
Utilizing Path Diversity via Asynchronous and

Asymmetric Wakeups in Sensor Networks

Anuj Rawat and Mark Shayman

Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742

Email: {anuj, shayman}@glue.umd.edu

Abstract— We present an asynchronous wakeup policy for
wireless sensor networks that exploits the available path diversity
for maximizing the expected network lifetime. We assume a
random traffic generation model such that the rate is constant in
time. Each node is assumed to have a set of forwarding neighbors,
any of which may be used for forwarding its traffic to the sink. A
node having data packet to send, transmits the packet to the first
available node in its forwarding set. In order to maximize the
network lifetime, we balance the power dissipation at the network
nodes by adjusting the wakeup parameters at various nodes.
Allowing different nodes to wakeup with different rates makes the
scheme asymmetric. For ease of analysis, we restrict ourselves to
static, open-loop policies. We show that the optimization problem
is a Signomial Program (SP), that can be well approximated
as a Geometric Program (GP). By extensive simulations, we
compare the asymmetric policy thus obtained to the best possible
symmetric policy obtained from the same optimization setup but
ensuring additionally that the wakeup rates at all the nodes are
the same (in which case the optimization problem is shown to be
exactly a GP). The simulations show that allowing asymmetry can
extend the network lifetime by effectively exploiting the available
path diversity. Moreover, we also prove that, in case of symmetric
policies, no piecewise static policy can beat the simple static policy
that we use for comparison in our results. This shows that in the
space of open-loop, asynchronous wakeup policies, employing the
static, asymmetric policy presented in this paper is much more
profitable than even the best piecewise static, symmetric policy.

I. INTRODUCTION

Maximizing the lifetime of wireless sensor networks has

been an area of active research for some time. Two orthogonal

strategies for the problem are either to conserve the battery

at individual nodes, or to employ energy harvesting schemes.

We study the problem of maximizing the network lifetime

by conserving the nodes’ battery. For this problem, several

approaches, such as energy aware routing, in-network data

aggregation, duty cycling, adaptive sensing, etc., have been

proposed. In this paper, we focus on the duty cycling approach.

The intuition for employing duty cycling is that if a node

is idle, then its radio may be turned off, since idle listening

causes substantial energy drain.

Various duty cycling schemes (also referred to as wakeup or

sleep schemes) have been studied in the past. These schemes

can be broadly classified as synchronous, asynchronous, and

on-demand wakeups. As the name suggests, in synchronous

wakeup schemes, all the network nodes wake up at the same,

predetermined time. This approach is attractive because it is

Research partially supported by the NSF under grant CNS-0519554

possible to support extremely short duty cycles. The drawback

is that achieving and maintaining clock synchronization in

distributed systems is not a trivial task, and also, it is hard to

deploy dynamic synchronous wakeup policies that can adapt

to random perturbations/changes in the system. Examples of

wakeup schemes based on synchronization include S-MAC

[1], [2] and T-MAC [3]. In on-demand wakeup schemes, nodes

are equipped with an additional, low-power radio, that is never

powered off. Using this low-power radio, a transmitter can

request the intended receiver to power on its primary radio.

Although this scheme does away with the synchronization

problem, it has its own drawbacks, such as because of the

multiple radios, the nodes are more expensive, a part of

the available bandwidth is dedicated for operating the low-

power control radios, and usually the transmission range of

the primary and the low-power radios are not the same.

Examples of on-demand wakeup schemes include STEM [4],

rate estimated MAC [5], and passive-radio triggered wakeup

schemes [6]. Asynchronous wakeup schemes remove the need

of synchronization by ensuring that the neighboring nodes

are able to detect each other in finite time. In asynchronous

wakeup schemes such as AWP [7], the schemes presented in

[8], etc., this is ensured by selecting the wakeup and sleep

schedules at various nodes so that any two neighboring nodes

are guaranteed to have overlapping active periods in finite

time. Another approach, followed in schemes such as B-

MAC [9], X-MAC [10], SEESAW [11], [12] etc., requires

that the sleeping nodes periodically check the channel for

any activity, and the sender initiates communication with the

intended receiver by transmitting a (strobed train of) header

or request packet(s) which may be detected at the receiver

during some periodic channel listen. Since we are interested

in asynchronous wakeup schemes employing header packets

and periodic channel listens, we only discuss these schemes in

more detail. The interested reader is referred to [13], [14] for

a survey of wakeup schemes employed in sensor networks.

