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Abstract— We consider the problem of finding a single-path
intra-domain routing for time-varying traffic. We characterize
the traffic variations by a finite set of traffic profiles with given
non-zero fractions of occurrence. Our goal is to optimize the
average performance over all of these traffic profiles. We solve
the optimal multi-path version of this problem using linear
programming and develop heuristic single-path solutions using
randomized rounding and iterated rounding.

We analyze our single-path heuristic (finding the optimal
single-path routing is NP -Hard), and prove that the randomized
rounding algorithm has a worst case performance bound of
O(log(KN)/ log(log(KN))) compared to the optimal multi-path
routing with a high probability, where K is the number of traffic
profiles, and N the number of nodes in the network. Further, our
simulations show the iterated rounding heuristics perform close
to the optimal multi-path routing on a wide range of measured
ISP topologies, in both the average and the worst-case. Overall,
these results are extremely positive since they show that in a
wide-range of practical situations, it is not necessary to deploy
multi-path routing; instead, an appropriately computed single-
path routing is sufficient to provide good performance.

I. INTRODUCTION

One of the main techniques used to manage network
resources and ensure reliable performance in IP networks
is intra-domain traffic engineering. Intra-domain traffic en-
gineering uses information about the network traffic profile
(traffic matrix) to manage and possibly optimize the network
performance. A traffic matrix specifies the expected traffic rate
between every ingress-egress pair in the network. The output
of traffic engineering is a routing policy f , which is a set of
paths and their corresponding relative rate vector. The relative
rate vector specifies the fraction of traffic assigned to each
path. For optimal traffic engineering, we need to (i) change the
routing parameters to adapt to traffic profile variations, which
leads to disruption of traffic in the network, along with signal-
ing overhead for forwarding the new routing information [1],
and (ii) significantly change the IP forwarding mechanism
to support arbitrary traffic distribution among multiple paths
between every ingress-egress pair in the network.

In this paper, we propose an approach that uses a fixed
single-path routing that works well for a given set of traffic
profiles. Since the routing is fixed we do not need to change
the routing parameters, and since it is single-path we do not
need to distribute the load among multiple paths. Also, in
single-path routing, the problem of packet-reordering (needed

in multi-path routing) does not exist. Specifically, we address
the problem of finding a fixed single-path routing for time-
varying traffic, characterized by a set of traffic profiles with
known time fractions of occurrence. In other words, multiple
traffic profiles, and the time fractions of these profiles are
given, and our goal is to find a fixed single-path routing policy.

Let T1, T2, · · · , TK , be the traffic profiles, occurring a
p1, p2, · · · , pK fraction of time, respectively. For any given
routing policy f and traffic profile Tk, let Utill(f, Tk) be the
utilization of link l. We want to find a single-path routing
policy f that minimizes the average maximum link utilization
(average over time). Therefore, the routing policy f∗ we seek
is,

f∗ = arg min
f

K∑

k=1

pk max
l

Utill(f, Tk). (1)

The traffic profile within a domain can either be predicted
by observing the traffic in the network ([2], [3], [4], [5]), or
can be inferred from the Service Level Agreements (SLAs). It
has been shown that the traffic profile has a pseudo-periodic
behavior on different time-scales (like day, week, etc.), which
is predictable given past history of the traffic [2], [6]. Thus,
the traffic profiles can be estimated based on the previous
observations and we can assume the existence of a few traffic
profiles sufficient to characterize the traffic over a time period
(e.g., over a day). The frequency of traffic profiles over the
observed history gives the fraction of time for which they
occur.

Given a traffic profile, an optimal multi-path routing can
be formulated as a multi-commodity flow (MCF). If the cost
function is linear, as in our problem, the MCF problem can be
solved by a linear program [7]. In this paper, we extend the
MCF formulation to find a routing that minimizes the average
cost function over multiple traffic profiles. The problem of
routing a single traffic profile using single path per demand is
known as the unsplittable flow problem and is NP -Hard [8].
The case of multiple traffic profiles, which we consider, is a
generalization of the problem and is thus NP -Hard as well.

