wavelengths to all the traffic requests in the
set Q; = R[e;] \ P;—1. The wavelength assignment is greedy
in the sense that while processing a host tree edge, we try to
use as few new wavelengths as possible. The complete scheme
is presented as GREEDY (Algorithm 1).

Let the edge e; being processed during the ¢-th round of
GREEDY be {u,v} € Ep, where vertex u was discovered
before vertex v according to the BFS. We classify the edge
to be in set EX if vertex u has degree 3, and the set of
adjacent host tree edges {{u,v}, {u,w}, {u,x}} € Fpy, of
which edge {u,w} € {e1,...,e;—1} and edge {u,x} €
{€it1,...,€/g,|}. Otherwise, we classify the edge to be in
set E}I While processing any edge, the actual wavelength
assignment scheme depends on its classification. If the edge
being processed belongs to the set EL;, we assign available

Require: {T', {{u, v}, {u,w}, {u,z}} C EH779UQ, A} such that the
degree of the host tree H is 3, P is the set of rooted subtrees of TH
that have already been assigned wavelengths according to the mapping
A:P — Nand Q is the set of all the unassigned rooted subtrees of
Ty that contain either directed link (u,v) or (v,w).

Ensure: Complete the mapping A to A : P U Q — N

1 B2 G{i(P[{uvl‘}]\P[{u,v}]) U Q{w,z}]}
2: for all pairs R;, Ry, € (P[{u,z}]\P[{u,v}])|J Q[{u,z}] such that
ﬁj, ﬁk do not collide do
3. if any one of the following is true:
() Ry, By € P and AN(R;) # MRy)
(ii) R €9, Ry, € P and 3R; € P such that A\(R;) = A(R}) and
R]7 Ry collide
then oL
Ep, — Ep, | J{{R;, Rx}}
end if

end for

: Determine a maximum matching Mz, € Eg, .

: for all matched edges {RJ7 Rk} € M, such that R € Qand Rk P

do

9: )\(Rj) — )\(Rk)

10: end for R

11: while 3 some unassigned R; € Q[{u,z}] do

12: if3 matched edge {R; Ri} e Mp, then

13: MR;), )\(Rk) « min{m € N| B R, € P|J Qsuch that R;, By

or By, B, collide and /\(Rl) m}

® 0 s

14: else

15: ANR;) « min{m € N | # R; € P|J Q such that R}, R, collide
and A(R;) = m}

16: end if

17: end while .

18: while 3 some unassigned I2; € Q do

19:  A(R;) « min{m € N | # E, € P|JQ such that E;, F; collide
and A(B;) = m}

20: end while

wavelengths greedily as described in the algorithm. More
specifically, in the i-th round, we randomly select traffic
requests one at a time from the set Q; and assign them
wavelengths. Preference is given to the wavelengths that have
already been assigned to traffic requests during the first ¢ — 1
rounds, or during the current round of wavelength assignment.
If no such wavelength is available, a new wavelength is used.

On the other hand, if the edge belongs to the set E}} then
two separate schemes of wavelength assignment, PROCESS-
EDGE-1 (Subroutine 2) and PROCESS-EDGE-2 (Subroutine
3) are tested, and the one requiring fewer number of additional
wavelengths is finally employed. In PROCESS-EDGE-1, we
prefer to reuse wavelengths from the set ASPY (P;_; [{u, v}])
over reusing wavelengths from the set ASPY (P, [{u, w}] \
Pi—1[{u,v}]). Whereas in PROCESS-EDGE-2, it is the other
way round.

The detailed description of the algorithm, the intuition
behind the scheme, as well as the analysis of the complexity
and the approximation ratio is given in [22].

IV. SUBTREE BASED ASSIGNMENT

Another approach for solving MIN-MC-WA  problem
{Tw,R} is to treat each traffic request as a subtree of the host
tree and assign wavelengths such that if two subtrees share an



Algorithm 4 SUBTREE-BASED

Require: MIN-MC-WA problem instance {’f 'H, R}, where hist tree H has
degree at most 4.
Ensure: \SUB ¢ A{T}L,R} B
1: Determine U = {||R;||VR; € R}.
2: Solve MIN-SUB-WA problem {H,U}. Let the wavelength assignment
for this problem be .
3: ASUB(R,) — A(||R;|) for every R; € R

edge, then they are assigned different wavelengths. It is easy
to see that this generates a legal wavelength assignment for
the MIN-MC-WA problem of interest. More specifically, we
generate the set U = {||Ry]|,..., H]%m I} from the given set
of traffic requests and then try to determine an assignment A :
U — N such that if a pair of subtrees || R;||, | ;| € U share
a common edge, then A(||R;||) # )\(||]§3H) This augmented
problem, specified by the pair {H,U}, is the MIN-SUB-WA
problem described in Section I. Now we generate a wavelength
assignment A\SUPB for the original problem by simply assigning
ASUB(R)) = A(||R;|) for every R; € R.

In case the degree of the host tree H is not more than 4, we
can quickly determine the assignment A that uses the fewest
number of wavelengths for the given instance of the MIN-
SUB-WA problem. This is because the problem is equivalent
to vertex coloring in weakly chordal graphs (in case the degree
of host tree is 4), chordal graphs (in case the degree of host
tree is 3) and interval graphs (in case the degree of host tree is
2), all of which can be solved optimally in polynomial time.
Moreover, the wavelength assignment thus generated for the
MIN-MC-WA problem is an approximation algorithm with
approximation ratio %, 3 and 2 in case the degree of host
tree is 4, 3 and 2, respectively. The complete algorithm is
presented as SUBTREE-BASED (Algorithm 4).

The detailed description of the algorithm, the intuition
behind the scheme, as well as the analysis of the complexity
and the approximation ratio is given in [22].

V. CONCLUSION

In this paper, we discussed the problem of assigning wave-
lengths to a given set of multicast traffic requests in all-
optical WDM networks where the fiber links are organized
as bidirected trees. The cost criteria that was of interest was
the number of wavelengths required per fiber. We first proved
that even in very simple bidirected trees, namely the bidirected
stars and the bidirected paths, the problem is hard. This
is unlike the problem of wavelength assignment for unicast
traffic under similar settings. This shows that the problem of
multicast wavelength assignment is inherently harder than the
unicast problem, and approximation algorithms for the unicast
problem may not work well for the multicast case. Next we
presented two approximation algorithms for the problem in the
case when the degree of the host tree is at most 3 (GREEDY)
and at most 4 (SUBTREE-BASED).
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