Low Power Listen (LPL) operation, described in [9], allows

nodes to check any activity on the channel by sampling it

for a small time. This is an extremely low energy operation

and forms the main idea behind schemes such as B-MAC,

X-MAC, etc. In B-MAC, nodes periodically perform LPL

checks with a fixed period that is the same for all the nodes.

This is referred to as the LPL check interval. In order to

guarantee packet delivery, the sender transmits the data packet

with a preamble that is longer than the LPL check interval.

X-MAC improves upon B-MAC by allowing the intended

receiver to acknowledge its readiness. This allows the sender

to start transmitting the packet without sending the full long

preamble, thereby improving per-hop latency as well as the

energy efficiency. In SEESAW, idle nodes periodically listen

to the channel. The sender transmit a train of uniformly spaced

advertisements to initiate communication with the intended

receiver. The fraction of time an idle node spends listening

to the channel, and the spacing between advertisements trans-

mitted by a sender are node parameters and may be different

for different nodes. In this sense, SEESAW is an asymmetric

wakeup scheme as opposed to symmetric wakeup schemes like

B-MAC. SEESAW tries to balance the energy spent in protocol

overheads at various nodes by exploiting this asymmetry, i.e.,

by adjusting the two parameters at various nodes, in order to

maximize the network lifetime. SEESAW assumes a single

available route to the sink from every node, hence the data

rate seen by individual nodes is solely determined by the data

generation process and is independent of the wakeup scheme.

In this paper, we assume that the network nodes may have

multiple available paths for reaching the sink. This is true in

most of the sensor networks (expect for very sparse networks).

An upshot of this is that the path diversity available may be

used to balance not only the protocol overheads, but also the

actual data traffic as seen by various network nodes. For this

end, we propose the use of a simple asymmetric, asynchronous

wakeup scheme. The basic idea is that it is possible to

configure the LPL check rates of the nodes such that in a

set of possible receivers for a sender, the receivers that do not

see much traffic (from their other senders) wake up faster, so

that they share a larger portion of the traffic from this sender,

thus alleviating the pressure on the receivers that are seeing

large amounts of traffic from their other senders. RAW [15], a

symmetric, asynchronous wakeup protocol, achieves improved

latency and network lifetime by utilizing the available path

diversity. The problem with RAW is that there may be packet

losses. Moreover, [15] provides no analysis of the network

lifetime achieved by RAW and neither does it provide any

insight or discussion on how to select the policy parameters for

achieving maximum lifetime improvement. Also, as we shall

see later, the symmetric assumption restricts the protocol from

utilizing the true potential of path diversity in the network.

In this paper, we assume a network where the data traffic is

generated according to a homogeneous Poisson process. We

analyze the performance of static, open-loop, asynchronous

wakeup schemes. We construct the problem of determining the

wakeup rates in order to maximize the network lifetime as a

Signomial Program (SP) [16] which, in general, is not a convex

optimization problem. But in our case, the problem turns out

to be very close to a Geometric Program (GP) [16], and can

therefore be solved approximately. We compare this wakeup

policy with the best possible symmetric policy, which is shown

to be the solution of a GP, and therefore easily solvable. The

simulations show that the asymmetry does indeed buy us a lot

of leverage for extending the network lifetime. Moreover we

also prove that, in case of symmetric policies, no piecewise

static policy can beat the simple static policy obtained by

solving the constructed GP. This shows that in the space of

open-loop, asynchronous wakeup policies, employing static,

asymmetric policy is much more profitable than even the best

piecewise static, symmetric policy (which may itself be hard

to find, since the number of pieces is also an unknown).

II. COMMUNICATION MODEL

A. Network and Data Generation

We denote the set of network nodes by V = {0, 1, . . . , N},

where node 0 is the sink and the rest of the nodes (referred

to as sensors) can act as both data sources and relays. The

set of sensors is denoted by S. The adjacency information of

the network nodes is modeled as the undirected graph G with

vertex set V and the edge set EG representing the pairs of

adjacent nodes. An edge between nodes u, v ∈ V, is denoted

by {u, v} ∈ EG. We assume that any two nodes can directly

communicate with each other if and only if they are adjacent.

We denote the set of all nodes adjacent to node v ∈ V by Nv ,

i.e., Nv = {u ∈ V : {u, v} ∈ EG}. This is also referred to

as the set of neighbors of network node v. We assume that if

multiple neighbors of a node v ∈ V transmit simultaneously,

then if v listens to the channel, it shall hear a collision.

