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Abstract— In this work, we investigate flow migration as a
mechanism to sustain QoS to network users during short-term
overloads in the context of an MPLS IP network. We experiment
with three different control techniques: static long-term optimal
mapping of flows to LSPs; on-line locally optimal mapping of
flows to LSPs at flow set-up time; and dynamic flow migration in
response to transient congestion. These techniques are applicable
over different timescales, have different run-time overheads, and
require different levels of monitoring and control software inside
the network. We present results both from detailed simulations
and a complete implementation using software IP routers. We
use Voice-over-IP as our test application, and show that if end-to-
end quality is to be maintained during short unpredictable bursts
of high load, then a fast-timescale control such as migration is
required.

I. I NTRODUCTION

In this work, we investigateflow migrationas a mechanism
to provide QoS to users during short-term overloads. Such
overloads occur when one site within the domain (or even a
single document at a site) suddenly becomes hugely popular.
An example of this is the so-called “slashdot-effect” that
often besets hosts after they are cited by the popular Internet
site www.slashdot.org. However, short-term overloads
also occur during emergencies or during failures of different
network components. As IP networks are used to support
more QoS-aware applications, e.g. Voice-over-IP and media
streaming, it is important to be able to maintain service
guarantees even during such short-term overloads. In fact,
commercial products are on the market that are intended to
reroute VoIP traffic around transient congestion in order to
maintain toll quality voice [1].

A fast timescale control such as flow migration will neces-
sarily be a first-aid solution before the network is re-optimized
by the slow-time scale control. Thus, in this paper, we concen-
trate solely on the period during the onset of congestion, and
show that migration is useful in maintaining service quality for
individual sessions even if high loads are introduced into the
network over short intervals. Although the use of migration
for dynamic load balancing is not new, to the best of our
knowledge its use at a fast timescale (in our case 50 ms) has
not been considered and implemented before.

In this paper, we evaluate the benefits of fast timescale
control in the context of streaming media applications, specif-
ically voice-over-IP and variable bit-rate video. We have im-
plemented all of the MPLS, related protocols, and applications
in a testbed and within a detailed packet-level simulation.

Our basic approach is as follows: we set up a set of parallel
Label Switched Paths (LSPs) between the ingress and egress
nodes in our testbed, and run a set of VoIP and video sessions
over these LSPs. After the testbed stabilizes, we introducea
perturbation, in the form of a configurable number of video
sessions, onto one of the LSPs. We keep the total demand
on the network below its capacity; however, the instantaneous
demand on a link can be larger than its capacity temporarily
due to imbalanced distribution of the load on the network.

The main contribution of this work is to show that afine
timescale mechanism, such as flow migration, is required
to maintain end-to-end QoS for individual flows during the
onset of congestion. As a part of our work, we also show
that the run-time overhead of implementing flow migration,
both in terms of monitoring overhead and reordered/dropped
packets, is not prohibitively high. Clearly, there is an initial
overhead of adding fine-grained monitoring and the flow-
migration mechanisms into each network element; whether
the gains from migration justify these initial costs depends
on the guarantees provided by the network owner and on
how often such unexpected congestion conditions occur. We
believe this work is an effective first step towards evaluating
both the benefits from and the cost of a fine-timescale control
mechanism, such as monitoring.

The rest of this paper is organized as follows: In Section II,
we present details of each of the three control mechanisms that
we have implemented and tested. We describe our testbed and
simulation environment in Section III, and present resultsfrom
our experiments in Section IV. We conclude in Section V.

II. CONTROL ALGORITHMS

In this section, we briefly describe two (non-migration)
algorithms – “Bernoulli Splitting” (BSplit), “Least Load Rout-
ing” (LLR) – and our migration scheme (MIG).

A. Non-migration Algorithms

Both non-migration algorithms apply a fixed admission
control on arrival of a new call by assigning the calls to a
set of provisioned LSPs. An accepted call will remain in a
selected LSP by the admission control until it departs.

“Bernoulli Splitting” is based on an optimal off-line analysis
that assumes that the average traffic rate between each ingress-
egress pair is known. BSplit is a randomized policy such that
each new arriving call is dispatched among LSPs according
to a split rule (probability distribution). The computation of



BSplit can be obtained from, for example, Altman et al.’s
work [4]. It ignores the fast timescale traffic variations and
makes decisions only based on slow timescale information.