We propose two sets of heuristic algorithms for fixed single-
path routing. The first algorithm is based on randomized
rounding [9], and the second set consists of iterated rounding
schemes. We provide analytical and simulation results which
show that the performance of our proposed fixed single-path



routing algorithms is very close to the optimal multi-path
routing. The main contributions of this paper are:

• We propose algorithms for computing a single path
routing. Extensive simulation results on the NSF-Net [10]
and Rocketfuel [11] topologies show that the single-path
routing algorithms work quite close to the optimal fixed
multi-path routing.

• We show that, for probability at least p for any p ∈ (0, 1),
the performance of the randomized rounding algorithm
is an O(log(KN)/ log(log(KN)))-approximation of the
optimal multiple path routing. K is the number of traffic
profiles and N is the number of nodes in the network.

The second item shows that the routing produced by the
rounding algorithm has scalable performance with respect to
the network size and the number of traffic profiles.

A. Related work

The idea of having a fixed routing for multiple traffic
profiles in the OSPF/IS-IS framework was proposed in [1].
The authors consider multiple traffic profiles, and provide a set
of OSPF/IS-IS link weights which works well for the given
traffic profiles. They give algorithms based on local search,
starting from an initial set of link weights. Then, OSPF or
IS-IS routing uses the weights for routing the traffic in the
network. We consider the problem of finding optimal routes
directly rather than finding OSPF/IS-IS weights. Another work
that considers multiple traffic profiles is that of joint logical
topology configuration and routing of traffic on lightpaths in
MPLS over WDM networks [12]. They formulate the problem
as an Integer Linear Program (ILP) and use space-reduction
heuristics to find a feasible solution. Then, they use the static
routing inside the domain. Optimal source-destination multi-
path routing and destination multi-path routing algorithms for
multiple traffic matrices have been proposed in [13]. The
objective considered in [13] is the average performance over
the traffic matrices, as in our problem. Another performance
metric has been proposed for multi-path routing in [14] that
takes a weighted average of average and worst case perfor-
mance of the routing.

Oblivious routing has recently been proposed as a static
routing good for the space of all traffic matrices. The objective
of oblivious routing is to find a routing f which minimizes the
objective function (called oblivious ratio) of Equation 2, i.e.,
it minimizes the maximum of the ratio of the maximum link
utilization of routing f for traffic profile t to the maximum
link utilization of optimal routing OPTt for traffic profile t,
with t being in the space of all possible traffic profiles T .

O(f) = max
t∈T

maxl Utill(f, t)
maxl Utill(OPTt, t)

(2)

Optimal oblivious multi-path routing algorithms have been
proposed in [15] and [16]. We consider our problem (with
objective of Equation 1), that is different from the oblivious
routing problem, due to the following reasons: First, oblivious
routing looks at performance relative to the optimal routing for
each traffic matrix. As an example to illustrate why this can

lead to a suboptimal routing, consider a situation in which
there are a few low-demand traffic profiles that have a low
maximum link utilization for a routing that is good (relative
to optimal) for other traffic profiles. But, the ratio between
the maximum utilization of this routing to the optimal for
these low-demand profiles may be very high. Thus, even
though the congestion caused for these profiles for a routing
good for other profiles is low, these profiles may affect the
determination of optimal oblivious routing and lead to a
routing that is not as good for traffic profiles which have a
high load on the network. Second, oblivious routing considers
the worst case performance among the traffic profiles. There
may be traffic profiles that occur rarely, and considering the
worst case performance among all traffic profiles may give a
routing with a worse performance most of the time compared
to the routing given by our algorithms that consider the average
performance over the traffic profiles. Third, the traffic profiles
are pseudo-periodic and not usually totally unpredictable, and
can be assumed to be from among a discrete set of traffic
profiles [1], [12]. Thus, considering only a discrete set of
traffic profiles is sufficient, and the complexity introduced by
considering the whole traffic profile space can be avoided.
Fourth, the problem we consider is easier to extend to find a
single-path routing, which is simpler and enables efficient fair
queueing, whereas the LP formulation of [16] is too complex
for any analysis when extended to single-path routing. We
show via simulations in [17] that for the given set of traffic
profiles, the oblivious ratio of the optimal multi-path routing
for our objective function is very low. Thus, our routing
strategy is good in the oblivious sense too.

The organization of this paper is as follows: Section 2 gives
the network model and a formal statement of the problem.
Section 3 gives the MCF formulation of the multi-path routing
problem. Section 4 gives the single-path routing algorithms.
Section 5 gives the simulation results, and Section 6 concludes
the paper.

