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Abstract— We use a vector field model to formulate flow of
information at every point of a dense wireless sensor network.
The magnitude of this vector field represents the density of
communication activity and its direction is toward the flow of
information at each point. We present a general method for
flow optimization in a wireless sensor network by minimizing
the p-norm of the information flow vector field subject to the
basic flow constraints, that is the flow conservation law and
boundary constraints. We have called this problem the p-norm
flow optimization, and use Sequential Quadratic Programming
to solve it. The p-norm flow optimization shows interesting
properties for different values of p. For p close to 1, the
information routes resemble the geometric shortest paths while
as p gets larger, there will be more load balancing effects in
the flow. In this work we focus on the numerical analysis of
the p-norm flow problem. For this we have to approximate the
continuous flow problem by a discrete problem which adds some
inaccuracy to the solutions. Therefore, we propose an algorithm
to continuously compensate the error in the information flow
vector field and avoid error accumulation in the system. We
also discuss ways with which we can support different network
geometries in the numerical analysis.

I. INTRODUCTION

Wireless sensor networks are comprised of sensors that
are equipped with wireless transceivers and so are able to
form a wireless network. It is envisioned that in the future,
wireless sensor networks may consist of a large number of
nodes, potentially on the order of many thousands [8]. There
are many applications for such networks including military,
environment monitoring, agriculture, transportation systems
and home applications.

As the number of wireless nodes grows, careful analysis
of the network behavior becomes very hard using a discrete
model in space. A main shortcoming of discrete models is that
as the number of wireless nodes grows very large, often times
the flow models become computationally intractable.

We use a continuous space model in formulating flow of
information in a wireless network with a large number of
nodes. We use a vector field model to represent flow of
information at every point of the network. We introduced
this idea earlier in [3] and [4] with a model inspired by
electrostatics. Using a quadratic cost function, we showed that
the solution to the optimization problem is found by solving a
set of PDEs analogous to Maxwell’s equations in electrostatics.
Our work was followed by Toumpis and Tassiulas [5], [6],
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showing that minimizing the quadratic cost function results in
optimal deployment of sensors by minimizing total number of
sensors required to transport the information to the intended
sinks. In [7], we have proposed an optimization problem for
the case with multiple commodity flows in the network. In
a recent work [1], we presented a general method for flow
optimization in a wireless sensor network by minimizing
a p-norm of the information flow vector field subject to
the basic flow constraints, i.e., the flow conservation and
boundary conditions. This problem is called the p-norm Flow
Optimization Problem and it is shown that as p — oo, the
results achieve maximum load balancing. When p is close to
1, routes tend to pass through geometric shortest paths from a
source to a sink. This reduces the average transport delay but
can overload links which lie on shortest paths. By increasing
the value of p from 1, the optimization tries to spread the traffic
in the network. In practice, p can be selected based on a trade-
off between delay and balancing the traffic over the network.
We use Sequential Quadratic Programming (SQP) which is
an iterative method to solve the p-norm flow optimization
problem. In each iteration, the quadratic approximation of the
cost function is found near its operating point. The solution
of the new quadratic optimization problem is then added to
the operating point and the same process is repeated in the
next iteration with the updated operating point until satisfying
a certain stopping criterion. We showed that at each iteration,
the optimal solution can be found by solving an elliptic PDE
with generalized Neumann boundary condition.

Although there are similarities between the elliptic PDEs
mentioned above and those studied in electrostatics and fluid
dynamics, they also have some basic differences which pre-
vents us from adopting the same techniques used in those
fields. We share the same divergence property as is used in
electrostatics for example; however most of their problems
deal with Dirichlet boundary condition which makes the
analysis completely different from our case which uses Neu-
mann boundary constraints. On the other hand, the flow must
stay within a boundary in fluid dynamics and therefore the
flow equation satisfies Neumann boundary condition; however
fluids are not confined to be conservative or have zero curl,
whereas we have shown earlier in [3] that the information
flow vector field is conservative and the optimal vector field
satisfies the zero curl property. Furthermore, all problems in
electrostatics deal with p = 2, and therefore the analogy
disappears as soon as p # 2 in the p-norm flow analysis.



These differences suggest that we have to build an independent
framework in order to numerically analyze the p-norm flow
problem.

In this paper we reveal some important issues in the
numerical analysis of the p-norm flow optimization problem.
We discuss adaptive and non-adaptive methods of discretizing
the continuous p-norm problem for numerical analysis. We
show that the adaptive method results in a better accuracy
with fewer discrete points and therefore less complexity in the
analysis. We propose a method to support different network
geometries. We also design an algorithm to compute and
compensate possible errors in the vector field after each SQP
iteration; this guaranties the solution to stay in the feasible set
and gradually converge to the optimal solution.