The next non-migration algorithm, “Least Load Routing”,
on the other hand, relies on the load information that is updated
frequently capturing the fast timescale traffic variation.It
employs the admission control, which is simply given as
follows. Whenever a call arrives into a particular ingress node,
the controller in the node finds which LSP has the least load
among the LSPs that the ingress node is using. The new
call is simply joined into the least loaded LSP. If there is
a tie, we break this with a random assignment with equal
probabilities among LSPs. Since we consider aggregate rather
than per-LSP queueing, the load for an LSP is defined to be
the maximum load among the links it traverses. In our case,
each LSP has a single bottleneck link, and each ingress node
gets the current load information by a feedback packet from
the Label Switching Routers (LSRs) at the head end of the
bottleneck link for each LSP that the ingress node is using.

B. Migration Algorithm

We next describe our on-line centralized migration con-
troller that is built upon the Bernoulli Splitting controller. See
Alanyali and Hajek’s work [2] for an analysis of “asymptotic”
optimality of LLR, BSplit, and LLR with a migration for a
long term (normalized) average cost under certain assumptions
of the cost function. However, it has been also shown that LLR
is not necessarily optimal for finite arrival rates and BSplit has
a higher overflow rate than LLR [3] in certain cases. In fact,
this behavior has been observed in our experiments. It is worth
mentioning that our migration controller is modular in thatit
can be used on top of any call-level traffic balancing scheme,
e.g., LLR and BSplit.

The algorithm has three configurable parameters: themigra-
tion thresholdand two differentsafety margin. The idea is that
the controller is triggered whenever a link utilization exceeds
the migration threshold; in this case, it attempts to migrate
flows to reduce the utilization of the bottleneck link to the
migration threshold minus the safety margin (SMFROM ). In
doing so, it will not cause other link utilizations to exceed
certain level specified by the safety margin (SMTO). The
algorithm is described as follows:

1) Find the link with maximum utilization that exceeds the
migration threshold. If there is no such link, skip the
remaining steps. If such a link exists, denote the link byj�. Determine the setL� of LSPs using linkj�.

2) For each LSPl 2 L�, identify its alternate LSPs and
calculate the aggregate of their available bandwidth,
denoted byBl. Let yl be the bandwidth utilized by LSPl 2 L� on link j�. Determine the LSP~l 2 L� that has
the largestminfyl;Blg, i.e.,~l = argmaxl2L�(minfyl;Blg) :
Compute the number of flows that can be accommodated
by the alternate LSPs of~l. Denote it byz.

3) Determine the number of flowsx that need to be
migrated from the LSPs inL� in order to bring the load
on link j� to the threshold minus the safety margin.

4) Request the ingress LSR to migrateminfx; zg number
of flows from LSP~l to its alternate LSPs proportional
to their available bandwidth.

5) If x > z, remove~l from L� and go back to step 2.
Otherwise, go back to step 1.

Here we implicitly assumed that the algorithm terminates
after reducing the utilization of the congested link to below
the migration threshold minus the safety margin. However, if
the network is severely congested, the algorithm may run out
of the LSPs inL� after exhausting all the available bandwidth
on their alternate LSPs, in which case the algorithm fails to
relieve the congested link below the migration threshold minus
the safety margin (because it is not possible) and moves to the
next possible congested link.

III. I MPLEMENTATION
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Fig. 1. Experimental Topology.

In this section, we describe our implementations and ex-
perimental setup. We have both simulated and implemented
the entire range of MPLS protocols, and each of the control
algorithms. We used the topology shown in Fig. 1 for both
our simulations and our implementations. The capacity of
the links shared by the LSPs between the ingress and egress
points and the cross traffic is 90 Mbps. Although the topology
we have used is simple, it is enough to demonstrate the
benefits of our proposed algorithm. The three parallel LSPs
in our topology allow us to understand the benefits of finer
timescale migration. We begin with a description of our
implementations, and then describe our traffic models and
experimental scenarios.