II. NETWORK MODEL AND PROBLEM STATEMENT

The network consists of routers, and bidirectional links
between pairs of routers (nodes), forming a topology. We
model the network by a graph G = (V,E), where the
vertices in V are nodes in the network, and E is the set
of unidirectional edges between pairs of vertices, with two
anti-parallel edges for each bidirectional link. We assume all
edges have the same capacity, thus the traffic rate on the edges
represents the utilization of all edges. The algorithms work for
non-uniform edge capacity as well.

We are given a collection of traffic matrices
(profiles) {T1, .., TK} with time fractions of occurrence
{p1, .., pK},∑K

k=1 pk = 1. Each traffic matrix is a set of
traffic demands between ingress-egress node pairs. The set of
ingress-egress pairs is assumed to be the same in all traffic
profiles. The objective is to find a routing which minimizes
the mean maximum edge load (total load on a unidirectional
edge) in the network.



TABLE I

NOTATION

Symbol Definition
Tk Traffic profile k
pk Time fraction of occurrence of profile Tk

tki,j Demand between ingress-egress pairs i, j in profile Tk

σk Maximum edge utilization for profile Tk

fe
i,j Fraction of demand between i, j routed on edge e

On, In Set of outgoing and incoming edges at node n

Equation 3 represents the cost function for routing f , that
we minimize. Here, tki,j represents the traffic demand between
source i and destination j in traffic profile Tk. fe

i,j represents
the fraction of flow between source i and destination j routed
through edge e. For multi-path routing, fe

i,j ∈ [0, 1] while for
single-path routing, fe

i,j ∈ {0, 1}. The formulation can be eas-
ily extended to work with multiple classes of traffic between
each ingress-egress pair by indexing the traffic demands as
(source,destination,class).

cost(f) =
K∑

k=1

(pk max
e

∑

(i,j)

tki,jf
e
i,j) (3)

III. LINEAR PROGRAM FOR SPLITTABLE TRAFFIC

For routing unsplittable demands, we propose algorithms
which find an optimal multi-path routing, and then select a
single path for each traffic demand from the set of paths in
the optimal multi-path solution. In this section, we present
the algorithm to compute an optimal multi-path routing. We
formulate the problem as a multi-commodity flow problem
with a linear objective function, which can be formulated
as a single linear program (LP). We call each entry of a
traffic profile as a (traffic) demand between an ingress-egress
pair. The linear program is as given in Equation 4. The
notation is given in Table I, and explained below. The sets
of outgoing and incoming edges at vertex n are denoted by
On and In respectively. The fraction of traffic demand for
an ingress-egress pair (i, j) through edge e is represented
by fe

i,j . The first constraint along with the objective function
minimizes the average maximum edge load. The second and
third constraints are flow conversation laws for the routing f .
The third constraint ensures the total flow fraction going out of
a source is one, while the second constraint ensures the total
outgoing and incoming flows for a traffic demand are equal at
the nodes which are not a source or destination for the traffic
demand. The output of the LP is a routing f , which is used
to route all the traffic profiles. The last constraint bounds the
routing variables.

The LP may give a routing with loops if the load on the
edges in the loop is less than the maximum edge load in the
network. The loops are removed after solving the LP.

Minimize
K∑

k=1

pkσk

s.t.∑

(i,j)

tki,j(f
e
i,j) ≤ σk ,∀e ∈ E, k ∈ {1, ..,K}

∑

e∈In

fe
i,j =

∑

e∈On

fe
i,j ,∀n ∈ {1, .., N} − {i, j},∀(i, j)

∑

e∈Oi

fe
i,j −

∑

e∈Ii

fe
i,j = 1, ∀(i, j)

fe
i,j ≥ 0 ∀i, j, e (4)

IV. SINGLE PATH ROUTING OF TRAFFIC FLOWS

We now discuss the algorithms for computing a single-path
routing. The problem of routing traffic demands on single
paths to minimize congestion is NP -Hard [8]. Thus, we
resort to heuristic algorithms for its computation. Changing
the bounds on the routing variables in the LP of Equation 4
from [0, 1] to {0, 1} would make sure only a single path
is selected for each demand. This gives an Integer Linear
Program, solving which is NP -Hard as well. We solve the LP
to get an optimal multi-path solution and round the solution to
get a single path from among the corresponding multiple paths
for each traffic demand1. We propose a few deterministic and
randomized rounding schemes. We prove an approximation
ratio bound for a randomized rounding algorithm.