We assume that no data packets are generated at the sink,

and at every sensor, data packets are generated according to

a homogeneous Poisson process. We assume that the packet

generation processes for distinct sensors are independent and

may have distinct rates.

B. Routing

We assume that the routing is predetermined in the sense

that for every sensor, the set of possible next hop neighbors

is fixed. This is modeled as a directed graph ~R with vertex

set V and directed edge set E~R
where for a pair of nodes

u, v ∈ V, the presence of a directed edge from node u to

node v, denoted by (u, v) ∈ E~R
, implies that node v is in the

set of possible next hop neighbors of node u. We assume that
~R is a Directed Acyclic Graph (DAG) with a strictly positive

outdegree for every sensor and outdegree equal to zero for

the sink. This ensures that there are no routing loops and that

every sensor has a directed path to the sink.

We denote the set of all the forwarding neighbors of sensor

v ∈ S by Dv , i.e., Dv = {u ∈ V : (v, u) ∈ E~R
}. This is

also referred to as the set of downstream neighbors of sensor

v. By Uv , we denote the set of all the sensors for which

the network node v ∈ V acts as a forwarding neighbor, i.e.,

Uv = {u ∈ S : (u, v) ∈ E~R
}. This is also referred to as the

set of upstream neighbors of network node v.

C. Node State

Since usually there is no energy constraint at the sink, we

assume that the sink always listens to the channel. On the

other hand, the state of a sensor is determined by the state

of its radio. At any time t, a sensor v ∈ S is in one of the

following four states:

(i) SLEEP (S): In this state, v’s radio is OFF.

(ii) RECEIVE (R): In this state, v is in receive mode, i.e., it

listens to the channel for a data packet from one of its

upstream neighbors.

(iii) TRANSMIT (T): In this state, v is in data transmit mode,

i.e., it broadcasts a data packet on the channel for one

of its downstream neighbors.

(iv) HEADER (H): In this state, v is in header transmit mode,

i.e., it broadcasts header and also listens to the channel

for any response to its header transmission, from any of

its neighboring nodes.

While in state S, sensor v may check the channel for any

sort of activity by performing LPL checks. The length of

time a sensor stays in state S, between any two successive

LPL checks, is referred to as LPL check interval. We assume

that the LPL check intervals at sensor v are independent and

exponentially distributed with parameter 1
λWv

. We refer to λWv

as the wakeup rate of the sensor v. Moreover, the LPL check

intervals at distinct sensors are assumed to be independent.

During an LPL check, if sensor v detects a collision, it

broadcasts a NAK; on the other hand if it detects that one of

its upstream neighbors is transmitting header, it broadcasts an

ACK and switches to state R in order to receive a data packet

from the upstream neighbor. The sensor v remains in state R

until it successfully receives the data packet. On successfully

receiving the data packet, it broadcasts an ACK. All this is

true for the sink also, i.e., if the sink detects a collision, it

broadcasts a NAK, and if it detects that one of its upstream

neighbors is transmitting header, it broadcasts an ACK and

prepares to receive a data packet from the upstream neighbor.

On successfully receiving the data packet, it broadcasts an

ACK.1

At any time t, a sensor v tries to grab the channel in order

to initiate a packet transmission with probability 1 if v was in

state S at time t−dt, and a new data packet was generated at

v during the time interval (t−dt, t), and with probability p dt
if v was in state S at time t−dt, and there were packets in its

buffer awaiting transmission. In the latter case, p is referred

to as the persistence of the communication model. If sensor v
successfully grabs the channel, it goes into state H. It remains

in state H until it receives an ACK from one of its downstream

neighbors, or NAKs from some of its neighboring nodes. If

sensor v receives at least one NAK, it goes into state S. On

the other hand if it only receives an ACK from one of its

downstream neighbors (say u ∈ Dv), it goes into state T and

keeps on broadcasting the packet until it receives another ACK

from node u confirming the reception of the data packet.

III. WAKEUP ANALYSIS

The problem that we wish to address is, given a network

graph G, routing DAG ~R and the data generation rates at the

1It should be stated that a sensor v ∈ S having Dv = {0}, does not
need to transmit header since the intended receiver (sink) is already listening.
This alternate behavior has no bearing on the discussion, analysis and results
presented in this paper. We do not consider this alternate behavior for ease
of exposition.

sensors, determine the wakeup rate λWv for every sensor v ∈ S

in order to maximize the expected lifetime of the network.