A. Testbed Implementation

In this section, we describe our testbed, traffic generators,
and different controllers. We also present details about the
implementation of the migration controller. We have imple-
mented the flow migration protocol over NISTswitch [9]
software IP routers running on FreeBSD 3.3. We use RSVP-
TE [5] for LSP signaling and to set QoS parameters. At
each node, we use Alt-Q [6] to provide guaranteed per-packet
service.

1) Monitoring: Each first-hop LSR runs a monitoring pro-
gram that uses the ALTQ/CBQ [10] module to monitor the
congested link. The monitoring program queries Alt-Q CBQ
module for current link utilization and packet loss rate every
monitoring interval. Link utilization information is sentto the



ingress LSR, and we record the packet loss information for our
performance evaluation. Each feedback packet is 52 bytes; this
includes 2 bytes for LSP identification, 8 bytes for current link
utilization, and 42-bytes for packet headers.

2) Traffic Generators:The voice call generators and the
migration controllers are all implemented within the ingress
LSR. In our implementation, all three controllers are integrated
into a single user-level program; the voice calls require more
stringent timing control and are generated using a FreeBSD
kernel thread. See section IV-A for traffic model details.

a) Voice traffic generator:The voice calls have Poisson
arrival rate, and exponential call holding times. As mentioned
before, we have to use kernel thread to generate voice packets
in order to minimize system call overhead. Kernel thread is
also required to implement the fast timescale controllers on the
ingress node. The user-level program is used only to provide
the kernel threads with streams of random numbers.

b) Cross traffic generator:The cross traffic generator is
located at a different node not shown on in Fig. 1. It injects
three independent aggregated 40 Mbps (on average) video
flows to each of the LSPs. Each aggregated video flow consists
of 100 (on average) random 10-minute (on average) segments
of traces from the movieStar Wars.

3) Controller Implementations:We have implemented the
three controllers within the ingress LSR. The LLR and migra-
tion controllers receive feedback messages from the the net-
work and may schedule (or migrate) voice calls onto different
LSPs. The Bernoulli Splitting controller only performs static
call scheduling and ignores all feedback.

Migration controller details: The ingress LSR kernel main-
tains a flow table structure that maps an active flow id to its
currently scheduled LSP. In our testbed, we use the destination
port as the flow id. The migration controller collects link
utilization feedback from the first-hop LSRs and makes a
migration decision every monitoring interval. If the feedback
results in a migration decision, the controller makes a system
call, and “migrates” flows by changing the assigned LSPs of
target flows. In essence the LSP id of this flow is changed in
the flow table structure. This is explained next.

At the ingress router we maintain a linked list of flows
traversing each LSP. When a new flow arrives at the ingress,
it is linked to the head of the chosen LSP. When a set of
flows have to be migrated amongst LSPs, we choose a sublistS, starting at the head of the flow list, such that the amount
of bandwidth inS is less than the amount of bandwidth that
can be safely migrated, and no more flows can be added toS
without violating the migration bandwidth limit. This sublistS is then linked to thetail of the new LSP list. By attaching
to the tail of the new LSP list, we decrease the probability
that a flow is migrated multiple times.

Note that the migration procedure here requiresO(C=f)
work, whereC is the capacity of a LSP, andf is the size
of a flow. This turns out to be optimal in our case, since all
the migrated flows are of only one capacity. Note that in the
general case, if the flow capacities are not equal, then choosing
an optimal set of flows to migrate is equivalent to the NP-
Complete Subset-Sum (or Knapsack) problem.

B. Simulation Implementation

We have implemented the topology in Fig. 1 within thens2
simulator. MPLS capability is already available in standard
ns, and we have added the additional functionality such as
multipath routing.

We use 400 byte video and voice packets in all simulations.
Each link has a buffer size of 24K bytes (this is approximately
twice the bandwidth-delay product for a 90 Mbps link with 1
ms propagation delay). Each of the first-hop LSRs monitors
the utilization of its congested link every 50 ms. We have
also implemented the controllers as described in the testbed
implementation.