After solving the LP, we perform path decomposition [18]
on the routing variables. This gives a set of paths for each
traffic demand, each path having a value assigned to it that
represents the fraction of the traffic demand being routed
through the path. Then, we perform rounding on the fractional
path assignments to get an integer solution, i.e., we select
one path from the set of paths corresponding to each traffic
demand for routing. We propose different rounding algorithms,
each following the same procedure, but doing the rounding
(selecting the paths) according to a different criteria. The
outline of the algorithms is as follows:

1: Solve the LP of Equation 4.
2: Use path decomposition to get li paths for each traffic

demand i. Let xi,j denote the fraction of traffic carried by
path j of demand i. For each i, xi,j’s sum to 1.

3: For each traffic demand i, round one xi,j to 1, and the
rest to zero, i.e., select path j according to some criteria.

A. Shortest Path Rounding

In shortest path rounding, the shortest path (chosen arbi-
trarily if multiple exist) among the paths given by the LP is
selected for each traffic demand. As selecting the shortest path
from the candidate paths utilizes minimum network resources,
this strategy is a natural strategy for rounding.

1We show by simulations that single-path routing performs nearly as well
as optimal multi-path routing, so single-path routing is sufficient.



B. Maximum Utilization Rounding

Among the set of paths for a traffic demand i, the one with
the maximum fraction (xi,j on path j) routed through it can
be viewed as the most favored by the LP. A path more favored
in the LP solution is expected to lead to a lower value of the
objective function. Thus, in this algorithm, we pick the path
with the maximum fraction assigned to it, and the shortest path
if multiple such paths exist. We call this path the maximum
utilization path for a traffic demand. The path decomposition
is not unique, so this path may be different under different
decompositions; but once a decomposition is done, the path
with the maximum fraction assigned is the most favored.

C. Randomized Rounding

In randomized rounding, for each traffic demand i, we
treat the fraction of demand routed on each path as the
probability of its occurrence and round one of the xi,j’s
to 1 with probability xi,j , round the remaining to 0. We
treat this rounding as rolling an li-face dice for each traffic
demand i with face probabilities equal to xi,j’s. The resulting
paths form the solution. The whole rounding procedure is
repeated a fixed number of times and then until the ratio
of the standard deviation of the objective value (over the
repetitions) and average value of the objective falls below
a certain threshold ε. We take the threshold to be 0.1 for
simulations, and the minimum number of repetitions is taken
to be 10. The best solution from the repetitions is taken as
the output. Simulation show that 10 runs of the randomized
algorithms are always sufficient, as the solutions of each run
are very close to each other. We prove that the randomized
rounding described above has a worst case performance bound
of O(log(KN)/ log(log(KN))) relative to the optimal with
probability at least p for any p ∈ (0, 1). Here, N is the
number of nodes in the network and K is the number of
traffic profiles. Thus, in the worst case, the algorithm will
produce a solution within O(log(KN)/ log(log(KN))) times
the optimal in a finite number of repetitions. The bound is
stated in Theorem 4.1, and proved in [17].

Theorem 4.1: Randomized rounding produces a solution
with approximation ratio of O(log(KN)/ log(log(KN)))
with probability at least p for any p ∈ (0, 1).

D. Iterated Rounding

We propose another set of heuristics, in which we perform
iterated rounding, i.e., we round the paths for a few demands,
fix the paths for these demands in the solution, resolve the
LP and repeat the procedure. The criteria for selecting the
traffic demands to be rounded in an iteration is by selecting
the demands with maximum sum of the squares of the path
utilizations. The reason for using this measure is that the de-
mands with higher value of this measure will have a path with
high fraction routed through it (indicating a strong preference
for this path by the LP), and thus will incur less penalty while
rounding. A demand with a lower value of this measure has
a more even distribution of traffic among the paths and thus
incurs more penalty on the objective value by rounding. So, at

each step, we round only a few demands which are expected
to increase the objective value the least among all the traffic
demands. The algorithm is given in Algorithm 1.