Here we quantify the lifetime of the network as the time till

the first sensor fails. This concept of lifetime is widely used

in sensor network literature, and has the justification that if

any sensor dies, the sink no longer gets the complete profile

of the region being observed by the sensor network.

Let Jv(t) be the energy dissipated at sensor v up to time

t, and let Pv(t) be the power drain at sensor v at time t. For

every sensor v ∈ S, we have

Jv(t) =

∫ t

0

Pv(s) ds. (1)

Since the lifetime of the sensor is long compared to the

timescales at which traffic is generated and since we employ

static wakeup policy, we assume that after a small transient

period, the system achieves stationarity. In particular, assuming

a stationary, ergodic framework, for every sensor v ∈ S,

random variables {Pv(t)}t≥0 are distributed identically to a

generic random variable Pv . Hence from (1), we have

lim
t↑∞

Jv(t)

t
= lim

t↑∞

1

t

∫ t

0

Pv(s) ds = E[Pv] a.s. (2)

where the notation E[R] denotes the expected value of random

variable R. Let Einit be the initial energy at each sensor, and

Ev(t) be the residual energy at sensor v after time t. From

(1), we have

E[Ev(t)] = Einit − E[Jv(t)] = Einit − t E[Pv]. (3)

From (3), the expected lifetime of the network, defined as

the time at which the expected residual energy at any sensor

vanishes, is given by

T = min
v∈S

Einit

E[Pv]
. (4)

Hence, the objective of maximizing the average network

lifetime is equivalent to minimizing the maximum average

power dissipation over the set of all the sensors.

The rate of any given counting process C is defined as

λC , lim
t↑∞

C(t)

t
.

For any sensor v ∈ S, let Av be the counting process

associated with the packet arrivals at v from its upstream

nodes, and let Gv be the counting process associated with

the packet generation at sensor v. Let the counting process

Xv be the sum of Av and Gv . Therefore, the associated rates

satisfy

λXv = λAv + λGv . (5)

Let Lv be the counting process associated with the LPL

operation at sensor v, with rate λLv .

At any node, let the energy spent in transmitting a packet

be etx, the energy spent in receiving a packet be erx, the

energy spent in generating a packet be egen, the energy spent

in performing a low-power listen operation be elpl, and the

power spent during header transmission be phdr. The energy

dissipated at any sensor v ∈ S up to time t can be written as

Jv(t) =

Xv(t)
∑

i=1

Qi
v +

Lv(t)
∑

j=1

elpl, (6)

where Qi
v is the energy spent by the i-th packet being

transmitted by sensor v. Let Hi
v be the length of header

transmitted by sensor v before successfully transmitting the

i-th packet. Then,

Qi
v =

{

erx + etx + phdrH
i
v if i-th packet arrives at v,

egen + etx + phdrH
i
v otherwise.

We assume that the sets of random variables {Qi
v}i and {Hi

v}i

are independent and distributed identically to the random

variables Qv and Hv , respectively. Hence,

E[Qv] = erx
λAv

λXv

+ egen
λGv

λXv

+ etx + phdrE[Hv]. (7)

We assume that the data packets are of equal lengths and

denote the length of packet transmission by Tpkt. Let tIv be

the total time that sensor v is idle, i.e., not transmitting or

receiving any packets or headers, till time t. Then

tIv = t −

Xv(t)
∑

i=1

(

Hi
v + Tpkt

)

−

Av(t)
∑

j=1

Tpkt. (8)

From (8), we have

lim
t↑∞

tIv
t

=1 − lim
t↑∞

Xv(t)

t

(

∑Xv(t)
i=1 Hi

v

Xv(t)
+ Tpkt

)

− Tpkt lim
t↑∞

Av(t)

t

=1 − λXv (E[Hv] + Tpkt) − λAvTpkt. (9)

Since during its idle time, sensor v performs the LPL oper-

ations with rate λWv , using (9), the overall rate of the LPL

operations performed by v is given as

λLv = lim
t↑∞

Lv(t)

t
= lim

t↑∞

tIv
t

.
Lv(t)

tIv
=λWv

(

1 − λXv (E[Hv] + Tpkt) − λAvTpkt

)

. (10)

For every sensor v ∈ S, (2), (6), (7) and (10) imply

E[Pv] = lim
t↑∞

1

t





Xv(t)
∑

i=1

Qi
v +

Lv(t)
∑

j=1

elpl





= lim
t↑∞

Xv(t)

t
.