IV. RESULTS

In experiments that follow, there are two types of traffic in
the same (Preferred Traffic) MPLS class. We view the video
traffic as uncontrollable cross traffic and consider migration
only applied to the voice calls. We choose to migrate the voice
calls because they are all 64 Kbps CBR streams. This allows us
to better predict bandwidth consumption once a flow has been
migrated. Thus, even with a relatively fine-grained control
action such as migration, we do not suffer from instability
problems.

Next we describe the particulars of each traffic class, and
present the different experimental scenarios in Sections IV-
B and IV-C. We present results from two different types
of experiments: first we quantify the benefit from different
controllers in terms of loss rate, impact on voice codecs, etc.
Next we quantify the overhead that is required to implement
each type of control, and analyze their performance as the
monitoring granularity is varied.

A. Traffic Classes and Types

We model voice calls as constant 64 Kbps bit rate streams.
The voice calls have Poisson arrival with rate� and exponen-
tially distributed duration time with mean of1=� (set to 3 min
for all experiments). The voice call process can be viewed as
anM=M=1 queueing system. In the steady state, the number
of the voice calls in the system is Poisson distributed with
mean�=�. Thus, the average bandwidth consumption of voice
traffic is 64�=� Kbps. In our experiments, we fix the arrival
rate � at 10 calls/second. This leads to 115.2 Mbps average
load due to the voice calls (38.4 Mbps on each LSP).

For video traffic, we use an MPEG-1 encoding of the Star
Wars movie trace as our video data sequence. We generate
many different video streams as follows: we start with two-
hour length of Star Wars data sequence. We consider the
sequence as a circular list and use random starting points in
this list for each stream. The method to generate the video
streams above is common in video traffic modeling literature,
e.g., in [7].

The video streams consume, on average, 400Kbps, and have
Poisson arrival rate with a mean of 5/9 arrivals per second. The
duration of each video stream is exponentially distributedwith
a mean of 3 minutes.



B. Experimental Method

LSP carries 40Mbps of video traffic. Since the average
traffic load on all three LSPs is exactly the same in the first
phase, the off-line optimization problem is easy to solve, and
the Bernoulli splitting controller can (optimally) assigneach
incoming voice call to an LSP chosen uniformly at random.
Similarly, the LLR controller can also assign incoming flows
to the least-loaded LSP and reach long-term optimality.

After the controllers reach steady state in the first phase,
we start the second phase of the experiments. We introduce
a perturbation at only one of the LSPs (the first LSP in our
experiments) to make the system temporarily imbalanced and
congested. Note that the perturbation does not exceed thetotal
system capacity, but the load on the link shared by the LSP
and cross traffic may exceed the link capacity in some cases.

We construct the perturbation with new video streams, using
two parameters. They are the number of new streams (pertur-
bation size:Np), and a time interval over which theseNp video
streams arrive (perturbation interval:�t). In our experiments,
we varyNp from 20 to 50 video streams, corresponding to 8
to 20 Mbps of new traffic over intervals of 50 ms to 5 seconds.

In the rest of this section, we present results from both our
implementation and our simulations. We begin with effect of
different controllers on the loss rate at the bottleneck links.

C. Drop rate at bottleneck links

In this experiment, the first phase lasts for 24 seconds. At
the end of the first phase, 40 additional video streams are
introduced in the cross traffic for LSP 1. The stream arrivals
are distributed uniformly at random over 50 ms interval.
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Fig. 2. Testbed results: the drop rates with BSplit controller.

In Fig. 2, we plot the drop rate in our testbed over each 50
ms period when the BSplit controller is used. The figure shows
the losses at each LSP for both the voice and the video traffic.
We show the analogous loss plots for the LLR controller in
Fig. 3 and the migration controller in Fig. 4. We repeated the
same experiment in our simulator, and the outcomes are very
similar to those of testbed.

With the static (BSplit) controller, drops on LSP1 persist
after the perturbation arrives. This is because the static con-
troller still assigns incoming voice calls with 1/3 probability
to each LSP even though the load on the system is no longer
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Fig. 3. Testbed results: the drop rates with LLR controller.
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Fig. 4. Testbed results: the drop rates with migration controller (100%
migration threshold and 2% safety margin).

symmetric. Unlike the static controller, the least-loadedrouting
(LLR) controller is able to adjust the link loads by assigning
new voice calls to the least-loaded LSP. Thus, using LLR, the
drop rate on LSP1 continuously decreases until it reaches 0
(at time 48.5 seconds). This is because the LLR controller is
notified of the congestion on LSP1 and it reassigns incoming
voice calls to the other LSPs. However, the LLR controller
cannot reallocate the calls already scheduled on LSP1, and
the situation there improves only as the voice calls depart at
the rate of 64Kbps every 300ms.