Algorithm 1 Iterated Rounding
1: Define the set of demands as T . Set U = T .
2: While U �= ∅, repeat:

(a). Solve the LP of Equation 4.
(b). Do path decomposition for traffic demands in U to

get the candidate paths for each demand. Let li
denote the number of candidate paths for demand
i. Let the fraction routed on each path j ∈ {1, .., li}
for demand i be xi,j .

(c). Find a set R ⊆ U of demands according to Equa-
tion 5. Here, c is a constant used to include demands
for which the measure is close to the maximum. We
fix c at 0.9 in the simulations.

R = {i|i ∈ U,
∑

j∈{1,..,li}
x2

i,j ≥ cumax}

umax = max
i∈U

∑

j∈{1,..,li}
x2

i,j (5)

(d). Select a path from the set of candidate paths for each
demand in R according to some rounding scheme
(like maximum utilization or randomized rounding).

(e). Set U = U\R, fix the paths of demands in R and
repeat Step 2 if U �= ∅.

3: Output the resulting paths.

We can use any rounding scheme to round the selected
demands at each step of the algorithm. We propose the
use of three rounding schemes to do the rounding: Iterated
Maximum Utilization Rounding, Iterated Randomized
Rounding and Iterated Hybrid Rounding. Iterated maximum
utilization rounding uses maximum utilization rounding and
iterated randomized rounding uses randomized rounding. In
iterated randomized rounding, the whole iterated rounding
procedure is repeated multiple times according to the same
criteria as in randomized rounding. There are no repetitions
within a run of the iterated rounding procedure.

Maximum utilization rounding of a demand incurs a higher
penalty in an iteration when the fractions are evenly split
for the demands selected in set R. Thus, doing randomized
rounding for such demands is expected to give a solution
at least as good as maximum utilization rounding of these
demands, if the randomized rounding is repeated sufficient
number of times. For such demands i, the sum of the squares
of the xi,j’s over j (Equation 5) is low.

In iterated hybrid rounding, we modify the iterated maxi-
mum utilization rounding to do randomized rounding when-
ever the maximum value of the measure in Equation 5 is
less than a threshold. We call this algorithm iterated hybrid
rounding. We set the threshold at 0.55 for the simulations,
after observing the threshold below which the rounding penalty



Fig. 1. Sprintlink US backbone topology

is high for maximum utilization rounding. As there is a
randomization component for some traffic demands in this
algorithm, so as in iterated randomized rounding, we repeat the
whole iterated rounding procedure multiple times (according
to the same criteria as before).

V. SIMULATION RESULTS AND DISCUSSION

We implemented the algorithms in C, and used CPLEX [19]
for solving the linear programs. The experiments are done
on the NSF-Net topology (14 nodes, 21 bidirectional links),
the Exodus topology (15 nodes, 33 bidirectional links), and
the Sprintlink topology (Figure 1: 27 nodes, 69 bidirectional
links). Exodus and Sprintlink topologies are taken from Rock-
etfuel [11]. We do not show all topologies here due to lack
of space. The traffic profiles are taken to be equiprobable in
all simulations. More detailed simulation results for uniform
random traffic can be found in [17].

A. Comparison of rounding schemes

The first set of experiments are done with 10 randomly
generated traffic profiles. Each traffic profile is generated ac-
cording to the gravity model [20]. The total traffic originating
at each source is taken to be a random variable between 1 and 2
(assuming each node has equal population [20]). The amount
of traffic destined to each node from a source is inversely
proportional to the square of the distance between them. The
distance is taken as the minimum hop distance between the
two nodes. The fraction of occurrence of all traffic profiles is
assumed to be the same. All nodes are assumed to be sources
and destinations, and traffic demands are generated between all
pairs. The simulations are run 20 times, and the objective value
for the solution of single-path routing algorithms is compared
to the LP optimal value (optimal multi-path solution given by
Equation 4). The optimal single-path routing has the objective
value at least as high as the LP optimal, as the LP feasible
solution set contains the ILP feasible solution set. Thus, the
performance relative to LP optimal is an upper bound for the
performance relative to the optimal single-path routing.