∑Xv(t)
i=1 Qi

v

Xv(t)
+ lim

t↑∞
elpl

Lv(t)

t

=λXv E[Qv] + λLvelpl

= etxλ
Xv + erxλ

Av + egenλGv + phdrλ
Xv E[Hv] +

λWvelpl

(

1 − λXv (E[Hv] + Tpkt) − λAvTpkt

)

.(11)

Assuming that during the idle state of sensor v, the LPL

process is a Poisson arrival process, we obtain

E[Hv] =
∑

i∈Dv

1

λWv

. (12)

Moreover, by the steady state assumption,

λAv =
∑

w∈Uv

λXw
λWv

∑

x∈Dw
λWx

= λWv

∑

w∈Uv

λXwE[Hw]. (13)

Let ΛW = {λWv : v ∈ S}. The overall optimization

problem of interest becomes

min
ΛW

max
v∈s

E[Pv] (14)

subject to equations (11), (12),

(13) and (5), ∀v ∈ S.

This optimization problem can be rewritten as a Signomial

Program (SP). As stated in Section I, in general SP is not

easy to solve. But the SP obtained from (14), is very close

to a Geometric Program (GP), and can therefore be solved

approximately. We use this approximate solution as our static,

open-loop, asymmetric, asynchronous wakeup policy. The ex-

act details of rewriting (14) into a SP and then approximating

it with a GP are given in [17].

In symmetric wakeup schemes, for every sensor v ∈ S, we

have λW
v = λW . Hence, if we restrict the wakeup scheme to

being a symmetric scheme, the optimization problem reduces

to

min
λW

max
v∈s

E[Pv] (15)

subject to

E[Pv] =(egen − erx)λ
Gv + (etx + erx −

elpl

|Dv|
)λXv

+ elpl(1 − (2λXv − λGv)Tpkt)λ
W

+
phdrλ

Xv

|Dv|

1

λW
,

λXv = λGv +
∑

w∈Uv

λXw

|Dw| , ∀v ∈ S.

This optimization problem can be rewritten as a GP, which is

easy to solve. Again, the details of rewriting (15) into a GP

are given in [17].

Next we consider the set of all the piecewise static, open-

loop, symmetric, asynchronous wakeup policies. Clearly they

contain the set of static, open-loop, symmetric, asynchronous

wakeup policies that we considered in (15). Let the number of

pieces be M . Let the wakeup rate in piece m be λW
m . Let the

fraction of the total lifetime that λW
m is used as the wakeup

rate be αm. Let Pv,m be the random variable analogous to

random variable Pv in piece m. Hence, the optimization is

min
{αm,λW

m
}M

m=1

max
v∈s

αmE[Pv,m] (16)

subject to

E[Pv,m] =(egen − erx)λ
Gv + (etx + erx −

elpl

|Dv|
)λXv

+ elpl(1 − (2λXv − λGv)Tpkt)λ
W
m

+
phdrλ

Xv

|Dv|

1

λW
m

,

λXv = λGv +
∑

w∈Uv

λXw

|Dw| , ∀v ∈ S,
∑M

m=1 αm = 1.

The detailed discussion on constructing this optimization prob-

lem is given in [17]. In [17], we also show that for any fixed

M , the optimization problem is a GP.

Theorem 3.1: The maximum expected lifetime achieved by

the piecewise static policy obtained on solving (16) cannot

beat the maximum expected lifetime achieved by the static

policy obtained on solving (15).

The proof is based on the inequality relating arithmetic mean,

geometric mean and harmonic mean. The complete proof is

given in [17].