The migration controller reacts immediately (to be precise,
within 50 ms) and does not suffer prolonged losses on LSP1.
There are a few random losses (on theother LSPs in this
case) because the migration controller is not able to predict
the fluctuations in the video traffic. In this experiment, the
migration controller migrated 1,853 flows from LSP 0 over
the first 25 seconds after the onset of congestion. Overall,
there were 5504 migrations in the system over this period.
This relatively large number of migrations is due to the
bursty nature of the video cross-traffic. The total amount of
bandwidth consumed due to the 1,471 monitoring packets was
24.98 Kbps (8.33 Kbps per feedback link).

D. End-to-end Quality

In the last section we showed that a migration-based con-
troller can effectively reduce packet loss rates during short-
term overloads. In this section, we analyze the end-to-end



performance of the VoIP flows, and show that the losses
incurred by the other schemes do, in fact, translate to poor end-
to-end performance. Further, we show that the small amount of
random losses due to migration does not affect the quality of
the VoIP calls. Specifically, we analyze two different measures
of quality: runs of dropped packets (loss run length), and
correlation between drops.
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Fig. 5. Number of voice calls with loss run length greater than 150
milliseconds.

Loss Run Length Analysis:Consecutive drops are poten-
tially the most limiting factor in designing VoIP networks [8].
Many codecs can compensate for losses as long as the loss
run length is less than 150 ms [8]. In our experiments, a loss
period of 150 ms corresponds to three consecutive dropped
packets for the same flow. In Fig. 5, we plot the number
of voice calls that have more than three consecutive drops.
Over the lifetime of these (simulation) results, there were1700
voice calls active in the system. Under this consecutive drop
criteria for quality, over 18% of the calls are affected using
BSplit controller, and about 7% of the calls are affected using
the LLR controller (with perturbation size of 20Mbps and
any perturbation interval). The study in [8] also points out
that losses greater than 2% also affect end-to-end quality of
VoIP calls. In our experiment it turns out that the affected call
numbers under 2 % packet loss criteria are almost exactly the
same as the 150 ms of loss criteria. In contrast, the migration
controller is able to provide quality service to almost all calls
for both quality criteria: this is particularly important since
this result shows that not only does migration perform well
on average, it is useful on a per-flow basis.

E. Timescales

In the previous sections, we based our performance evalu-
ation on 50 ms monitoring granularity. Since timescale plays
an important role for an adapting controller to react to short-
term overloads, we next study the performance of LLR and
migration controllers under different timescales and overloads
in our testbed.

Fig. 6 shows the drop rates on congested links for LLR
and migration controllers with six different timescales ranging
from 50 ms to 2 seconds. In the figure, we show experiments
with two different perturbations (40 video flows arriving over
1 second, and 50 video flows arriving over 50 ms). As
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Fig. 6. Testbed results: the drop rates for LLR and migrationcontroller under
different timescales and overloads.

expected, for both controllers, more precise data due to the
faster monitoring reduces the drop rate. Note that over all
monitoring periods, migration performs better than LLR. This
is because once LLR detects an overload, it requires between
25-30 seconds (depending on the call departure rate) to reduce
the congestion on an LSP, while the migration controller is
able to shift multiple flows instantaneously.

V. CONCLUSION

In this paper, we have studied flow migration as an emer-
gency mechanism to sustain QoS during short periods of heavy
load, specifically the onset of congestion. Our contributions in
this work are twofold: we have shown that a fast timescale
control, such as migration, is necessary to maintain end-
to-end application quality for sensitive applications such as
Voice-over-IP. We have also presented a detailed schematic
implementation of flow migration for MPLS networks, and
have shown how migration can be efficiently implemented
such that the probability that the same flow being repeatedly
migrated is minimized.
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