The rest of the paper is organized as follows: We start with
some background on the method previously used in [1] to
solve the p-norm flow optimization problem in section II. In
section III, we go over different ways to support different
network geometries. Then in section IV we discuss different
ways of discretizing the continuous domain of the p-norm
optimization problem for numerical analysis. From there, we
go to section V where we propose an algorithm to compensate
the error in the information flow vector field after each iteration
of the SQP method to prevent error accumulation and to have
stable results as we run through more iterations, and finally end
the discussion by analyzing a numerical example in section VI.
We conclude the paper in section VII.

II. BACKGROUND: p-NORM FLOW OPTIMIZATION
PROBLEM

In this section, we give a brief overview of our previous
work and go over the concept of information flow vector field
as well as describing the p-norm flow optimization problem.
More details can be found in [1] and [2].

To start, let D(z) = (D,, D,) denote the information flow
vector field with the direction of the flow of information
at point z in R? and with a magnitude representing the
density of information rate passing per unit length of a line
segment perpendicular to the direction of D(z). With the
above definition, for a closed contour C' C A we have:

j{ D(z)-dn = / p(z)dady e
c 5(C)

where dn is the outward differential normal vector at each
point on C, dot represents the inner product of vectors and
S(C) represents the area of the closed contour C'. Furthermore,
p(z,y) is defined as a scalar function representing the spatial
density of rate at which information is generated in the
network. This quantity is a function of location and since all
the information ends at the destination, the value of p(z,y)
at the destination is defined as a Dirac delta form such that
J4p(x,y)dady = 0.

Relation (1) together with the Divergence Theorem imply
that
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On the other hand, since no load is desired to exit from or
enter into the boundaries of the network’s geographical area,
we will have the following Neumann boundary condition:

D,(2)=0, ze€dA 3)

where D,, denotes the normal component of D on the bound-
ary of A, denoted by 0A.

It is important to note that (1) and (3) do not result in
a unique solution for D(z) and therefore we have freedom
to impose other constraints so that the solution will satisfy
certain properties. We followed a similar approach in [1] and
introduced the p-norm flow optimization problem as:

Minimize J(D) = [, |D(z)[’dzdy 4
st.  V-D(2) =p(2)
D,(z2)=0, z€ 04

for p > 1.

The 2-norm flow optimization problem was fully discussed
in [2] where it was shown that the solution results in spatial
spreading of the communication load in the network. More-
over, it was shown in [5] that minimizing the quadratic cost
function will minimize the number of sensor nodes required to
handle total communication flow of the network. The analysis
of 2-norm flow optimization problem shows that the optimal
vector field must be conservative, i.e., the optimal D(z) must
have zero curl and therefore can be written as the gradient of
a scalar potential function: D(z) = VU (z). This enables the
optimization problem to be solved by the following Poisson
partial differential equation:
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with the Neumann boundary condition mentioned above.

The more general p-norm flow optimization problem, p > 1,
was discussed in [1]. At first we showed that the p-norm flow
optimization is a convex optimization problem. It was also
shown that defining g(D., D,) = |D(2)?,

H(g) =
5 )0 )
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is its Hessian. In order to solve the p-norm flow optimization
problem, we use SQP which is an iterative method where each
iteration can be summarized in the following two steps:

V2U(2) p(2) S

D, D,
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1) Quadratic approximation: Having an operating point
value for the information flow vector field at the ‘"
iteration, denoted by D (9, which satisfies the divergence
property and the Neumann boundary condition, we find
the second order Taylor approximation of the cost func-
tion near D). For this purpose, define e = (e, e,) as
the variation of the information flow vector field near
D

D(z) = DY (2) + e(2).



Since D must also satisfy the constraints of the opti-
mization problem,

V-e(z)=0

en(z) =0, z€dA, (6)

en, denoting the normal component of e and finally

/ |D[Pdady = / DD 4+ e|Pdady  (7)
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J(D) =
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where Vg(D®) and H(g(D")) represent the gradient
and the Hessian of g(D) evaluated at D(*), respectively.