IV. SIMULATION RESULTS

Fig. 1. Network graph G and routing DAG ~R

For simulations, we study a network of 25 sensors and a

sink. The network graph G and the routing DAG ~R were

generated as described next. Consider a unit square in R
2
+

with the origin as the bottom left corner point. Divide this

square into 25 equal sized squares and label them from 1 to 25,

traversing the rows of squares from the bottom to the top and

traversing the squares in each row from left to right. As stated

before, the set of nodes is denoted by V = {0, 1, . . . , 25},

where 0 is the sink and the rest of the nodes are sensors. The

sink is placed at the origin, and the sensor i is placed uniformly

randomly in the i-th small square. The network graph G has

vertex set V and edge set EG = {{u, v} : u, v ∈ V, ‖u −
v‖2 ≤ 1√

5
}, where ‖ · ‖2 is the Euclidean norm. The norm

condition assures that the network graph is connected. The

routing DAG is generated by using simple geographic routing

where a sensor adjacent to the sink is allowed to transmit data

packets only to the sink, and a sensor far away from the sink,

is allowed to transmit data packets to all of its neighboring

sensors that are strictly closer to the sink than itself. In other

words, for any sensor u ∈ S, the set of downstream neighbors

is given as

Du =

{

{v ∈ Nu : ‖v‖ < ‖u‖} if 0 /∈ Nu,
{0} otherwise.

The actual network and the routing DAG used for the simu-

lation (that were generated as described above) are shown in

Figure 1. The solid lines represent adjacency, and the arrows

on the edges represent the direction of possible data flow in

case the directed edge is present in the routing DAG.

For the simulations, we assumed slotted time. We assume

that a new packet is generated at any sensor u ∈ S in any

timeslot k with probability 0.0005. We assume that the length

of a timeslot to be 2.5 ms. Hence, the packet generation rate

λG at the sensors is equal to 0.0005 per timeslot or 0.2 s−1.

Also, an LPL check requires exactly one timeslot [9]. At a

data transfer rate of 100 kbps and a packet size of 250 bits,

a data packet transmission/reception requires 2.5 ms, i.e., one

timeslot. The total energy spent by a sensor in performing an

LPL check operation is equal to 17.3 µJ. Assuming Chipcon

CC1000 radio [18], the current drawn while transmitting and

receiving data is equal to 25.4 mA and 9.6 mA, respectively.

With a power supply of 3.0 V and the data packet length of

2.5 ms, the energy spent by a sensor in transmitting (receiving)

a data packet is equal to 190.5 µJ (72 µJ). While transmitting

header, the node also listens for ACKs from its downstream

neighbors, and NAKs from all of its neighboring nodes. Hence,

the energy spent by a sensor in transmitting header for one

timeslot is equal to 262.5 µJ. If a sensor wants to transmits

but cannot grab the channel, the node still has to expend

17.3 µJ amount of energy (equal to the energy required for

an LPL check). In this case the node is assumed to be in

idle state during that timeslot. Moreover, we assume that the

energy required to generate a new packet is 500 µJ. This

usually depends on the sensing application, but in most of the

sensing applications, the sensing operation (data generation)

itself accounts for a very small fraction of the energy depletion

at the nodes. We normalize the various energy values with

respect to the energy required for an LPL check. We assume

that the normalized initial energy at every node is 500000

units.2 The various system parameters used in the simulations,

are presented in Table I.

TABLE I

PARAMETERS

Parameter Value

|S| 25
Einit 500000 units
egen 30 units
elpl 1 unit
erx 4 units
etx 11 units
phdr 15 units per timeslot
eid 1 unit

λG 0.0005 packets per timeslot

We simulated the performance for both the symmetric

and asymmetric policies as described in Section III. In the

symmetric case, the wakeup rate λW (interpreted in the slotted

model as the probability of wakeup in any particular timeslot)

was determined to be equal to 0.1568. The wakeup rates for the

sensors as determined by the asymmetric policy are presented

in Table II.

The simulation results are compiled in Table III and Figure

2Although the initial energy at nodes is much higher than this, during the
simulations we observe that this value is high enough to ensure that the system
achieves the stationary state.

TABLE II

WAKEUP RATES FOR ASYMMETRIC POLICY

Node Id 21 22 23 24 25
Wakeup rate 0 0.0498 0.0478 0.0412 0

Node Id 16 17 18 19 20
Wakeup rate 0.0629 0.0536 0.0435 0.0407 0.0332

Node Id 11 12 13 14 15
Wakeup rate 0.0464 0.0490 0.0416 0.0332 0.0287

Node Id 6 7 8 9 10
Wakeup rate 0.0840 0.0386 0.0247 0.0255 0.0237

Node Id 1 2 3 4 5
Wakeup rate 0.1742 0.0863 0.0331 0.0113 0.0243

2. Table III presents the average useful lifetime of the network,

measured as the number of packets reaching the sink before

the first node failure, over 30 random runs while employing

the two wakeup policies. Figure 2 presents the residual energy

profile of the network nodes under the two policies averaged

over 30 random runs.