Table II gives the average and the maximum value (over
the 20 runs) of the ratio of objective value achieved by the
single-path routings and the optimal multi-path routing for the
topologies. Figure 2 shows the performance of the algorithms
on the NSF-Net topology. The iterated randomized rounding
works the best, followed by the iterated hybrid rounding, the
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Fig. 2. Performance relative to LP optimal on the NSF-Net topology

iterated maximum utilization rounding, randomized rounding,
maximum utilization rounding and shortest path rounding,
in that order. For the NSF-Net topology, the best rounding
algorithm leads to a penalty about 2.7% of the optimal multi-
path on an average, and about 5.1% in the worst case. For
the Exodus topology, the best rounding algorithm leads to a
penalty about 6.5% of the optimal multi-path on an average,
and about 14.2% in the worst case.

For the Sprintlink topology, all the algorithms lead to the
same objective value as optimal multi-path in almost all
instances. This suggests that the single-path routing computed
by our algorithms is very close to the optimal routing that
allows multi-path. This property was also observed for the
Tiscali topology in [17]. The topologies of Sprintlink and
Tiscali have a few very high-degree nodes and other nodes
have a much lower degree (i.e., there is some sort of clustering
and hierarchy in the backbone network). Networks with this
property are called small-world networks [21], [22], and it
has been shown that the Internet is a small-world network
at both router level and inter-domain level [22]. This leads
to a few short hop paths between all nodes in the network,
and most paths go through the set of high-degree nodes and
thus the optimal multi-path routing selects mostly single paths
using the high-degree nodes for each source-destination pair.
In NSF-Net and Exodus topologies, the nodes have similar
degrees and thus the optimal routing gains over single-path
routing by splitting the traffic among multiple paths.

B. Variation with number of traffic profiles

We now illustrate the variation in the performance of the
iterated randomized rounding algorithm with the number of
traffic profiles. The number of traffic profiles is varied from
10 to 50 (we start with 10 profiles and add more to this set
until we reach 50). The simulations are done on the NSF-Net
topology. The fraction of occurrence of all traffic profiles is
assumed to be the same. The performance measure is again
the ratio of objective value for the rounding scheme to LP



TABLE II

AVERAGE AND WORST CASE PERFORMANCE ON DIFFERENT TOPOLOGIES

Topology SP Round. Rand. Round Max. Util. Round. Iter. Max. Util. Round. Iter. Rand. Round. Iter. Hybrid Round.
NSF-Net Mean 1.0773 1.0438 1.0488 1.0319 1.0272 1.0297

Maximum 1.1342 1.0702 1.0936 1.0612 1.0514 1.0612
Exodus Mean 1.1310 1.0768 1.0886 1.0817 1.0655 1.0777

Maximum 1.2503 1.1470 1.1868 1.1928 1.1425 1.1425
Sprintlink Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Maximum 1.0000 1.0000 1.0007 1.0000 1.0000 1.0000
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Fig. 3. Performance relative to LP optimal for varying number of traffic
profiles on the NSF-Net topology

optimal. The simulations are run 20 times. Figure 3 shows the
performance measure for different number of traffic profiles.
The error bars represent the performance range over the 20
simulations for each value of number of traffic profiles. Results
show that the performance improves slightly as the number of
traffic profiles increases. The performance slightly degrades
in the case of uniform random traffic demands [17]. Thus,
the single-path routing computed using the iterated algorithm
works well irrespective of the number of traffic profiles.

VI. CONCLUSION

We consider the problem of single-path routing of time-
varying traffic. We model the traffic as a discrete set of
traffic profiles, and propose LP rounding-based heuristics. We
propose the use of a randomized rounding algorithm and
prove it to be an O(log(KN)/ log(log(KN)))-approximation
algorithm with probability at least p for any fixed p ∈ (0, 1),
with K being the number of traffic profiles, and N being the
number of nodes in the network. We propose a few iterated
rounding schemes which give a performance close to optimal
for the NSF-Net and Rocketfuel topologies considered. For the
Sprintlink topology, the optimal multi-path algorithm gives a
routing consisting of mostly single paths, and thus rounding
the multi-path solution to single-path routing leads to an
insignificant increase in the objective value. The characterizing
property of this topology is the existence of some very
high-degree nodes and other nodes having low degree; such
networks are called small-world networks.
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