2) Optimization: In this step we find e that optimizes the
quadratic cost function of the previous step:

Minimize J\" (e) = [4 ("R + e Qe)dxdy
s.t V-e(z) =0 (8)
en(2) =0, z€0A

where R = Vg(D®), Q = H(g(D®)) and J " (e)
represents the cost function of the SQP in the i'*
iteration. Now as shown earlier in [1] for the optimal
solution of the quadratic optimization problem (8), there
exists a scalar function A(z) : A — R that satisfies:

VA=Qe+R.

The above relation together with the constraints of
problem (8) will lead to the following elliptic PDE:

V- (CVA) =p ©)
in which C(2) = Q%(z) and p(2) = V-(Q71(2)R(2)),

and with the general Neumann boundary condition
AT (CVA) = P CR where 7i(z) denotes the outward
normal vector at each point z € QA. The optimal e can
now be uniquely found by letting e = Q ~1(V\ — R).

III. SUPPORTING DIFFERENT GEOMETRIES

One of the issues in the p-norm flow optimization problem is
the ability to support different geometries for the network to be
deployed. Numerical PDE solvers may have different ways to
handle this issue. The PDE toolbox of MATLAB, for example,
has predefined matrices which must be filled in a special
way to support different geometries. Moreover, numerical
analyzers (including MATLAB) usually have Graphical User
Interfaces in which one can draw the desired geometry, and the
predefined matrices will be filled indirectly. Nonetheless, as we
will discuss in more detail in section V, specifying a geometry
using these ways prevents us from applying algorithms which
check the feasibility of the solution. Because of the discrete
nature of numerical analysis, numerical solutions are prone
to error. Specifically, in order to discretize the constraints of
the p-norm flow problem, numerical analyzers approximate

the divergence operator with difference equations. This, on
one hand, confines us to have plaid geometries !. On the
other hand, the approximation error of discretization obliges
us to check the feasibility of the solution after each SQP
iteration. This prevents error accumulation and guaranties the
solution to converge to the optimal solution by running more
iterations. We will show in section V that compensating the
error confines us to using rectangular geometries. This section
presents an alternative way with which we can support any
desired geometry while using rectangular geometries.

Consider the following flow optimization problem which is
more general than problem (4):

Minimize J(D) = [, k(z)|D(2)[Pdzdy (10)

s.t. V- D(z) = p(2)

D,(2)=0, z€ 04

The only difference between problem (10) and (4) is in the
existence of a k(z) factor in the objective of the convex
optimization problem. Let k(z) be a positive scalar weight
function on A, taking a high value in parts of the rectangular
geometry where no routes are desired to pass, and a relatively
small value in places where we want the actual network to be.
Therefore k(z) takes a small value inside the desired geometry
and a relatively high? value in the undesired parts. In this way,
the optimization problem forces the routes to stay within the
desired geometry since passing through the undesired parts
will drasticallly increase the cost.

As an illustrative example, consider Fig. 1(a) which shows
the result of a 2-norm flow optimization problem in a polygon
with a hole inside. As mentioned earlier, the network geometry
can be defined in two ways: one way is to draw the desired
geometry directly using a GUI, as shown in Fig. 1(b). The
other way is to use problem (10) and suitably assign values
to k(z) in order to determine a network geometry within a
rectangle, as shown in Fig. 1(c). In both Fig. 1(b) and 1(c),
the real boundaries are specified by solid lines. The dashed
lines in Fig. 1(c) are dummy boundaries which are drawn to
specify our desired geometry. The area between the solid and
dashed lines and inside the inner circle are parts with a high
k factor. The flow diagram related to Fig. 1(b) will be drawn
only within the desired geometry whereas the diagram related
to Fig. 1(c) will also have small dots within the rectangle but
outside the desired geometry which represent points with zero
information flow. These are the points with a relatively high &
factor which are forced not to relay any information through
the network. This difference between the flow diagrams is not
recognizable with naked eyes, therefore we did not put them
separately in the paper.

Next, we consider the effect of the k£ factor in computing
the optimal information flow vector field. We have previously
shown in [3] that the set of equations for the solution of

A network of uniformly spaced squares that divides a geometry into units.