TABLE III

AVERAGE USEFUL LIFETIME

Symmetric Policy Asymmetric Policy
(# packets) (# packets)

14489 21587

Fig. 2. Residual Energy Profile

From Table III, we observe that the asymmetric policy

performs significantly better than the symmetric policy in

terms of the total lifetime of the network. In fact, it increases

the average network lifetime by nearly 50%. Figure 2 shows

that the asymmetric policy does a much better job of balancing

the energy consumption at the network nodes as compared to

the symmetric policy. To observe this, note that the number

of nodes with the residual energy being less than 20% of the

initial energy is 12 (out of 25) in the case of asymmetric policy,

as compared to only 2 in the case of symmetric policy.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a static, open-loop, asynchronous

wakeup policy for wireless sensor networks, that exploits the

available path diversity for maximizing the expected network

lifetime. The policy is able to balance the power dissipation at

various network nodes by adjusting a single parameter for that

node. By simulations, we compared this asymmetric policy

to the best possible symmetric policy and established that

asymmetry does indeed allow us to effectively exploit the

available path diversity and increase the network lifetime. We

also prove that, in case of symmetric policies, no piecewise

static policy can beat the simple static policy that was used

for comparison in our results. This shows that in the space

of open-loop, asynchronous wakeup policies, employing the

static, asymmetric policy presented in this paper is much

more profitable than even the best piecewise static, symmetric

policy.

Next, we would like to develop and analyze a closed-loop

asynchronous wakeup policy. This may be significantly harder

than the problem studied in this paper, mainly because we

may no longer be able to rely on the steady state analysis that

was presented here. Another interesting problem that we are

working on is to develop a distributed algorithm by which the

various nodes can decide their wakeup rates.

REFERENCES

[1] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in IEEE Infocom, June 2002.

[2] ——, “Medium access control with coordinated, adaptive sleeping for
wireless sensor networks,” ACM/IEEE Transactions on Networking,
vol. 12, no. 3, pp. 493–506, June 2004.

[3] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” in ACM SenSys, 2003.

[4] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing
sensor networks in the energy-latency-density design space,” IEEE

Transactions on Mobile Computing, vol. 1, no. 1, pp. 70–80, January
2002.

[5] M. Miller and N. Vaidya, “A MAC protocol to reduce sensor network
energy consumption using a wakeup radio,” IEEE Transactions on

Mobile Computing, vol. 4, no. 3, pp. 228–242, May 2005.
[6] L. Gu and J. A. Stankovic, “Radio-triggered wake-up capability for

sensor networks,” in IEEE RTAS, 2004.
[7] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad hoc

networks,” in ACM MobiHoc, 2003.
[8] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols for

IEEE 802.11-based multi-hop ad hoc networks,” in IEEE Infocom, 2002.
[9] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access

for wireless sensor networks,” in ACM SenSys, 2004.
[10] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-MAC: A short

preamble mac protocol for duty-cycled wireless sensor networks,” in
ACM SenSys, 2006.

[11] R. Braynard, S. Ravi, and C. Ellis, “Exploring the design of an
asynchronous and asymmetric MAC protocol,” in SenMetrics, 2005.

[12] R. Braynard, A. Silberstein, and C. Ellis, “Extending network lifetime
using an automatically tuned energy-aware MAC protocol,” in EWSN,
2006.

[13] T. Armstrong, “Wake-up based power management in multi-hop wireless
networks,” available at http://www.eecg.toronto.edu/∼trevor/Wakeup/
survey.pdf.

[14] K. Langendoen, “The mac alphabet soup served in wireless sensor
networks,” available at https://apstwo.st.ewi.tudelft.nl/∼koen/MACsoup.

[15] V. Paruchuri, S. Basavaraju, A. Durresi, R. Kannan, and S. S. Iyen-
gar, “Random asynchronous wakeup protocol for sensor networks,” in
Broadnets, 2004.

[16] M. Chiang, “Geometric programming for communication systems,”
Foundations and Trends in Communications and Information Theory,
vol. 2, no. 1/2, pp. 1–154, 2005.

[17] A. Rawat and M. Shayman, “Utilizing path diversity via asynchronous
and asymmetric wakeups in sensor networks,” available at http://www.
ece.umd.edu/∼anuj/GLOBECOM/tr.pdf.

[18] “Chipcon cc1000 datasheet,” available at http://focus.ti.com/lit/ds/
symlink/cc1000.pdf.