’Theoritically, k(z) must be equal to infinity in the undesired parts;
however, keeping a ratio of 10% to 10% from its value in the desired parts is
sufficient for the sake of numerical analysis.
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Fig. 1. 2-norm flow optimization problem. case I: Defining the geometry through a GUI. case II: Defining the geometry using the k(z) factor.

problem (10) with p = 2 is analogous to Maxwell’s equations
in electrostatics. Specifically, k(z) is analogous to the inverse
of permittivity factor in a non-homogeneous media. It is also
shown that this set of equations can be reduced to the following
elliptic partial differential equation:

_ Vk(xvy) ) VU(x,y) —
k(z,y)

V32U (z,y) k(z,y)p(x,y)

or equivalently

1
v (wU(Z)) =p(2)

where the optimal vector field D(xz,y) = mVU(x, y) and
can be solved by numerical elliptic PDE solvers. The above
vector field is the solution for p = 2; moreover, since it
satisfies the Neumann boundary condition and the divergence
property, it is in the feasible set of problem (10) and can be
used as the initial value vector field needed for starting SQP
iterations in finding the optimal solution of (10). The only
difference here is the existence of k(z) which is independent
of D. This causes the Hessian and gradient of the cost function
to be multiplied by k(z). In other words, we have to solve the
same elliptic PDE at each iteration, but with modified matrices
R and Q:

V- (CVA) =p
where
C(z) Qrew(2) = (k(z) - Q(2)) "
P(Z) = V- Q;elw(z)Rnew(z))
V- (Q ' (2)R(2))

IV. DISCRETIZATION

In order to numerically analyze continuous systems of
equations, one inevitable step is to discretize the domain of
the problem into finitely many discrete points. The same rule
applies when analyzing the p-norm flow optimization prob-
lem (4) for which we use Delaunay triangulation*algorithm to

3 An optimal partitioning of the space around a set of irregular points into
non-overlapping triangles and their edges. [9]

decompose the desired geometry into triangular meshes and
treat triangle midpoints as discrete points. Fixing the granular-
ity of triangles, the discrete points will have a uniform distribu-
tion over the network; this is called non-adaptive triangulation.
Discrete points may also have non-uniform distribution over
the network by adaptively changing the granularity of triangles
which is referred to as adaptive triangulation.

Consider a network with a single-source and a single-sink
scenario. Obviously, the amount of communication activity
increases as we get closer to the source or to the sink; this
suggests that more precision is needed for computing the vec-
tor field near those areas. This can be satisfied by decreasing
the triangulation granularity as we approach the sink and the
source compared to the granularity near network boundaries.
Therefore, generally it seems intuitive that we should use an
adaptive triangulation with increasing number of triangles as
we reach areas with larger amount of communication activity.
We may also decrease the granularity over the whole geometry
which will inefficiently add to the complexity of numerical
analysis.

In order to show the advantage of the adaptive over the
non-adaptive triangulation method, a good figure of merit
would be to compute the total flux passing through a closed
contour around the sink or the source. This is computed by
$o D - dn where C' is any closed contour around the sink or
the source, and dn is the outward differential normal vector
at each discrete point on C'. Based on Equ. (1), this represents
the rate at which messages exit a contour which is also equal
to the total rate at which messages are generated inside it.
Fig. 2 shows a rectangular network with a hole inside where
no information flow should pass. This is a single-sink single-
source scenario where the sink and the source are located
on the right and the left side of the hole, respectively. In
this figure we have used the adaptive method and computed
the rate at which messages pass through different contours
along the flow path from the source to the sink. As can be
seen, all rates are approximately 100 which is equal to the
total rate at which messages are generated at the source. The
boundary condition D,, = 0, together with the conservative



property of the vector field, force the same amount of flux
to pass each cross section of the network. In Fig. 3, we
have computed the flow passing a closed contour around the
source with both adaptive and non-adaptive triangulation of
the previous example as a function of the total number of
triangles. The figure shows that the adaptive method provides
a better accuracy (value closer to 100) with less number of
triangles which results in less complexity of the analysis.
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Fig. 2. Information flow passing different cross sections
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Fig. 3. Figure of merit as a function of granularity (no. of triangles)

V. CENTRAL PATH

In order to numerically stabilize the solutions of the iterative
method of computing the p-norm flow optimization problem,
we have to compute and compensate any possible error in the
variation of information flow vector field e after each iteration.
This prevents error accumulation; otherwise, the accumulated
error may cause the solutions to come out of the feasible set
after a few SQP steps. Recall that in each iteration, we solve
a PDE with the Neumann boundary condition D, (z) = 0,
z € 0A. So the boundary constraints on the vector field
are always satisfied. However, due to numerical errors, the
divergence property may not be fully satisfied. Therefore, in
each iteration we should compute V - D and compensate the
solution based on the error. This can be done as follows:

1) For p = 2: As mentioned earlier, the p-norm flow
optimization problem in this case is solved by the elliptic

PDE V - (VU) = p with a Neumann boundary con-
dition. Finding the potential function U(z), the vector
field D(z) = +VU(z). However due to numerical
inaccuracies, the solution might have some errors. To
compensate the error, define a potential function U.(z)
such that V - (1 VU,) = p — V - D satisfying the same
Neumann boundary condition as before. This results in a
unique U.(z). Now let Uy (2) = Ue(2) + U(z). Obvi-
ously, V- (%VUnew) = p, and it satisfies the Neumann
boundary condition. Letting Dyew(2) = £VUnew(2),
we now have a compensated information flow vector
field which satisfies the divergence property.

2) For p # 2: Having the vector field in the i iteration
(D®), we compute the optimal variation of the flow
denoted by ¢ = (ey,e,), and let DOTY = DO 4 ¢
Now since D@ is compensated, V - D) = p, and in
order to enforce the divergence property for D (1) we
can add another variation vector field called e to D(+1)
such that V - e. = V- D@ — V. DO+ Doing this,
DY) = DEY e, and V- DAY = v DO =
p. Then we can repeat the same process for the next
. . . (i+1) <.

iteration with Dy’ as the compensated initial vector

field. Now letting f = V- D — V. DU+ we can

uniquely determine e.. We have V-e. = f,and 1i-e, = 0

to satisfy the boundary condition. The solution for e is

expressed by e, = %VUC; therefore, we will have the
following PDE:

1
n-VU,.=0

which uniquely (up to an additive constant) specifies U,
and e..

As can be seen from above, computing the divergence of
the vector field plays an important role in compensating the
error. Numerical analyzers can compute the divergence of
vector fields only over plaid geometries. Therefore in order to
compute the divergence and at the same time support different
geometries, we have to use the k(z) factor described earlier
in section III.

VI. NUMERICAL EXAMPLE

As discussed earlier in [1], increasing the value of p > 1 in
the p-norm flow optimization problem will result in increasing
the spatial diversity of the information flow vector field. Our
goal in this section is to analyze a p-norm flow optimization
problem in a rather simple geometry and demonstrate the
increase in the spatial diversity of the vector field as we
increase the value of p. Fixing the power, we will also
demonstrate the rate of convergence to the final solution as
we run through different iterations.

The following analysis is for a single-source single-sink
network in a rectangular geometry with a circular hole inside
where the source and the sink are located in the upper left and
lower right of the network, respectively. No routes are desired
to pass through the hole. Therefore, we assign k(z) = 1000



for discrete points inside the hole, and let k(z) = 1 elsewhere.
Fig. 4 shows the optimal information flow vector field when
p = 2. Now choosing a different power, this result can be
used as an initial value for the first SQP iteration. Choosing
p # 2, SQP approximates the cost function with its second
order Taylor expansion at each iteration. Therefore, it will
take several iterations to converge to the optimal solution.
Fig. 5 shows the maximum absolute value of the variation
of information flow added in each iteration when p = 4 .
As can be seen from the figure, the variation added at each
iteration is reaching zero after several iterations which makes
the solution converge to a final vector field.

The effect of load balancing is shown in Fig. 6. Let S
be a set that contains values of |D| over the dashed circle
around the sink in Fig. 4 at each iteration, and use max g |D|—
ming |D| as a measure of how load balances as we increase
p and run more iterations. As can be seen, the difference
between |D| decreases at each iteration, which implies that
information reaching the sink becomes more uniform in all
directions as p grows larger. This further illustrates the load
balancing property of the p-norm flow problem.
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VII. CONCLUSIONS

In this paper we presented a numerical analysis of the p-
norm flow optimization problem and discussed the different
issues of numerical analysis. We presented different meth-
ods of discretizing the continuous domain of the problem

Maximum absolute value of the information flow variation, i.e.
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into discrete points using Delaunay triangulation method. We
showed that the adaptive triangulation method is superior
to the non-adaptive method in reaching a certain level of
accuracy with fewer triangles which leads to less complexity
of the analysis. We also proposed an algorithm to compensate
any possible error in the information flow vector field after
each iteration to prevent error accumulation. Since the flow
vector field has constraints on its divergence, this algorithm
computes the divergence after each iteration and compensates
the error. Numerical analyzers compute the divergence only
on plaid geometries; therefore in order to support different
network geometries, we presented a modified p-norm flow
problem where we can support any desired geometry simply
by assigning different values to a scalar factor k(z). We ended
our discussion with a numerical example in which it was
shown that the variation of information flow will converge
to zero as we perform more iterations. This shows that the
results will converge to the desired optimal value after several
iterations.
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